
NICE: Network-Integrated Cluster-Efficient Storage

Samer Al-Kiswany*, Suli Yang, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
* University of Waterloo, alkiswany@uwaterloo.ca

 University of Wisconsin-Madison, {suli, dusseau, remzi}@cs.wisc.edu

ABSTRACT
We present NICE, a key-value storage system design that
leverages new software-defined network capabilities to build
cluster-based network-efficient storage system. NICE presents
novel techniques to co-design network routing and multicast with
storage replication, consistency, and load balancing to achieve
higher efficiency, performance, and scalability.

We implement the NICEKV prototype. NICEKV follows the
NICE approach in designing four essential network-centric
storage mechanisms: request routing, replication, consistency, and
load balancing. Our evaluation shows that the proposed approach
brings significant performance gains compared to the current key-
value systems design: up to 7× put/get performance improvement,
up to 2× reduction in network load, 3× to 9× load reduction on the
storage nodes, and the elimination of scalability bottlenecks
present in current designs.

KEYWORDS
Key-value storage, software-defined networks, network-system
co-design, distributed storage

1 INTRODUCTION
The end-to-end design principle [38] pervades the design of

virtually every modern distributed system [1, 3, 4, 11, 17]. In its
extreme form, critical functionality is implemented solely in end
hosts, with a relatively dumb and fast network to connect them.

One locale that closely adheres to the end-to-end principle is
distributed storage, including distributed file systems [15, 20, 22,
24, 39, 45] and scalable key-value stores [6, 9, 12, 18, 26]. In
these widely-deployed and increasingly important systems, the
network is used as a point-to-point communication medium, while
storage logic and protocols are implemented entirely in client
libraries and server code.

Unfortunately, such Network-Oblivious (NOOB) storage
systems are fundamentally inefficient. Consider, for example, the

simple task of replicating a block. To do so, a node first sends the
block to one server, and then another, and then another; as a
result, the same data redundantly traverses some number of
network links and switches, increasing load on the network
significantly. Even the simple task of locating a data item presents
a significant challenge; for example, in protocols such as Chord
[40], a logarithmic number of nodes must be contacted simply to
discover the location of a particular key.

In this paper, we propose an alternative approach in which we
co-design storage logic and networking support to realize more
efficient, scalable, and reliable distributed storage. Such Network-
Integrated Cluster-Efficient (NICE) storage harnesses recent
advances in Software-Defined Networks (SDNs) [19, 30] to
optimize key aspects of modern distributed storage architectures.
For example, NICE storage systems can replicate a block while
generating the least possible network load, and it can forward a
request to the proper node in a single hop.

Two recent developments provide a unique opportunity to
address NOOB inefficiencies and indicate that a network-
integrated design paradigm that co-designs network and end-point
functionality has a much higher chance of being successful today.
First, recent advances in software-defined networks (SDNs)
provide a standard interface for implementing in-network
application specific optimizations, and for building a control
mechanism that can orchestrate network and storage operations.
The second development is the wide adoption of data centers as
the main cloud computing platform. Having a single
administration of the entire hardware/software stack and the
ability to compartmentalize the infrastructure facilitates adopting
custom solutions for different applications or subsystems.

NICE uses SDN technology to virtualize the storage system.
The client accesses a virtual storage system deployed on a range
of virtual IP addresses. The NICE network controller modifies
client packets and forwards them to the proper storage node.
Having a network controller that is informed of the storage system
metadata and has full control of the network decisions enables
optimizing packet paths to improve four essential storage
mechanisms, including: request routing, which directs requests
from clients to storage nodes; replication, for preventing data loss
when nodes or storage devices fail; load balancing, which
dispatches client requests across replicas to handle workload
variation. Finally, NICE virtualization enables building a new
fault tolerance mechanism: consistency-aware fault tolerance.
This mechanism simplifies building consistency protocols by
making failed nodes, or nodes with inconsistent data, inaccessible.

To demonstrate the efficacy of the NICE approach, we design
and implement a key-value storage prototype, NICEKV. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HPDC '17, June 26-30, 2017, Washington , DC, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4699-3/17/06…$15.00
http://dx.doi.org/10.1145/3078597.3078612

empirical evaluation with synthetic and real workload benchmarks
shows that the NICEKV prototype realizes significant
performance gains compared to a broad set of NOOB storage
configurations. Membership maintenance in NICEKV is highly
scalable and eliminates the maintenance operations overhead.
NICEKV request routing achieves single-hop routing without
requiring extra resources. NICEKV replication is network and
storage optimal (discussed in detail in section 4.2), effectively
halving the network-generated load and reducing storage load by
3× to 9×, depending on replication level. The NICEKV two-phase
commit consistency protocol uses the consistency-aware fault
tolerance mechanism to tolerate failures without increasing
operation overhead. NICEKV load balancing effectively spreads
client requests across servers without deploying dedicated load-
balancing machines. The combination of these optimizations is
powerful; the NICEKV prototype can achieve up to 7× put/get
performance improvement as compared to the traditional network
oblivious approach.

The rest of this paper is organized as follows. In Section 2, we
present an overview of the current NOOB storage design, and the
recent advances in software-defined networks. We then present
the proposed NICE approach in Section 3, detail the system
design 4, present the implementation of the NICEKV prototype in
Section 5, and present our empirical evaluation in Section 6. We
discuss related work in Section 7, and conclude in Section 8.

2 BACKGROUND AND RELATED WORK
In this section, we present an overview of a typical network-
oblivious storage systems design, and summarize the recent
advances in software-defined networks.

2.1 NOOB Storage System Design
Current distributed key-value storage systems are network-
oblivious: the network is only used as a point-to-point
communication medium without storage system control over its
operations. NOOB storage systems typically implement storage
logic and protocols within end hosts; this approach is
fundamentally inefficient as many core storage system operations
are, in principle, network-level operations, e.g., replication or
request routing.

Many NOOB storage systems adopt a design based on
consistent hashing [25]. In the original consistent-hashing design,
the object hashing space represents a circular ring, all storage
nodes are placed on the ring, and each node coordinates access to
the objects in its part of the ring. Pastry [37] and Chord [40] were
among the first to use consistent hashing to build a scalable peer-
to-peer object storage system. They use, with high probability,
O(log n) hops to route a request, while only storing O(log n)
routing information on each node. While this approach scales
well, it imposes additional latency.

To reduce the latency of request routing, prominent NOOB
storage systems adopt a full-membership model [6, 9, 12, 18, 26],
in which every node maintains complete knowledge about all the
nodes in the system and their contents; hence, nodes can route any
request directly to the responsible node. When a node joins or

fails, all the nodes in the system need to be updated. This update
happens through contacting every node and updating its
information using O(N) connections and messages [6], or through
an epidemic protocol entailing O(log n) steps and over O(N)
messages [41].

Access Mechanism. To access the system, current systems
adopt one of the following three techniques to route client
requests to the node maintaining the object. The first technique,
which we refer to as the Replica-Oblivious Gateway (ROG), uses
a generic off-the-shelf load balancer that forwards client requests
to a storage node selected in a random or a round-robin fashion.
This approach is common in production systems [6, 9, 18, 26] due
to its ease of deployment and use of existing load balancers. This
approach imposes two extra hops for routing a request.

The second approach we call the Replica-Aware Gateway
(RAG). This approach uses a load balancer or a proxy access node
[6] that is aware of replica placement, and imposes one extra hop
for routing a request.

In the third approach, known as the Replica-Aware Client
(RAC), the clients cache the metadata of previously accessed
objects [33], and use it to route subsequent requests. This
approach only works for deployments in which clients are
collocated with the storage system and are allowed to know
detailed data placement and replication information. For
deployments in which the clients do not have access to storage
internal information or are located behind a NAT [23] (e.g.,
shared cloud storage like Amazon S3), this approach is not an
option. Finally, this approach hinders deploying load balancers.

2.2 Software-Defined Networks
The SDN architecture divides the network into two planes: data
and control. The data plane is a traffic forwarding plane that uses
the information in the switch forwarding tables to forward
messages. The control plane is an external software-based
logically-centralized component that controls one or more
switches by altering the entries in switch forwarding tables. The
communication API between the controller and the switches is
based on the widely adopted OpenFlow standard [19].

The OpenFlow standard [30] facilitates external control of a
single-switch forwarding table. It allows inserting or deleting
forwarding rules. Each forwarding entry includes a matching rule
and an action list. If a packet matches a rule, the actions in the
actions list are performed in order on the packet. OpenFlow has a
rich set of matching rules including wild cards for matching IP
and MAC addresses, protocol or port numbers. The actions
include packet forwarding to a specific switch port, dropping the
packet, sending the packet to the controller, or modifying the
packet. The possible modifications include changing the
source/destination MAC/IP addresses. To avoid the need for
switches to contract the controller on every packet, forwarding
rules are stored on switches and have an expiry period that is set
by the controller. Controllers can update, delete, or extend the
validity of the existing rules at any time.

These capabilities enable fine-grained control of network
operations and facilitate application-optimized traffic engineering.

3 NICE SYSTEM ARCHITECTURE
NICE leverages the programmability and fine-grained control of
network operations provided by recent advances in software-
defined networks [19, 30] to co-design network and storage
operations. The NICE design virtualizes the storage system. The
client accesses a virtual storage system deployed on a range of
virtual IP addresses. The metadata service (detailed next) maps
the virtual storage system to the physical one. The NICE design
optimizes this mapping to achieve low-latency routing, efficient
multicasting, load-balancing, and improved fault tolerance.

This section presents the system architecture and details the
two core techniques that NICE proposes: storage virtualization,
and consistency-aware fault tolerance. The following section
details how we extend these techniques to optimize replication,
consistency, and load-balancing mechanisms.

3.1 System Architecture
Similar to the NOOB storage, NICE uses consistent hashing to
partition the object space among the storage nodes. Nodes are
placed in a consistent hashing ring, such that each node serves
part of the ring. We call this the physical ring. Every storage node
is the primary replica for one or more partitions, and can serve as
a secondary replica for other partitions.

The system is composed of three components (Figure 1):
storage nodes, client nodes, and a metadata service, all connected
with an OpenFlow-enabled switching fabric. The storage nodes
serve put and get requests and implement the replication,
consistency, and load-balancing protocols. The storage nodes send
periodic heartbeats to the metadata service. The metadata service
maintains storage system metadata. The metadata includes
information about which storage nodes are participating in the
system, and which range of the hash space (partition) each storage
node is serving. The metadata service does not maintain per-
object metadata.

Figure 1. System Architecture. The client sends the requests
using two virtual rings (vrings). The requests are rerouted in the
network to the responsible storage node. The metadata service
receives heartbeats from the nodes and maintains the mapping
information in the forwarding tables.

3.2 NICE Storage Virtualization
The first goal of virtualizing the storage system is to enable
storage-aware routing of client requests; that is, to have a routing
technique that can route a client request to the proper storage node
(i.e., routing based on the key hash value). Building a storage-
aware routing mechanism is challenging. While OpenFlow
provides control over switch forwarding decisions, it only
supports matching packets using information found in the packet
headers (e.g., Ethernet, IP, UDP or TCP), not the packet payload
data. Consequently, routing packets based on the key hash carried
in the payload is not possible. Alternatively, allowing the client to
know the physical-ring mapping and replica-placement inherits
the NOOB RAC limitations.

The NICE approach virtualizes the storage system; the client
accesses a virtual storage system deployed on a set of virtual
nodes (vnodes). The virtual addresses are organized in a virtual
consistent hashing ring (vring). For instance, all the IP addresses
in the range of 10.10.0.0 to 10.10.255.255 can be virtual nodes in
a vring. The number of vnodes and their addresses are
configurable and do not correspond to the physical ring
configuration. To access the system, the client hashes the object
name and finds the vnode responsible for serving the object. The
client sends the put/get request to the vnode address using UDP.

The metadata service maps the virtual ring to the physical ring.
It maps a subset of virtual addresses to a single physical node
address. While different mapping techniques are possible, we use
simple prefix IP matching: we divide the virtual ring addresses
into subgroups such that the number of vnodes per subgroup is a
multiple of 2 (e.g., all vnodes in 10.10.1.0/24 form a subgroup).
The metadata service maps any packets sent to a particular
subgroup to a particular physical node. To this end, the switch
will modify the destination IP and MAC addresses in the packet
headers to be the IP and MAC addresses of the primary replica,
then forward the packet to the switch port of the primary replica.

This mapping technique achieves three benefits. First, it
achieves low-latency single-hop routing, as the client requests are
directly routed in the network to the responsible node at switching
speed. Second, by decoupling the virtual ring from the physical
ring this technique simplifies deployment, as clients never need to
change their virtual ring configuration, even when the physical
ring configuration changes. Finally, this approach allows for
multiple vnodes to be mapped to a single physical node,
improving performance and load balancing [40]. Compared to
NOOB request routing, NICE routing achieves the optimal
routing latency of the RAC approach without suffering from its
limitations.

3.3 Consistency-Aware Fault Tolerance
To guarantee sequential consistency NOOB storage systems use
complex consistency protocols like two-phase or three-phase
commit [41], Paxos [27], or Raft [32]. We illustrate in Figure 2
the put operation using the two-phase commit protocol (2PC), as a
representative of these protocols to simplify our discussion. 2PC
is among the early proposed protocols that are still widely used [5,
8, 13, 15].

Failure handling is a main differentiating factor between
consistency protocols. The 2PC commit protocol is brittle in face
of node failures during the put operation and may block if the
primary node fails. To overcome the 2PC problems, Paxos and
Raft use majority-based (i.e., quorum) design, in which at least the
majority (but not all) of the nodes need to participate in the put
operation. The drawback of this approach is that failed nodes (or
disconnected nodes) may have stale data when they join back;
consequently, it is necessary to access the majority of the nodes
during the get operation as well to guaranty consistency. This
approach creates unnecessary high overhead during get
operations.

Figure 2. Put protocol alternatives. The figure shows the
primary-secondary and 2PC put protocols. In the primary-
secondary design (solid arrows) the primary replica serves all put
and get request, hence no consistency protocol is necessary. In the
two-phase commit (2PC) design (dashed arrows), two rounds of
the 2PC protocol are needed to guarantee consistency.

We propose a consistency-aware fault tolerance mechanism.
This mechanism solves the inefficiency problem found in current
protocols by presenting inconsistent nodes as failed nodes to the
client. The mechanism hides failed nodes, and newly-joining, but
still inconsistent nodes, until they have a consistent version of the
data. To this end, when a node fails it is removed from the switch
mapping, rendering the node inaccessible from the client’s point
of view. When a node restarts, it joins the system in two phases.
First, it is made accessible to other storage nodes and to client put
requests only. During this phase the rejoining node will receive
new objects and will fetch consistent versions of the objects that
have been changed while the node was offline. Second, when the
node has consistent data, it is made accessible for clients’ get
requests.

Unlike fail-stop failure model, which may allow returning
nodes to receive client requests, the proposed mechanism
deterministically only routes client requests to consistent nodes.
Inconsistent nodes can communicate with the other consistent
nodes to update their data set. This approach simplifies building
fault-tolerant consistency protocols (as we will see next) by
guaranteeing that clients can only access consistent nodes.

4 SYSTEM DESIGN
In this section we first detail the design of system metadata
service (i.e., metadata for mapping objects to nodes), then we
extend the core techniques of NICE to build an efficient
replication mechanism, improve the consistency protocol fault
tolerance, and provide in-network load balancing.

4.1 Metadata Service Design
The metadata service is the only component that maintains the
system membership and metadata, i.e., it has complete knowledge
of all storage nodes in the system and the physical ring partitions
they serve. The metadata service is composed of two modules: the
membership module and the SDN controller. The membership
module monitors storage nodes via heartbeats and detects
membership changes (joins and failures), while the SDN
controller controls the OpenFlow switches and updates the
forwarding tables on membership changes. The SDN controller
implements a layer 3 learning switch; it learns which storage node
is connected to which switch port and uses this information to
build unicast and multicasting forwarding rules.

Storage nodes maintain partial membership information related
to the ring partitions of which they are part. Every node only
knows the secondary replicas for the partition it is the primary
replica for, and knows the primary replicas of every partition it is
serving as a secondary replica; resulting in only O(R) information
maintained at every node where R is the replication level.

When a node fails, the metadata service selects a handoff node
to serve in lieu of the failing node (we detail the fault tolerance
mechanism later). The metadata service updates the switch
forwarding rules to correctly route requests destined to the failed
node to the selected handoff node. The metadata service also
informs the affected replicas of the membership change.

On a node join, the metadata service selects which ring
partitions the new node will serve as a primary or secondary
replica. Similar to handling failures, the metadata service updates
the switch and informs the affected replicas of the membership
change.

This membership maintenance design is scalable; regardless of
the number of storage nodes, the membership service needs O(S)
messages to update the switch’s forwarding table, where S is the
number of switches in the platform, and only O(R) messages to
inform the affected replicas of the membership change. Note that
each storage node only knows about the replicas it shares data
with (which is O(R) of nodes). R, the replication level, is
independent of the total number of nodes and is typically small (3
or 5).

While our current metadata service is centralized, it can
radially adopt well-known designs for building a highly reliable
distributed metadata services. One approach we are currently
investigating is having a hot standby replica of the metadata node.
Two workload characteristics make this design feasible: the stored
metadata is small and changes infrequently, and the load on our
metadata service is low as it is mainly invoked on node or
network failures. These two characteristics make maintaining a
hot standby server feasible.

4.2 Replication
Storage systems should not lose data when a node fails. The main
data reliability approach adopted by the majority of NOOB
storage systems is replication [6, 9, 12, 18, 26, 33] (with the other
popular technique being erasure coding).

Challenge. On a put request, a single node (known as the
primary replica or the coordinator node) replicates the new object
on R-1 different storage nodes through R-1 unicast TCP
connections, enabling the system to tolerate R-1 replica failures
without losing data.

This approach, in principle, is network non-optimal as the
same data will traverse some links multiple times, especially those
close to the node replicating the object. Further, this approach
creates a high load on the node replicating the object as it needs to
send/receive R-1 copies of the data on every put.

To alleviate the load on the replicating node Renesse et. al.
proposed chain replication [43]. In chain replication, nodes are
organized in chains, and each node replicates the new object to the
next node in the chain until the required number of replicas is
created. While this approach may distribute the replication load
across the nodes, it significantly increases the operation latency,
and is equally network non-optimal.

NICE Design. NICE builds network- and storage-optimal
replication mechanism by leveraging network-level multicasting.
The consistency mechanism discussed next requires to precisely
identify and control which nodes are part of a given multicast
group. While one may consider using traditional IP-multicasting,
the fact that it requires every node to separately join/leave any
multicast group makes it significantly harder (if not impossible) to
build and maintain hundreds of multicast groups in face of node
join and failure and to precisely identify when a particular
multicast group has converged. OpenFlow helps solve these issues
by allowing direct and centralized control of all groups.

NICE design divides storage nodes into overlapping replica
sets; every physical node is, typically, a primary replica in one
replica set and a secondary replica in at least R-1 other sets.

To realize single-hop replication, NICE storage follows the
virtual-storage approach discussed earlier. The client has two
virtual rings: a unicast ring (discussed in the previous subsection)
and a multicast ring. Each ring uses a separate IP address range
(e.g., 10.10.0.0/16 for the unicast vring, and 10.11.0.0/16 for the
multicast vring). As the name indicates, messages sent to an
address in the multicast ring are multicasted to all object replicas,
while the messages using the unicast ring are sent to one of the
replicas of the object (the primary replica unless load balancing is
used). The multicast ring is only used to send the put request and
data.

Similar to the unicast vring, the multicast vring is divided into
subgroups with each subgroup mapped to a replication set. For any
packet targeting a virtual multicast address, the switch will modify
the destination IP address to be the IP multicast address of the target
replication set, and forward the packet to all the switch ports of the
target replicas.

The proposed replication mechanism is optimal: first, it uses a
single hop to route the put request; second, it uses optimal network

paths for data replication (considering data center tree topology, the
optimal path is equivalent to link-layer multicasting paths); third, it
offloads the replication overhead from the primary replica to the
network switch, achieving high performance and scalability. This
approach is also optimal in terms of storage node load as each
storage node only receives the data once. Finally, this replication
approach is load balanced by design; the primary and secondary
replicas send/receive an equal amount of data.

4.3 Consistency Mechanism
Sequentially consistent storage systems should guarantee data
consistency across replicas, even when nodes fail or are
disconnected and later join back with inconsistent data.

NOOB consistency protocols either face the possibility of
blocking on node failure or require getting the object from the
majority of nodes to resolve data inconsistency.

NICE proposes a consistency-aware fault tolerance mechanism.
Here we demonstrate how NICE uses this mechanism to improve
2PC fault tolerance. The NICE-2PC mechanism (shown in Figure
3) follows the 2PC protocol design with two main differences. First,
it leverages multicast-based replication to load balance and
efficiently replicate an object. Second, it improves the 2PC fault
tolerance without requiring quorum-like protocols.

Figure 3. Consistency Mechanism. Timeline of the message sent
in put operation in NICE storage. The switch performs modify and
forward (M+F) for client packets to map the virtual address to the
multicast group. (+L) is when a node logs the operation. (-L) is
when the log entry is deleted. (W) is when the node writes the new
object to the persistent storage. Gray boxes denote forced writes,
and bold arrows denote multicasting. Object locks are maintained in
memory only.

During the put operation, the client request is multicasted by the
switch to all of the replicas. Upon receiving a complete object, the
secondary replicas lock the object, log the operation, store the object
to persistent storage, and acknowledge the operation to the primary
replica. The primary replica, upon receiving an acknowledgment
from all secondary replicas, generates a time stamp and multicasts
the time stamp to all replicas. The timestamp contains the following
quadruplet: primary address, primary timestamp, client address, and
client timestamp,. The timestamp creates an order between put
operations to the same object, even between retrials of the put
operation by the same client. The secondary replicas release the

lock on the object and acknowledge the end of the operation to the
primary replica, which in turn acknowledges the operation to the
client. We detail the fault tolerance mechanism next.

4.4 Fault Tolerance
Failure Model. NICE adopts a fault model assumed by current
NOOB systems in which all node failures are assumed to be
transient, with permanent failures being handled by administrator
intervention [6, 9, 18] (The procedure for permanently adding or
removing nodes is discussed at the end of this section).
Consequently, when a node fails or is disconnected, the system does
not automatically re-replicate the objects stored on that node, as
these objects are still durably fully replicated.

Failure Detection. Node failure (include disconnected nodes) is
detected through two techniques: the metadata service will declare
the node failed if it misses three heart beats from the node, or if a
node reports to the metadata service that another node is
irresponsive (e.g., if a node time-outs twice while waiting for a
reply from a particular node in the 2PC protocol). Node failure
causes two main problems: First, when a failing node
recovers/rejoins, it often contains old (inconsistent) versions of the
objects, if any of the stored objects have changed while the node
was offline/disconnected. Second, newly stored objects will be
under-replicated. Next we discuss how we handle these two
problems.

Failure Hiding. To handle the inconsistency problem of the
failing nodes, on failure detection, the metadata service removes the
failing node from the switch unicast and multicast vring mappings
and informs the affected replicas. This effectively renders the node
non-existent from the client point of view. When the node recovers,
the switch mappings are updated only after the node is deemed
consistent, as we will see next.

Maintaining Replication Level during Temporary Failures.
When a node failure is detected the metadata service selects a
handoff node to serve as a secondary replica in the hash region of
the failing node [18]. Any storage node in the system that is not
already part of the effected replication set can serve as a handoff
node. The handoff node temporarily serves the object range until the
failing node comes back. To simplify recovery, the handoff node
stores the newly stored objects in a separate directory. If the handoff
node receives a get request for an old object that it does not have,
the handoff node will forward the request to the primary replicas.
After selecting the handoff node, the metadata service updates the
switch forwarding tables for both virtual rings and informs the
affected replicas. When the original node comes back, it will
discover the handoff node through contacting the metadata service
and retrieve all the new objects. Primary node failure is discussed
below. The system can handle multiple failures as long as at least
one node in every region is an original node (not a handoff node) in
the region.

Node Recovery. When a node recovers from failure, it contacts
the metadata service to rejoin the system. Rejoining the system
takes three steps: First, the metadata service adds the rejoining node
to the multicast vring mapping. This makes the node receive and
participate in the put operations but not serve get requests. Second,

the recovering node contacts the handoff node to get all the objects
stored during its failure. Finally, the node informs the metadata
service that it has consistent data. The metadata service will add the
node to the unicast vring mapping, remove the handoff node from
all mappings, and inform the affected replicas.

Failures during Put Operation. If a node fails during a put
operation the operation will fail and the client will retry.

If a secondary node fails during a put operation (i.e., before
sending the last ack to the primary replica in Figure 3), the primary
node will detect the failure through missing either of the two ack
messages from the node. The primary node will abort the operation
and inform the client. The primary node will also inform the
metadata service of the failure, starting the process for hiding the
failure as detailed above.

If the primary node fails before sending the final
acknowledgment to the client, the client will time-out and retry the
operation. If the primary node fails before sending the “timestamp”
message in the 2PC protocol in Figure 3, the secondary nodes will
detect the failure by timing out on the replication message and will
inform the metadata service starting the failure-handling process
detailed above. When a primary node fails, the metadata service
selects one of the secondary nodes to act as a primary node. The
new primary will contact the secondary nodes to identify all the
objects that are locked on any secondary node. If an object is locked
on any node, this means that node did not receive the timestamp
message from the old primary. For locked objects, the primary does
the following: if the object is committed on any secondary node,
then this means the object was committed by the old primary and
could have been served to subsequent get requests. The primary will
commit and unlock the object. If an object is locked on all
secondary nodes, then the new primary will abort the operation. In
case of a complete cluster failure, in which all in-memory locks are
lost, the persistent logs on the nodes will identify the latest put
operations. The new primary will check them all using the rules
above.

Ring Re-Configuration. Occasionally the administrator needs
to reconfigure the system to add new nodes or remove nodes that
permanently failed. To permanently remove a node, the
administrator informs the metadata of the node removal. The
metadata in its turn updates the forwarding rules related to the
leaving node and informs all effected nodes of the membership
change. Adding a new node to a replica set follows a procedure
similar to rejoining a node after a temporary failure. The node is
added first to the put vring to receive new updates and the primary
node is informed of the new node. The node contacts the primary
node to retrieve all keys stored in the hash range. Once the new
node has consistent data it is added to the get vring and is made
visible to get operations.

4.5 Load Balancing
While consistent hashing distributes the objects evenly across
storage nodes, objects’ popularity rarely follows a uniform
distribution, leading to a skewed distribution in which a subset of
objects is highly popular [14, 16]. In this case, storage systems use

load balancing to distribute the get/put load on all the replicas of a
given object.

Challenge. In current systems, a load-balancing node is
deployed as a gateway to the system to forward client requests using
the ROG or RAG approach (§2). This approach increases operation
latency and requires provisioning load-balancers to avoid creating a
system choke point. Alternatively, to avoid these drawbacks and to
avoid the complexity of consistency protocols, latency-sensitive
systems eschew load balancing and adopt the primary-secondary
design [33, 42]. Alternatively, if a weaker consistency is an option,
a client-side load balancing can be adopted (e.g., the client can
randomly pick one of the replicas).

NICE Design. The NICE metadata service implements a
workload-informed consistency- and replica-aware load balancer.
Unlike the NOOB storage design, our multicast-based put
operations are load balanced by design; consequently, our load-
balancing technique focuses only on get requests. While previous
effort explored SDN-based load balancing [21, 44] our approach
advances the previous approaches by using the storage metadata to
build consistency- and replica-aware load balancer.

To perform workload-informed load-balancing, the metadata
service collects, through heartbeats, periodic workload statistics,
including the range of client IP addresses accessing each partition.

The metadata service divides the client address space into R
divisions, such that each division size is a multiple of 2. Requests
coming from each division will be forwarded to a different replica.
The metadata service alters the switch forwarding rules to match
both the packet source and destination IP addresses. The destination
IP determines which physical ring partition the request is targeting,
while the source IP determines which replica to forward the request
to. For requests coming from IP addresses that are not covered by
these divisions, the metadata service forwards them to the primary
replica. When an administrator adds a new node to a replica set the
metadata server reparations the client address space to utilize the
new replica for get requests.

Compared to NOOB load balancing, NICE builds an in-network
load balancing without increasing the latency or deploying extra
resources, as is the case in NOOB systems.

This approach increases the number of forwarding entries per
partition of the unicast vring from 1 to R entries, each forwarding a
subset of the clients to one of the replicas. Our future work will
investigate more intelligent load-balancing techniques.

4.6 Switch Scalability
The proposed approach requires, for each physical partition, one
entry in the switch forwarding table for the unicast vring mapping
and one entry for the multicast vring mapping, if no load
balancing is used. This leads to a total of 2N entries in the
forwarding table. Where N is the number of storage nodes. If load
balancing is enabled, it uses R entries per partition (Where R is
the replication level), leading to a total of (R + 1)N entries. Given
this requirement, current switches can support large-scale storage
systems with thousands of nodes. Current switches support tables
with 128K or more entries; they can easily support storage
systems with up to 64K storage nodes without load balancing.

With load balancing enabled and with a replication level of 3 they
can support up to 32K storage nodes.

5 IMPLEMENTATION DETAILS
We implemented the NICEKV prototype following the NICE
design. The NICEKV prototype is implemented in 14K lines of
C++ code. The controller is implemented using 1K lines of python
using the Ryu [10] framework.

The rest of the section discusses implementation details of the
network centric operations, and summarizes our experience with
the state-of-the-art switches.

Mapping Service. The SDN controller implements a layer 3
learning switch. If the controller receives a packet destined to a
not-yet-seen IP address, the controller will check if the address is
a vnode address and update the switch to map the address to its
physical counterpart, else the controller will buffer the packet and
broadcast an ARP request for the unknown address. On receiving
an ARP reply, the controller will update the forwarding tables and
forward the buffered packets. The controller keeps a list of
recently ARPed addressed to avoid flooding the network with
ARP requests. While NICEKV implements a single node mapping
service, the service can be easily partitioned on multiple nodes.

Request Routing. We use UDP to send client requests and
TCP for all other communications, i.e., the client sends the put/get
request to the vnode IP address using UDP and waits for the reply
on a client-side TCP socket. This design decision allows mapping
multiple vnode addresses to a single physical address without
worrying about handling the reverse mapping required for TCP,
i.e., mapping the physical node address to multiple vnodes.
Further, UDP is required for IP multicasting.

Replication. For large objects, replication requires a reliable
transport for data dissemination. NICEKV builds a simple reliable
UDP-based multicast transport layer that uses primitive flow and
congestion control techniques. Data is divided into multiple
chunks, each less than a single network MTU (1400 bytes). The
protocol uses NACKs to inform the client of missing packets, and
the client sends the missing packets using a unicast connection.
ACKs are used for flow control.

We implemented a version of the reliable multicast protocol
for quorum protocols. We optimized the quorum implementation
by pushing the quorum design down to the multicast transport
layer. To this end, we designed a reliable any-k multicasting
protocol. For flow control, the protocol tracks a window of
transmitted packets and advances the window when any k of the
recipients acknowledges receiving the packets. The protocol
returns when any k of the nodes fully receive the data. After
returning, the protocol keeps supporting straggling nodes until
they finish or timeout.

5.1 Deployment Experience
NICE exploits the latest capabilities of OpenFlow-enabled
switches. Unfortunately, through examining three platforms with
OpenFlow-enabled switches, we found that the current switches
lag in terms of the supported OpenFlow features. Efficiently

modifying packet headers, in particular, was rarely supported.
Only one switch supported this feature, but in software, resulting
in three orders of magnitude slower switching speed.

The CloudLab [2] Utah cluster, which we use, provides partial
support for OpenFlow features; in particular, it supports
forwarding the packets to multicast addresses but does not support
modifying the packet IP destination address. Modifying the packet
IP destination addresses is necessary for mapping virtual
addresses to physical addresses.

To address this challenge, we deployed Open vSwitch [7] on
every client machine. Open vSwitch is a software-based
OpenFlow-enabled virtual switch. Further, we extended the
NICEKV SDN controller to control multiple switches (i.e.,
multiple Open vSwitches and a single hardware switch). The
controller installs the rules to modify packet headers (mapping
virtual to physical addresses) on the client side Open vSwitches,
and installs forwarding and multicasting rules on the hardware
switch. Our evaluation shows that our new deployment leads to
less than 4% performance loss of the switching speed.

6 EVALUATION
Our evaluation demonstrates the performance benefits brought by
NICE. This section first compares the performance of NICE and
NOOB storage, then evaluates the two systems using the Yahoo
benchmark [16]. In addition to the NICEKV prototype, we have
implemented a NOOB storage prototype with rich configuration
options. The NOOB system implements the three common access
mechanisms: RAC with client side caching, RAG with a replica-
aware load balancer, and ROG with a randomized load balancer.
NOOB prototype implements two consistency mechanisms: 2PC
and Primary-backup designs. The NOOB prototype allows us to
compare NICEKV to range of NOOB designs and configurations.
Finally, to verify the NOOB performance, we ran a synthetic
single client put and get workloads to compare the NOOB-RAG
performance to the OpenStack Swift key-value store [6]. In both
workloads NOOB-RAG performance was equivalent or slightly
better than Swift storage.

Platform. We use a cluster of 30 nodes on the Cloud-Lab [2]
Utah site. Each node has an 8-core ARMv8 2.4 GHz processor,
64GB memory, 120GB SSD disk and 1 Gbps NIC. The nodes are
connected to an OpenFlow enabled switch that supports
OpenFlow 1.3.1. While the evaluation uses a single hardware
switch the controlled switching topology (including Open
vSwitches software switches) is much more complex. Further,
NICE can radially support multi-switch platforms, as the
controller will install the same rules on all participating switches.

Deployment Configuration. Unless otherwise specified, we
deploy the systems on 16 nodes (one mapping node and 15
storage nodes), 14 nodes for clients and load balancers, and
configure the system with replication level of 3 and sequential
consistency.

6.1 Request Routing Evaluation
We compare the request routing performance of the NICEKV
prototype, and three NOOB storage configurations: ROG, RAG,

and RAC. We measure the performance of get requests issued
from a single client. The evaluation shows the average of 1000 get
operations while varying the object’s size from 4 bytes to 1 MB.

Figure 4. Request Routing Performance. The average time of
the get operation. Note the log scaled y-axis. NICE and NOOB-
RAC completely overlap.

Figure 4 shows the performance of the get operation on the
four systems. NICE and NOOB+RAC systems achieve
comparable performance as both achieve single-hop request
routing. For small data sizes (less than 64KBs) NICE and
NOOB+RAC systems achieve 2× and 1.5× performance
improvement compared to NOOB+ROG and NOOB+RAG
systems, respectively. This improvement is due to the delay added
by the request routing mechanism. The benefits are not as
pronounced with large data sizes, as transfer time dominates.

6.2 Replication Evaluation
We compare the replication performance of the NICE design and
three configurations of the NOOB storage primary-only design:
ROG, RAG, and RAC. The experiment measures the put
performance of one client. The evaluation shows the average of
1000 put operations with objects sizes ranging from 4 bytes to 1
MB. The experiment measures replication performance in terms
of operation time, generated network load, and load ratio between
the primary and secondary replicas.

Replication time. Figure 5 shows the put operation time on
the four systems. NICE storage achieves significant and consistent
performance improvement across object sizes: up to 4.3×
compared to NOOB+ROG, up to 3.4× compared to NOOB+RAG,
and up to 2.6× compared to NOOB+RAC. The other systems lag
NICE storage due to the extra effort needed for request routing
and replication, while NICE storage uses optimal multicast-based
replication.

 Network load. Figure 6 shows the total link load generated by
the put operation. NICE storage achieves, regardless of the object
size, significant reduction in network load. NICE storage generates
between 1.7× to 3.5× less network load compared to the other
systems.

Storage Load Ratio. Figure 7 shows the ratio of the primary
replica load to the secondary replica load. While all NOOB storage
system configurations impose 3× more work on the primary
compared to the secondary (this load imbalance is proportional to
the replication level), NICE load balances the load evenly across the
primary and secondary replicas.

Figure 5. Replication Performance. The average time of the put
operation. Note the log scaled y-axis

Figure 6. Network Link Load. The total network link load of the
put operation.

Figure 7. Storage Load Ratio. The ratio of the primary replica to
secondary replica load in terms of amount of data sent/received
during the put operation.

6.3 Quorum-based Replication Evaluation
This experiment compares NICE and NOOB storage quorum-based
replication. The quorum design is appealing due to its ability to
avoid slow or failed nodes. The experiment puts 1000 1MB objects
using a replication level of 7, while varying the quorum write-set
size (quorum size for short). To emulate slow nodes we configured
the network connection of 3 replicas to be 50Mbps, while the rest of
the nodes enjoy a 1Gbps connection.

Figure 8 shows (a) the put operation time and (b) achieved
bandwidth when varying the quorum size. While the performance
of both systems suffer with quorum sizes of 5 and 7 (as it is not
possible to avoid slow nodes), we note that NICE storage achieves
up to 5.6× better performance with quorum sizes of 1 and 3. While
the primary replica in NOOB storage is waiting for the first
quorum-size of nodes to finish, it is concurrently replicating the

object to all replicas, including the slow ones, creating high
contention on the primary link.

Figure 8. Quorum-based Replication Evaluation. Put operation
performance using the quorum design. The experiment uses a
replication level of 7 while varying the quorum size. The figure
shows the put operation time (a) and bandwidth (b).

Figure 9. Consistency Mechanism Performance. The put
performance while varying the replication level, with 4-byte (a) and
1MB (b) objects. Error bars represent standard deviation.

6.4 Consistency Mechanism Evaluation
We compare NICE storage to two NOOB storage configurations:
primary-only and 2PC. To efficiently support highly popular
objects, storage systems often create multiple replicas. This
experiment evaluates the efficiency of the put operation while
varying the replication level. NOOB storage use RAC request
routing. We show the results for the two ends of the spectrum of
object sizes, small 4-byte objects and large 1MB objects.

Figure 9.a shows the put operation time with 4-byte objects.
NICE achieves up to 1.3× better performance than NOOB-2PC.
NICE achieves comparable performance to NOOB primary-only
replication, although it has an extra phase of communication. This is
because of the multicast-based replication that reduces not only the
data transfer time but also the overhead of creating and maintaining
up to 8 TCP connections. We note that the performance of all
systems degrades with higher replication levels, due to the increased
overhead of the consistency protocol that dominates small object
performance. The primary-only design achieves better performance
than NOOB-2PC due to 2PC protocol overheads.

Figure 9.b shows the put operation time with 1MB objects.
NICE achieves up to 5.5× better performance than NOOB systems.
The primary-only and 2PC achieve comparable performance since,
with large objects; performance is dominated by replication cost.
While NOOB performance degrades considerably: by 7× when
increasing the replication from 1 to 9, NICE performance degrades
slightly when increasing the replication level (by 17% when
increasing the replication from 1 to 9).

Figure 10. Load Balancing Evaluation. The three systems
performance under the load balancing workload while varying the
replication level and number of clients. The figure shows results
with (a) 4-byte objects and (b) with 1MB objects. Bold markers
show the performance of the get-only workload. Error bars
represent standard deviation.

6.5 Load Balancing
This experiment measures the performance of NICE storage and
two NOOB storage configurations (primary-only and 2PC) when
serving highly-popular frequently-updated objects. We design a
weak scaling experiment: we increase the number of clients
proportional to the replication level. In each configuration 1 client
puts the same object 1000 times, while R-1 clients get the same
object 1000 times.

Figure 10 shows performance with 4-byte objects (a) and 1MB
objects (b). NICE storage achieves better performance than NOOB
storage systems: up to 7.5× better than the primary-only
configuration, and up to 5.5× better than the 2PC configuration in
both object sizes. The line markers on the bars in Figure 10 show
the performance of the workload without updating the shared key
(i.e., without the put client). The marker shows that NICE and 2PC
are able to load balance the get requests across replicas, while the
primary-only design performance degrades with the increased
workload as no load balancing is used. The figure also shows the
significant overhead added by 2PC consistency mechanism (the
difference between the marker and the top of the bar).

NOOB storage system performance degrades considerably when
increasing the replication level and the number of clients, with
primary-only performance degrading by 10× with small objects and
3.5× with 1MB object, and the 2PC configuration degrading by
2.6× with both sizes. This performance degradation is testimony
that NOOB storage designs are not weakly scalable, i.e., NOOB is
unable to meet the increasing demand despite the proportional

increase in the allocated resources. Significant replication costs
(dominant in large objects) and consistency-protocol overhead
(dominant in small object) are the reason why. NICE storage
performance degrades slightly when increasing the replication level
and the number of clients (only by 20% with 1MB objects and by
80% with 4-byte objects).

Figure 11. Fault Tolerance Evaluation. Secondary node 2 fails at
30s mark, triggering the fault tolerance mechanism, and 90s the
node recovers, retrieves the missed objects from the handoff node,
and starts serving client requests.

6.6 Fault Tolerance Evaluation
This experiment demonstrates the system fault tolerance
mechanism. Three clients access the system with 20/80 put/get ratio
and key size of 1KB. All objects are in the same partition. Figure 11
shows the number of put and get requests served per second. At the
30s mark, the secondary node 2 fails. The primary node detects the
failure and informs the metadata service. The metadata service
removes the failed node from the switch mappings and adds the
handoff node to the replica set. This process makes the partition
unavailable for put for less than 2 seconds (Figure 11 second 31).
Client put requests during this period will fail and the client will
retry after waiting for 2 seconds, in which case the operations will
succeed. We are working on shortening this down time through
allowing put operations to succeed if one node fails (i.e., having R-1
replicas) and by creating, in the background, one more replica on
the handoff node when it joins the replica set.

For get operations, the client selects, in a uniform random
fashion, one of the recently put objects to get. When the handoff
node starts serving client requests (second 31), it does not have any
of the requested objects. In this case, it forwards all get requests to
the primary replica. As the handoff node stores more objects less
get requests are forwarded to the primary node.

At 90s mark, the failed node joins back, and starts retrieving the
objects it missed. This is represented by the spike in put requests
(and gets requests at the handoff node). Once the node has a
consistent set of objects (second 95), the metadata service adds the
node to the unicast switch mapping and removes the handoff node.

Figure 12. Yahoo Benchmark Evaluation. The three systems
performance under two Yahoo benchmarks: read-only (C), and
read-modify-write (F). Error bars represent standard deviation.

6.7 Real Workload Evaluation
To evaluate the system with real workloads we use the Yahoo
benchmark (YCSB) [16]. YCSB includes workloads with a variety
of get-to-put ratios. We use two workloads: C, the read-only
workload, and F, the read-modify-write workload which generates
the highest ratio (50%) of puts in YCSB. As in the majority of the
Yahoo workloads, these two have a zipf popularity distribution.

The experiment compares the performance of NICE storage and
two NOOB storage configurations (primary-only and 2PC). The
system is accessed by 10 clients, each issuing 20K operations. We
use the default YCSB configuration with 1KB objects.

Figure 12 shows the yahoo benchmark results. NICE achieves
the best performance under the two workloads. Nice achieves 1.6×
and 2.3× better than primary-only configuration under workload C
and F, respectively. This improvement is due to the lack of load
balancing in the primary-only configuration. Compared to 2PC
configuration, NICE achieves 1.25× and 1.5× better performance
under workload C and F, respectively. 2PC configurations lags
NICE due to the added load-balancing latency and consistency-
protocol overhead.

7 OTHER RELATED WORK
Request Routing. Beehive [35] proposes a different approach for
achieving, on average, single-hop request routing for special
workloads: workloads with highly skewed power-law popularity
distribution. Beehive replicates each object based on its popularity,
with the extremely popular objects replicated on every node, hence
accessible in a single-hop. Due to the network and storage
overheads, this approach is only feasible for highly skewed
workloads of infrequently updated objects.

SDN Optimized Systems. Recent research projects utilize SDN
capabilities to provide load balancing [21, 36, 44], access control
[31], seamless VM migration [29], and to improve system security,
virtualization and network efficiency [28]. These systems still use
the network as a separate entity and use SDN to optimize its
operations. Unlike current efforts, we co-design network operations
with system operations and protocols to achieve significant benefits.

The MOM [34] and SwitchKV [46] projects are the closest in
spirit to our project. MOM builds an SDN-optimized Paxos protocol
by building an ordered multicast layer. Unlike MOM, we propose a
new complete system architecture that co-designs network and

storage support for higher performance and efficiency. SwitchKV
[46] builds a key-value storage with a tier of caching nodes.
SwitchKV uses the SDN-capability to optimize request routing for
get requests from the cache. Unlike NICE, SwitchKV does not use
the SDN capability to optimize data replication and consistency
mechanisms.

8 CONCLUSION AND FUTURE WORK
We present network-integrated cluster-efficient (NICE) storage,
which co-designs storage logic and networking support to realize a
more efficient, scalable, and reliable distributed storage. Our
prototype evaluation shows that this approach can realize significant
benefits: up to 7× performance improvement, substantial network-
load reduction (up to 50%), and improved load balancing and
scalability. While we focus the discussion on key-value storage
systems, the proposed techniques for virtualization and consistency-
aware fault tolerance are widely applicable. Our future work will
investigate building SDN-enabled storage systems that implement a
more intelligent approaches to load balancing and a better support
for more complex key-value queries.

ACKNOWLEDGMENT
We thank our shepherd Dean Hildebrand for his guidance and
insightful comments, and thank the anonymous HPDC ‘17
reviewers for their feedback. We thank Aaron Gember-Jacobson for
his feedback and help with Openflow deployment issues,
Thanumalayan S. Pillai for his help with the Yahoo benchmark
experiment, and Robert Ricci and the CloudLab team for their
support at CloudLab. This material was supported by funding from
NSERC, NSF grants CNS-1419199, CNS-1421033, CNS-1319405,
and CNS-1218405, as well as donations from EMC, Facebook,
Google, Huawei, Microsoft, NetApp, Samsung, Seagate, Veritas,
and VMware. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and may not reflect the views of NSERC, NSF, or other institutions.

REFERENCES
[1] Amazon elastic compute cloud (ec2). https://

aws.amazon.com/ec2. Accessed: 2015.
[2] Cloudlab. http://www.cloudlab.us/. Accessed: 2015.
[3] Google app engine. https://appengine.google.com. Accessed:

2015.
[4] Microsoft azure: Cloud computing platform and services.

https://azure.microsoft.com/. Accessed: 2015.
[5] Mongodb. https://www.mongodb.org/. Accessed: 2016.
[6] Openstack swift.

http://docs.openstack.org/developer/swift/overview_architectur
e.html. Accessed: 2015.

[7] Openvswitch: Production quality, multilayer open virtual
switch. http://openvswitch.org/. Accessed: 2015.

[8] Postgresql. http://www.postgresql.org/. Accessed: 2016.
[9] Riak cloud storage. http://basho.com/riak-cloud-storage/.

Accessed: 2015.
[10] Ryu sdn framework. http://osrg.github.io/ryu/. Accessed: 2015.

[11] Spark lighting fast cluster computing. http://spark.apache.org/.
Accessed: 2015.

[12] Voldemort project. http://www.project-
voldemort.com/voldemort/design.html. Accessed: 2015.

[13] Marcos K. Aguilera, Arif Merchant, et al., Sinfonia: A new
paradigm for building scalable distributed systems. Symp. on
Operating Systems Principles (SOSP), 2007.

[14] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang,
and Mike Paleczny. Workload analysis of a large-scale key-
value store. International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), 2012.

[15] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, et.
al., Windows azure storage: A highly available cloud storage
service with strong consistency. Symposium on Operating
Systems Principles (SOSP), 2011.

[16] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. Symposium on Cloud Computing
(SoCC), 2010.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified
data processing on large clusters. Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[18] Guiseppe DeCandia, Deniz Hastorun, et al.,Dynamo:
Amazon’s Highly Available Key-Value Store. Symposium on
Operating Systems Principles (SOSP), 2007.

[19] The Open Networking Foundation. Open networking
foundation: Openflow switch specification. Version 1.3.0.

[20] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The Google File System. Symposium on Operating Systems
Principles (SOSP), 2003.

[21] Nikhil Handigol, Mario Flajslik, et al., Aster* x:
Loadbalancing as a network primitive. GENI Engineering
Conference (Plenary), pages 1–2, 2010.

[22] J. H. Howard, M. L. Kazar, et al., Scale and performance in a
distributed file system. Technical report, Information
Technology Center, Carnegie-Mellon University, Pittsburgh,
PA, August 1987.

[23] Javvin Technologies Inc. Network Protocols Handbook (2Nd
Edition). Javvin Technologies Inc., 2005.

[24] R. Jain, P. Sarkar, and D. Subhraveti. Gpfssnc: An enterprise
cluster file system for big data. IBM Journal of Research and
Development, 57(3/4):5:1–5:10, May 2013.

[25] David Karger, Eric Lehman, et al.,.Consistent hashing and
random trees: Distributed caching protocols for relieving hot
spots on the world wide web. Symposium on Theory of
Computing (STOC), 1997.

[26] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper. Syst.
Rev., 44(2):35–40, April 2010.

[27] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[28] A. Lara, A. Kolasani, and B. Ramamurthy. Network
innovation using openflow: A survey. Communications
Surveys Tutorials, IEEE, 16(1):493–512, First 2014.

[29] Ali Jos´e Mashtizadeh, Min Cai, et al., Xvmotion: Unified
virtual machine migration over long distance. USENIX
Annual Technical Conference (ATC), 2014.

[30] Nick McKeown, Tom Anderson, et al.,Openflow: Enabling
innovation in campus networks. SIGCOMM Comput.
Commun. Rev., 38(2):69–74, March 2008.

[31] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ
Clark. Resonance: Dynamic access control for enterprise
networks. Workshop on Research on Enterprise Networking,
2009.

[32] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. USENIX Annual
Technical Conference (ATC), 2014.

[33] Diego Ongaro, Stephen M. Rumble, et al., Fast crash recovery
in ramcloud. Symposium on Operating Systems Principles
(SOSP), 2011.

[34] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma,
and Arvind Krishnamurthy. Designing distributed systems
using approximate synchrony in data center networks.
Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[35] Venugopalan Ramasubramanian and Emin G¨un Sirer.
Beehive: O(1) lookup performance for power law query
distributions in peer-to-peer overlays. NSDI 2004.

[36] Brendan Cully, Jake Wires, et al., Strata: scalable high-
performance storage on virtualized non-volatile memory.
Conf. on File and Storage Technologies (FAST). 2014.

[37] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale peer-
to-peer systems. International Conference on Distributed
Systems Platforms (Middleware), 2001.

[38] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-
end arguments in system design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[39] Russel Sandberg. The Design and Implementation of the Sun
Network File System. USENIX Summer Technical
Conference, June 1985.

[40] Ion Stoica, Robert Morris, et al., Chord: A Scalable Peer-to-
Peer Lookup Protocol for Internet Applications. SIGCOMM
’01, August 2001.

[41] Andrew S. Tanenbaum and Maarten van Steen. Distributed
Systems: Principles and Paradigms (2Nd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[42] Douglas B. Terry, Vijayan Prabhakaran, et al., Consistency
based service level agreements for cloud storage. SOSP 2013.

[43] Robbert van Renesse and Fred B. Schneider. Chain replication
for supporting high throughput and availability. Symp. on OS
Design & Implementation (OSDI), 2004.

[44] Richard Wang, Dana Butnariu, and Jennifer Rexford.
Openflow-based server load balancing gone wild. Conference
on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, Hot-ICE’11.

[45] Sage A. Weil, Scott A. Brandt, et al., Ceph: A Scalable, High-
Performance Distributed File System. OSDI 2006.

[46] Xiaozhou Li, Raghav Sethi, et al., Be fast, cheap and in control
with SwitchKV. NSDI 2016.

