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ABSTRACT 
We present NICE, a key-value storage system design that 
leverages new software-defined network capabilities to build 
cluster-based network-efficient storage system. NICE presents 
novel techniques to co-design network routing and multicast with 
storage replication, consistency, and load balancing to achieve 
higher efficiency, performance, and scalability. 

We implement the NICEKV prototype. NICEKV follows the 
NICE approach in designing four essential network-centric 
storage mechanisms: request routing, replication, consistency, and 
load balancing. Our evaluation shows that the proposed approach 
brings significant performance gains compared to the current key-
value systems design: up to 7× put/get performance improvement, 
up to 2× reduction in network load, 3× to 9× load reduction on the 
storage nodes, and the elimination of scalability bottlenecks 
present in current designs.  

KEYWORDS 
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1 INTRODUCTION 
The end-to-end design principle [38] pervades the design of 

virtually every modern distributed system [1, 3, 4, 11, 17]. In its 
extreme form, critical functionality is implemented solely in end 
hosts, with a relatively dumb and fast network to connect them. 

One locale that closely adheres to the end-to-end principle is 
distributed storage, including distributed file systems [15, 20, 22, 
24, 39, 45] and scalable key-value stores [6, 9, 12, 18, 26]. In 
these widely-deployed and increasingly important systems, the 
network is used as a point-to-point communication medium, while 
storage logic and protocols are implemented entirely in client 
libraries and server code. 

Unfortunately, such Network-Oblivious (NOOB) storage 
systems are fundamentally inefficient. Consider, for example, the 

simple task of replicating a block. To do so, a node first sends the 
block to one server, and then another, and then another; as a 
result, the same data redundantly traverses some number of 
network links and switches, increasing load on the network 
significantly. Even the simple task of locating a data item presents 
a significant challenge; for example, in protocols such as Chord 
[40], a logarithmic number of nodes must be contacted simply to 
discover the location of a particular key. 

In this paper, we propose an alternative approach in which we 
co-design storage logic and networking support to realize more 
efficient, scalable, and reliable distributed storage. Such Network-
Integrated Cluster-Efficient (NICE) storage harnesses recent 
advances in Software-Defined Networks (SDNs) [19, 30] to 
optimize key aspects of modern distributed storage architectures. 
For example, NICE storage systems can replicate a block while 
generating the least possible network load, and it can forward a 
request to the proper node in a single hop. 

Two recent developments provide a unique opportunity to 
address NOOB inefficiencies and indicate that a network-
integrated design paradigm that co-designs network and end-point 
functionality has a much higher chance of being successful today. 
First, recent advances in software-defined networks (SDNs) 
provide a standard interface for implementing in-network 
application specific optimizations, and for building a control 
mechanism that can orchestrate network and storage operations. 
The second development is the wide adoption of data centers as 
the main cloud computing platform. Having a single 
administration of the entire hardware/software stack and the 
ability to compartmentalize the infrastructure facilitates adopting 
custom solutions for different applications or subsystems. 

NICE uses SDN technology to virtualize the storage system. 
The client accesses a virtual storage system deployed on a range 
of virtual IP addresses. The NICE network controller modifies 
client packets and forwards them to the proper storage node. 
Having a network controller that is informed of the storage system 
metadata and has full control of the network decisions enables 
optimizing packet paths to improve four essential storage 
mechanisms, including: request routing, which directs requests 
from clients to storage nodes; replication, for preventing data loss 
when nodes or storage devices fail; load balancing, which 
dispatches client requests across replicas to handle workload 
variation. Finally, NICE virtualization enables building a new 
fault tolerance mechanism: consistency-aware fault tolerance. 
This mechanism simplifies building consistency protocols by 
making failed nodes, or nodes with inconsistent data, inaccessible. 

To demonstrate the efficacy of the NICE approach, we design 
and implement a key-value storage prototype, NICEKV. Our 
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empirical evaluation with synthetic and real workload benchmarks 
shows that the NICEKV prototype realizes significant 
performance gains compared to a broad set of NOOB storage 
configurations. Membership maintenance in NICEKV is highly 
scalable and eliminates the maintenance operations overhead. 
NICEKV request routing achieves single-hop routing without 
requiring extra resources. NICEKV replication is network and 
storage optimal (discussed in detail in section 4.2), effectively 
halving the network-generated load and reducing storage load by 
3× to 9×, depending on replication level. The NICEKV two-phase 
commit consistency protocol uses the consistency-aware fault 
tolerance mechanism to tolerate failures without increasing 
operation overhead. NICEKV load balancing effectively spreads 
client requests across servers without deploying dedicated load-
balancing machines. The combination of these optimizations is 
powerful; the NICEKV prototype can achieve up to 7× put/get 
performance improvement as compared to the traditional network 
oblivious approach. 

The rest of this paper is organized as follows. In Section 2, we 
present an overview of the current NOOB storage design, and the 
recent advances in software-defined networks. We then present 
the proposed NICE approach in Section 3, detail the system 
design 4, present the implementation of the NICEKV prototype in 
Section 5, and present our empirical evaluation in Section 6. We 
discuss related work in Section 7, and conclude in Section 8. 

2 BACKGROUND AND RELATED WORK  
In this section, we present an overview of a typical network-
oblivious storage systems design, and summarize the recent 
advances in software-defined networks. 

2.1  NOOB Storage System Design 
Current distributed key-value storage systems are network-
oblivious: the network is only used as a point-to-point 
communication medium without storage system control over its 
operations. NOOB storage systems typically implement storage 
logic and protocols within end hosts; this approach is 
fundamentally inefficient as many core storage system operations 
are, in principle, network-level operations, e.g., replication or 
request routing. 

Many NOOB storage systems adopt a design based on 
consistent hashing [25]. In the original consistent-hashing design, 
the object hashing space represents a circular ring, all storage 
nodes are placed on the ring, and each node coordinates access to 
the objects in its part of the ring. Pastry [37] and Chord [40] were 
among the first to use consistent hashing to build a scalable peer-
to-peer object storage system. They use, with high probability, 
O(log n) hops to route a request, while only storing O(log n) 
routing information on each node. While this approach scales 
well, it imposes additional latency.  

To reduce the latency of request routing, prominent NOOB 
storage systems adopt a full-membership model [6, 9, 12, 18, 26], 
in which every node maintains complete knowledge about all the 
nodes in the system and their contents; hence, nodes can route any 
request directly to the responsible node. When a node joins or 

fails, all the nodes in the system need to be updated. This update 
happens through contacting every node and updating its 
information using O(N) connections and messages [6], or through 
an epidemic protocol entailing O(log n) steps and over O(N) 
messages [41]. 

Access Mechanism. To access the system, current systems 
adopt one of the following three techniques to route client 
requests to the node maintaining the object. The first technique, 
which we refer to as the Replica-Oblivious Gateway (ROG), uses 
a generic off-the-shelf load balancer that forwards client requests 
to a storage node selected in a random or a round-robin fashion. 
This approach is common in production systems [6, 9, 18, 26] due 
to its ease of deployment and use of existing load balancers. This 
approach imposes two extra hops for routing a request. 

The second approach we call the Replica-Aware Gateway 
(RAG). This approach uses a load balancer or a proxy access node 
[6] that is aware of replica placement, and imposes one extra hop 
for routing a request.  

In the third approach, known as the Replica-Aware Client 
(RAC), the clients cache the metadata of previously accessed 
objects [33], and use it to route subsequent requests. This 
approach only works for deployments in which clients are 
collocated with the storage system and are allowed to know 
detailed data placement and replication information. For 
deployments in which the clients do not have access to storage 
internal information or are located behind a NAT [23] (e.g., 
shared cloud storage like Amazon S3), this approach is not an 
option. Finally, this approach hinders deploying load balancers. 

2.2  Software-Defined Networks 
The SDN architecture divides the network into two planes: data 
and control. The data plane is a traffic forwarding plane that uses 
the information in the switch forwarding tables to forward 
messages. The control plane is an external software-based 
logically-centralized component that controls one or more 
switches by altering the entries in switch forwarding tables. The 
communication API between the controller and the switches is 
based on the widely adopted OpenFlow standard [19]. 

The OpenFlow standard [30] facilitates external control of a 
single-switch forwarding table. It allows inserting or deleting 
forwarding rules. Each forwarding entry includes a matching rule 
and an action list. If a packet matches a rule, the actions in the 
actions list are performed in order on the packet. OpenFlow has a 
rich set of matching rules including wild cards for matching IP 
and MAC addresses, protocol or port numbers. The actions 
include packet forwarding to a specific switch port, dropping the 
packet, sending the packet to the controller, or modifying the 
packet. The possible modifications include changing the 
source/destination MAC/IP addresses. To avoid the need for 
switches to contract the controller on every packet, forwarding 
rules are stored on switches and have an expiry period that is set 
by the controller. Controllers can update, delete, or extend the 
validity of the existing rules at any time. 

These capabilities enable fine-grained control of network 
operations and facilitate application-optimized traffic engineering. 



 

3  NICE SYSTEM ARCHITECTURE 
NICE leverages the programmability and fine-grained control of 
network operations provided by recent advances in software-
defined networks [19, 30] to co-design network and storage 
operations. The NICE design virtualizes the storage system. The 
client accesses a virtual storage system deployed on a range of 
virtual IP addresses. The metadata service (detailed next) maps 
the virtual storage system to the physical one. The NICE design 
optimizes this mapping to achieve low-latency routing, efficient 
multicasting, load-balancing, and improved fault tolerance. 

This section presents the system architecture and details the 
two core techniques that NICE proposes: storage virtualization, 
and consistency-aware fault tolerance. The following section 
details how we extend these techniques to optimize replication, 
consistency, and load-balancing mechanisms. 

3.1  System Architecture 
Similar to the NOOB storage, NICE uses consistent hashing to 
partition the object space among the storage nodes. Nodes are 
placed in a consistent hashing ring, such that each node serves 
part of the ring. We call this the physical ring. Every storage node 
is the primary replica for one or more partitions, and can serve as 
a secondary replica for other partitions. 

The system is composed of three components (Figure 1): 
storage nodes, client nodes, and a metadata service, all connected 
with an OpenFlow-enabled switching fabric. The storage nodes 
serve put and get requests and implement the replication, 
consistency, and load-balancing protocols. The storage nodes send 
periodic heartbeats to the metadata service. The metadata service 
maintains storage system metadata. The metadata includes 
information about which storage nodes are participating in the 
system, and which range of the hash space (partition) each storage 
node is serving. The metadata service does not maintain per-
object metadata. 

 
Figure 1. System Architecture. The client sends the requests 
using two virtual rings (vrings). The requests are rerouted in the 
network to the responsible storage node. The metadata service 
receives heartbeats from the nodes and maintains the mapping 
information in the forwarding tables. 

 

3.2  NICE Storage Virtualization 
The first goal of virtualizing the storage system is to enable 
storage-aware routing of client requests; that is, to have a routing 
technique that can route a client request to the proper storage node 
(i.e., routing based on the key hash value). Building a storage-
aware routing mechanism is challenging. While OpenFlow 
provides control over switch forwarding decisions, it only 
supports matching packets using information found in the packet 
headers (e.g., Ethernet, IP, UDP or TCP), not the packet payload 
data. Consequently, routing packets based on the key hash carried 
in the payload is not possible. Alternatively, allowing the client to 
know the physical-ring mapping and replica-placement inherits 
the NOOB RAC limitations. 

The NICE approach virtualizes the storage system; the client 
accesses a virtual storage system deployed on a set of virtual 
nodes (vnodes). The virtual addresses are organized in a virtual 
consistent hashing ring (vring). For instance, all the IP addresses 
in the range of 10.10.0.0 to 10.10.255.255 can be virtual nodes in 
a vring. The number of vnodes and their addresses are 
configurable and do not correspond to the physical ring 
configuration. To access the system, the client hashes the object 
name and finds the vnode responsible for serving the object. The 
client sends the put/get request to the vnode address using UDP. 

The metadata service maps the virtual ring to the physical ring. 
It maps a subset of virtual addresses to a single physical node 
address. While different mapping techniques are possible, we use 
simple prefix IP matching: we divide the virtual ring addresses 
into subgroups such that the number of vnodes per subgroup is a 
multiple of 2 (e.g., all vnodes in 10.10.1.0/24 form a subgroup). 
The metadata service maps any packets sent to a particular 
subgroup to a particular physical node. To this end, the switch 
will modify the destination IP and MAC addresses in the packet 
headers to be the IP and MAC addresses of the primary replica, 
then forward the packet to the switch port of the primary replica. 

This mapping technique achieves three benefits. First, it 
achieves low-latency single-hop routing, as the client requests are 
directly routed in the network to the responsible node at switching 
speed. Second, by decoupling the virtual ring from the physical 
ring this technique simplifies deployment, as clients never need to 
change their virtual ring configuration, even when the physical 
ring configuration changes. Finally, this approach allows for 
multiple vnodes to be mapped to a single physical node, 
improving performance and load balancing [40]. Compared to 
NOOB request routing, NICE routing achieves the optimal 
routing latency of the RAC approach without suffering from its 
limitations. 

3.3   Consistency-Aware Fault Tolerance 
To guarantee sequential consistency NOOB storage systems use 
complex consistency protocols like two-phase or three-phase 
commit [41], Paxos [27], or Raft [32]. We illustrate in Figure 2 
the put operation using the two-phase commit protocol (2PC), as a 
representative of these protocols to simplify our discussion. 2PC 
is among the early proposed protocols that are still widely used [5, 
8, 13, 15].  



 
 
 

 

Failure handling is a main differentiating factor between 
consistency protocols. The 2PC commit protocol is brittle in face 
of node failures during the put operation and may block if the 
primary node fails. To overcome the 2PC problems, Paxos and 
Raft use majority-based (i.e., quorum) design, in which at least the 
majority (but not all) of the nodes need to participate in the put 
operation. The drawback of this approach is that failed nodes (or 
disconnected nodes) may have stale data when they join back; 
consequently, it is necessary to access the majority of the nodes 
during the get operation as well to guaranty consistency. This 
approach creates unnecessary high overhead during get 
operations. 

 
Figure 2. Put protocol alternatives. The figure shows the 
primary-secondary and 2PC put protocols. In the primary-
secondary design (solid arrows) the primary replica serves all put 
and get request, hence no consistency protocol is necessary. In the 
two-phase commit (2PC) design (dashed arrows), two rounds of 
the 2PC protocol are needed to guarantee consistency. 

We propose a consistency-aware fault tolerance mechanism. 
This mechanism solves the inefficiency problem found in current 
protocols by presenting inconsistent nodes as failed nodes to the 
client. The mechanism hides failed nodes, and newly-joining, but 
still inconsistent nodes, until they have a consistent version of the 
data. To this end, when a node fails it is removed from the switch 
mapping, rendering the node inaccessible from the client’s point 
of view. When a node restarts, it joins the system in two phases. 
First, it is made accessible to other storage nodes and to client put 
requests only. During this phase the rejoining node will receive 
new objects and will fetch consistent versions of the objects that 
have been changed while the node was offline. Second, when the 
node has consistent data, it is made accessible for clients’ get 
requests.  

Unlike fail-stop failure model, which may allow returning 
nodes to receive client requests, the proposed mechanism 
deterministically only routes client requests to consistent nodes. 
Inconsistent nodes can communicate with the other consistent 
nodes to update their data set. This approach simplifies building 
fault-tolerant consistency protocols (as we will see next) by 
guaranteeing that clients can only access consistent nodes. 

 

4  SYSTEM DESIGN  
In this section we first detail the design of system metadata 
service (i.e., metadata for mapping objects to nodes), then we 
extend the core techniques of NICE to build an efficient 
replication mechanism, improve the consistency protocol fault 
tolerance, and provide in-network load balancing. 

4.1  Metadata Service Design 
The metadata service is the only component that maintains the 
system membership and metadata, i.e., it has complete knowledge 
of all storage nodes in the system and the physical ring partitions 
they serve. The metadata service is composed of two modules: the 
membership module and the SDN controller. The membership 
module monitors storage nodes via heartbeats and detects 
membership changes (joins and failures), while the SDN 
controller controls the OpenFlow switches and updates the 
forwarding tables on membership changes. The SDN controller 
implements a layer 3 learning switch; it learns which storage node 
is connected to which switch port and uses this information to 
build unicast and multicasting forwarding rules.  

Storage nodes maintain partial membership information related 
to the ring partitions of which they are part. Every node only 
knows the secondary replicas for the partition it is the primary 
replica for, and knows the primary replicas of every partition it is 
serving as a secondary replica; resulting in only O(R) information 
maintained at every node where R is the replication level.  

When a node fails, the metadata service selects a handoff node 
to serve in lieu of the failing node (we detail the fault tolerance 
mechanism later). The metadata service updates the switch 
forwarding rules to correctly route requests destined to the failed 
node to the selected handoff node. The metadata service also 
informs the affected replicas of the membership change.  

On a node join, the metadata service selects which ring 
partitions the new node will serve as a primary or secondary 
replica. Similar to handling failures, the metadata service updates 
the switch and informs the affected replicas of the membership 
change.  

This membership maintenance design is scalable; regardless of 
the number of storage nodes, the membership service needs O(S) 
messages to update the switch’s forwarding table, where S is the 
number of switches in the platform, and only O(R) messages to 
inform the affected replicas of the membership change. Note that 
each storage node only knows about the replicas it shares data 
with (which is O(R) of nodes). R, the replication level, is 
independent of the total number of nodes and is typically small (3 
or 5). 

While our current metadata service is centralized, it can 
radially adopt well-known designs for building a highly reliable 
distributed metadata services. One approach we are currently 
investigating is having a hot standby replica of the metadata node. 
Two workload characteristics make this design feasible: the stored 
metadata is small and changes infrequently, and the load on our 
metadata service is low as it is mainly invoked on node or 
network failures. These two characteristics make maintaining a 
hot standby server feasible. 



 

4.2  Replication 
Storage systems should not lose data when a node fails. The main 
data reliability approach adopted by the majority of NOOB 
storage systems is replication [6, 9, 12, 18, 26, 33] (with the other 
popular technique being erasure coding). 

Challenge. On a put request, a single node (known as the 
primary replica or the coordinator node) replicates the new object 
on R-1 different storage nodes through R-1 unicast TCP 
connections, enabling the system to tolerate R-1 replica failures 
without losing data. 

This approach, in principle, is network non-optimal as the 
same data will traverse some links multiple times, especially those 
close to the node replicating the object. Further, this approach 
creates a high load on the node replicating the object as it needs to 
send/receive R-1 copies of the data on every put.  

To alleviate the load on the replicating node Renesse et. al. 
proposed chain replication [43]. In chain replication, nodes are 
organized in chains, and each node replicates the new object to the 
next node in the chain until the required number of replicas is 
created. While this approach may distribute the replication load 
across the nodes, it significantly increases the operation latency, 
and is equally network non-optimal.  

NICE Design. NICE builds network- and storage-optimal 
replication mechanism by leveraging network-level multicasting. 
The consistency mechanism discussed next requires to precisely 
identify and control which nodes are part of a given multicast 
group. While one may consider using traditional IP-multicasting, 
the fact that it requires every node to separately join/leave any 
multicast group makes it significantly harder (if not impossible) to 
build and maintain hundreds of multicast groups in face of node 
join and failure and to precisely identify when a particular 
multicast group has converged. OpenFlow helps solve these issues 
by allowing direct and centralized control of all groups. 

NICE design divides storage nodes into overlapping replica 
sets; every physical node is, typically, a primary replica in one 
replica set and a secondary replica in at least R-1 other sets. 

To realize single-hop replication, NICE storage follows the 
virtual-storage approach discussed earlier. The client has two 
virtual rings: a unicast ring (discussed in the previous subsection) 
and a multicast ring. Each ring uses a separate IP address range 
(e.g., 10.10.0.0/16 for the unicast vring, and 10.11.0.0/16 for the 
multicast vring). As the name indicates, messages sent to an 
address in the multicast ring are multicasted to all object replicas, 
while the messages using the unicast ring are sent to one of the 
replicas of the object (the primary replica unless load balancing is 
used). The multicast ring is only used to send the put request and 
data.  

Similar to the unicast vring, the multicast vring is divided into 
subgroups with each subgroup mapped to a replication set. For any 
packet targeting a virtual multicast address, the switch will modify 
the destination IP address to be the IP multicast address of the target 
replication set, and forward the packet to all the switch ports of the 
target replicas.  

The proposed replication mechanism is optimal: first, it uses a 
single hop to route the put request; second, it uses optimal network 

paths for data replication (considering data center tree topology, the 
optimal path is equivalent to link-layer multicasting paths); third, it 
offloads the replication overhead from the primary replica to the 
network switch, achieving high performance and scalability. This 
approach is also optimal in terms of storage node load as each 
storage node only receives the data once. Finally, this replication 
approach is load balanced by design; the primary and secondary 
replicas send/receive an equal amount of data. 

4.3  Consistency Mechanism 
Sequentially consistent storage systems should guarantee data 
consistency across replicas, even when nodes fail or are 
disconnected and later join back with inconsistent data. 

NOOB consistency protocols either face the possibility of 
blocking on node failure or require getting the object from the 
majority of nodes to resolve data inconsistency. 

NICE proposes a consistency-aware fault tolerance mechanism. 
Here we demonstrate how NICE uses this mechanism to improve 
2PC fault tolerance. The NICE-2PC mechanism (shown in Figure 
3) follows the 2PC protocol design with two main differences. First, 
it leverages multicast-based replication to load balance and 
efficiently replicate an object. Second, it improves the 2PC fault 
tolerance without requiring quorum-like protocols. 

 
Figure 3. Consistency Mechanism. Timeline of the message sent 
in put operation in NICE storage. The switch performs modify and 
forward (M+F) for client packets to map the virtual address to the 
multicast group. (+L) is when a node logs the operation. (-L) is 
when the log entry is deleted. (W) is when the node writes the new 
object to the persistent storage. Gray boxes denote forced writes, 
and bold arrows denote multicasting. Object locks are maintained in 
memory only. 

During the put operation, the client request is multicasted by the 
switch to all of the replicas. Upon receiving a complete object, the 
secondary replicas lock the object, log the operation, store the object 
to persistent storage, and acknowledge the operation to the primary 
replica. The primary replica, upon receiving an acknowledgment 
from all secondary replicas, generates a time stamp and multicasts 
the time stamp to all replicas. The timestamp contains the following 
quadruplet: primary address, primary timestamp, client address, and 
client timestamp,. The timestamp creates an order between put 
operations to the same object, even between retrials of the put 
operation by the same client. The secondary replicas release the 



 
 
 

 

lock on the object and acknowledge the end of the operation to the 
primary replica, which in turn acknowledges the operation to the 
client. We detail the fault tolerance mechanism next. 

4.4  Fault Tolerance 
Failure Model. NICE adopts a fault model assumed by current 
NOOB systems in which all node failures are assumed to be 
transient, with permanent failures being handled by administrator 
intervention [6, 9, 18] (The procedure for permanently adding or 
removing nodes is discussed at the end of this section). 
Consequently, when a node fails or is disconnected, the system does 
not automatically re-replicate the objects stored on that node, as 
these objects are still durably fully replicated. 

Failure Detection. Node failure (include disconnected nodes) is 
detected through two techniques: the metadata service will declare 
the node failed if it misses three heart beats from the node, or if a 
node reports to the metadata service that another node is 
irresponsive (e.g., if a node time-outs twice while waiting for a 
reply from a particular node in the 2PC protocol). Node failure 
causes two main problems: First, when a failing node 
recovers/rejoins, it often contains old (inconsistent) versions of the 
objects, if any of the stored objects have changed while the node 
was offline/disconnected. Second, newly stored objects will be 
under-replicated. Next we discuss how we handle these two 
problems.  

Failure Hiding. To handle the inconsistency problem of the 
failing nodes, on failure detection, the metadata service removes the 
failing node from the switch unicast and multicast vring mappings 
and informs the affected replicas. This effectively renders the node 
non-existent from the client point of view. When the node recovers, 
the switch mappings are updated only after the node is deemed 
consistent, as we will see next. 

Maintaining Replication Level during Temporary Failures. 
When a node failure is detected the metadata service selects a 
handoff node to serve as a secondary replica in the hash region of 
the failing node [18]. Any storage node in the system that is not 
already part of the effected replication set can serve as a handoff 
node. The handoff node temporarily serves the object range until the 
failing node comes back. To simplify recovery, the handoff node 
stores the newly stored objects in a separate directory. If the handoff 
node receives a get request for an old object that it does not have, 
the handoff node will forward the request to the primary replicas. 
After selecting the handoff node, the metadata service updates the 
switch forwarding tables for both virtual rings and informs the 
affected replicas. When the original node comes back, it will 
discover the handoff node through contacting the metadata service 
and retrieve all the new objects. Primary node failure is discussed 
below. The system can handle multiple failures as long as at least 
one node in every region is an original node (not a handoff node) in 
the region. 

Node Recovery. When a node recovers from failure, it contacts 
the metadata service to rejoin the system. Rejoining the system 
takes three steps: First, the metadata service adds the rejoining node 
to the multicast vring mapping. This makes the node receive and 
participate in the put operations but not serve get requests. Second, 

the recovering node contacts the handoff node to get all the objects 
stored during its failure. Finally, the node informs the metadata 
service that it has consistent data. The metadata service will add the 
node to the unicast vring mapping, remove the handoff node from 
all mappings, and inform the affected replicas. 

Failures during Put Operation. If a node fails during a put 
operation the operation will fail and the client will retry.  

If a secondary node fails during a put operation (i.e., before 
sending the last ack to the primary replica in Figure 3), the primary 
node will detect the failure through missing either of the two ack 
messages from the node. The primary node will abort the operation 
and inform the client. The primary node will also inform the 
metadata service of the failure, starting the process for hiding the 
failure as detailed above. 

If the primary node fails before sending the final 
acknowledgment to the client, the client will time-out and retry the 
operation. If the primary node fails before sending the “timestamp” 
message in the 2PC protocol in Figure 3, the secondary nodes will 
detect the failure by timing out on the replication message and will 
inform the metadata service starting the failure-handling process 
detailed above. When a primary node fails, the metadata service 
selects one of the secondary nodes to act as a primary node. The 
new primary will contact the secondary nodes to identify all the 
objects that are locked on any secondary node. If an object is locked 
on any node, this means that node did not receive the timestamp 
message from the old primary. For locked objects, the primary does 
the following: if the object is committed on any secondary node, 
then this means the object was committed by the old primary and 
could have been served to subsequent get requests. The primary will 
commit and unlock the object. If an object is locked on all 
secondary nodes, then the new primary will abort the operation. In 
case of a complete cluster failure, in which all in-memory locks are 
lost, the persistent logs on the nodes will identify the latest put 
operations. The new primary will check them all using the rules 
above. 

Ring Re-Configuration. Occasionally the administrator needs 
to reconfigure the system to add new nodes or remove nodes that 
permanently failed. To permanently remove a node, the 
administrator informs the metadata of the node removal. The 
metadata in its turn updates the forwarding rules related to the 
leaving node and informs all effected nodes of the membership 
change. Adding a new node to a replica set follows a procedure 
similar to rejoining a node after a temporary failure. The node is 
added first to the put vring to receive new updates and the primary 
node is informed of the new node. The node contacts the primary 
node to retrieve all keys stored in the hash range. Once the new 
node has consistent data it is added to the get vring and is made 
visible to get operations. 

 

4.5  Load Balancing 
While consistent hashing distributes the objects evenly across 
storage nodes, objects’ popularity rarely follows a uniform 
distribution, leading to a skewed distribution in which a subset of 
objects is highly popular [14, 16]. In this case, storage systems use 



 

load balancing to distribute the get/put load on all the replicas of a 
given object.  

Challenge. In current systems, a load-balancing node is 
deployed as a gateway to the system to forward client requests using 
the ROG or RAG approach (§2). This approach increases operation 
latency and requires provisioning load-balancers to avoid creating a 
system choke point. Alternatively, to avoid these drawbacks and to 
avoid the complexity of consistency protocols, latency-sensitive 
systems eschew load balancing and adopt the primary-secondary 
design [33, 42]. Alternatively, if a weaker consistency is an option, 
a client-side load balancing can be adopted (e.g., the client can 
randomly pick one of the replicas). 

NICE Design. The NICE metadata service implements a 
workload-informed consistency- and replica-aware load balancer. 
Unlike the NOOB storage design, our multicast-based put 
operations are load balanced by design; consequently, our load-
balancing technique focuses only on get requests. While previous 
effort explored SDN-based load balancing [21, 44] our approach 
advances the previous approaches by using the storage metadata to 
build consistency- and replica-aware load balancer.  

To perform workload-informed load-balancing, the metadata 
service collects, through heartbeats, periodic workload statistics, 
including the range of client IP addresses accessing each partition.  

The metadata service divides the client address space into R 
divisions, such that each division size is a multiple of 2. Requests 
coming from each division will be forwarded to a different replica. 
The metadata service alters the switch forwarding rules to match 
both the packet source and destination IP addresses. The destination 
IP determines which physical ring partition the request is targeting, 
while the source IP determines which replica to forward the request 
to. For requests coming from IP addresses that are not covered by 
these divisions, the metadata service forwards them to the primary 
replica. When an administrator adds a new node to a replica set the 
metadata server reparations the client address space to utilize the 
new replica for get requests. 

Compared to NOOB load balancing, NICE builds an in-network 
load balancing without increasing the latency or deploying extra 
resources, as is the case in NOOB systems.  

This approach increases the number of forwarding entries per 
partition of the unicast vring from 1 to R entries, each forwarding a 
subset of the clients to one of the replicas. Our future work will 
investigate more intelligent load-balancing techniques. 

4.6  Switch Scalability 
The proposed approach requires, for each physical partition, one 
entry in the switch forwarding table for the unicast vring mapping 
and one entry for the multicast vring mapping, if no load 
balancing is used. This leads to a total of 2N entries in the 
forwarding table. Where N is the number of storage nodes. If load 
balancing is enabled, it uses R entries per partition (Where R is 
the replication level), leading to a total of (R + 1)N entries. Given 
this requirement, current switches can support large-scale storage 
systems with thousands of nodes. Current switches support tables 
with 128K or more entries; they can easily support storage 
systems with up to 64K storage nodes without load balancing. 

With load balancing enabled and with a replication level of 3 they 
can support up to 32K storage nodes. 

5    IMPLEMENTATION DETAILS 
We implemented the NICEKV prototype following the NICE 
design. The NICEKV prototype is implemented in 14K lines of 
C++ code. The controller is implemented using 1K lines of python 
using the Ryu [10] framework.  

The rest of the section discusses implementation details of the 
network centric operations, and summarizes our experience with 
the state-of-the-art switches. 

Mapping Service. The SDN controller implements a layer 3 
learning switch. If the controller receives a packet destined to a 
not-yet-seen IP address, the controller will check if the address is 
a vnode address and update the switch to map the address to its 
physical counterpart, else the controller will buffer the packet and 
broadcast an ARP request for the unknown address. On receiving 
an ARP reply, the controller will update the forwarding tables and 
forward the buffered packets. The controller keeps a list of 
recently ARPed addressed to avoid flooding the network with 
ARP requests. While NICEKV implements a single node mapping 
service, the service can be easily partitioned on multiple nodes. 

Request Routing. We use UDP to send client requests and 
TCP for all other communications, i.e., the client sends the put/get 
request to the vnode IP address using UDP and waits for the reply 
on a client-side TCP socket. This design decision allows mapping 
multiple vnode addresses to a single physical address without 
worrying about handling the reverse mapping required for TCP, 
i.e., mapping the physical node address to multiple vnodes. 
Further, UDP is required for IP multicasting.  

Replication. For large objects, replication requires a reliable 
transport for data dissemination. NICEKV builds a simple reliable 
UDP-based multicast transport layer that uses primitive flow and 
congestion control techniques. Data is divided into multiple 
chunks, each less than a single network MTU (1400 bytes). The 
protocol uses NACKs to inform the client of missing packets, and 
the client sends the missing packets using a unicast connection. 
ACKs are used for flow control.  

We implemented a version of the reliable multicast protocol 
for quorum protocols. We optimized the quorum implementation 
by pushing the quorum design down to the multicast transport 
layer. To this end, we designed a reliable any-k multicasting 
protocol. For flow control, the protocol tracks a window of 
transmitted packets and advances the window when any k of the 
recipients acknowledges receiving the packets. The protocol 
returns when any k of the nodes fully receive the data. After 
returning, the protocol keeps supporting straggling nodes until 
they finish or timeout. 

 

5.1  Deployment Experience 
NICE exploits the latest capabilities of OpenFlow-enabled 
switches. Unfortunately, through examining three platforms with 
OpenFlow-enabled switches, we found that the current switches 
lag in terms of the supported OpenFlow features. Efficiently 



 
 
 

 

modifying packet headers, in particular, was rarely supported. 
Only one switch supported this feature, but in software, resulting 
in three orders of magnitude slower switching speed.  

The CloudLab [2] Utah cluster, which we use, provides partial 
support for OpenFlow features; in particular, it supports 
forwarding the packets to multicast addresses but does not support 
modifying the packet IP destination address. Modifying the packet 
IP destination addresses is necessary for mapping virtual 
addresses to physical addresses.  

To address this challenge, we deployed Open vSwitch [7] on 
every client machine. Open vSwitch is a software-based 
OpenFlow-enabled virtual switch. Further, we extended the 
NICEKV SDN controller to control multiple switches (i.e., 
multiple Open vSwitches and a single hardware switch). The 
controller installs the rules to modify packet headers (mapping 
virtual to physical addresses) on the client side Open vSwitches, 
and installs forwarding and multicasting rules on the hardware 
switch. Our evaluation shows that our new deployment leads to 
less than 4% performance loss of the switching speed.  

6   EVALUATION 
Our evaluation demonstrates the performance benefits brought by 
NICE. This section first compares the performance of NICE and 
NOOB storage, then evaluates the two systems using the Yahoo 
benchmark [16]. In addition to the NICEKV prototype, we have 
implemented a NOOB storage prototype with rich configuration 
options. The NOOB system implements the three common access 
mechanisms: RAC with client side caching, RAG with a replica-
aware load balancer, and ROG with a randomized load balancer. 
NOOB prototype implements two consistency mechanisms: 2PC 
and Primary-backup designs. The NOOB prototype allows us to 
compare NICEKV to range of NOOB designs and configurations. 
Finally, to verify the NOOB performance, we ran a synthetic 
single client put and get workloads to compare the NOOB-RAG 
performance to the OpenStack Swift key-value store [6]. In both 
workloads NOOB-RAG performance was equivalent or slightly 
better than Swift storage. 

Platform. We use a cluster of 30 nodes on the Cloud-Lab [2] 
Utah site. Each node has an 8-core ARMv8 2.4 GHz processor, 
64GB memory, 120GB SSD disk and 1 Gbps NIC. The nodes are 
connected to an OpenFlow enabled switch that supports 
OpenFlow 1.3.1. While the evaluation uses a single hardware 
switch the controlled switching topology (including Open 
vSwitches software switches) is much more complex. Further, 
NICE can radially support multi-switch platforms, as the 
controller will install the same rules on all participating switches. 

Deployment Configuration. Unless otherwise specified, we 
deploy the systems on 16 nodes (one mapping node and 15 
storage nodes), 14 nodes for clients and load balancers, and 
configure the system with replication level of 3 and sequential 
consistency.  

6.1  Request Routing Evaluation 
We compare the request routing performance of the NICEKV 
prototype, and three NOOB storage configurations: ROG, RAG, 

and RAC. We measure the performance of get requests issued 
from a single client. The evaluation shows the average of 1000 get 
operations while varying the object’s size from 4 bytes to 1 MB. 

 
Figure 4. Request Routing Performance. The average time of 
the get operation. Note the log scaled y-axis. NICE and NOOB-
RAC completely overlap. 

Figure 4 shows the performance of the get operation on the 
four systems. NICE and NOOB+RAC systems achieve 
comparable performance as both achieve single-hop request 
routing. For small data sizes (less than 64KBs) NICE and 
NOOB+RAC systems achieve 2× and 1.5× performance 
improvement compared to NOOB+ROG and NOOB+RAG 
systems, respectively. This improvement is due to the delay added 
by the request routing mechanism. The benefits are not as 
pronounced with large data sizes, as transfer time dominates. 

6.2  Replication Evaluation 
We compare the replication performance of the NICE design and 
three configurations of the NOOB storage primary-only design: 
ROG, RAG, and RAC. The experiment measures the put 
performance of one client. The evaluation shows the average of 
1000 put operations with objects sizes ranging from 4 bytes to 1 
MB. The experiment measures replication performance in terms 
of operation time, generated network load, and load ratio between 
the primary and secondary replicas. 

Replication time. Figure 5 shows the put operation time on 
the four systems. NICE storage achieves significant and consistent 
performance improvement across object sizes: up to 4.3× 
compared to NOOB+ROG, up to 3.4× compared to NOOB+RAG, 
and up to 2.6× compared to NOOB+RAC. The other systems lag 
NICE storage due to the extra effort needed for request routing 
and replication, while NICE storage uses optimal multicast-based 
replication. 

 Network load. Figure 6 shows the total link load generated by 
the put operation. NICE storage achieves, regardless of the object 
size, significant reduction in network load. NICE storage generates 
between 1.7× to 3.5× less network load compared to the other 
systems. 

Storage Load Ratio. Figure 7 shows the ratio of the primary 
replica load to the secondary replica load. While all NOOB storage 
system configurations impose 3× more work on the primary 
compared to the secondary (this load imbalance is proportional to 
the replication level), NICE load balances the load evenly across the 
primary and secondary replicas. 



 

 
Figure 5. Replication Performance. The average time of the put 
operation. Note the log scaled y-axis 

 
Figure 6. Network Link Load. The total network link load of the 
put operation. 

 
Figure 7. Storage Load Ratio. The ratio of the primary replica to 
secondary replica load in terms of amount of data sent/received 
during the put operation. 

6.3  Quorum-based Replication Evaluation 
This experiment compares NICE and NOOB storage quorum-based 
replication. The quorum design is appealing due to its ability to 
avoid slow or failed nodes. The experiment puts 1000 1MB objects 
using a replication level of 7, while varying the quorum write-set 
size (quorum size for short). To emulate slow nodes we configured 
the network connection of 3 replicas to be 50Mbps, while the rest of 
the nodes enjoy a 1Gbps connection. 

Figure 8 shows (a) the put operation time and (b) achieved 
bandwidth when varying the quorum size. While the performance 
of both systems suffer with quorum sizes of 5 and 7 (as it is not 
possible to avoid slow nodes), we note that NICE storage achieves 
up to 5.6× better performance with quorum sizes of 1 and 3. While 
the primary replica in NOOB storage is waiting for the first 
quorum-size of nodes to finish, it is concurrently replicating the 

object to all replicas, including the slow ones, creating high 
contention on the primary link. 

 
Figure 8. Quorum-based Replication Evaluation. Put operation 
performance using the quorum design. The experiment uses a 
replication level of 7 while varying the quorum size. The figure 
shows the put operation time (a) and bandwidth (b). 

 
Figure 9. Consistency Mechanism Performance. The put 
performance while varying the replication level, with 4-byte (a) and 
1MB (b) objects. Error bars represent standard deviation. 

6.4  Consistency Mechanism Evaluation 
We compare NICE storage to two NOOB storage configurations: 
primary-only and 2PC. To efficiently support highly popular 
objects, storage systems often create multiple replicas. This 
experiment evaluates the efficiency of the put operation while 
varying the replication level. NOOB storage use RAC request 
routing. We show the results for the two ends of the spectrum of 
object sizes, small 4-byte objects and large 1MB objects. 

Figure 9.a shows the put operation time with 4-byte objects. 
NICE achieves up to 1.3× better performance than NOOB-2PC. 
NICE achieves comparable performance to NOOB primary-only 
replication, although it has an extra phase of communication. This is 
because of the multicast-based replication that reduces not only the 
data transfer time but also the overhead of creating and maintaining 
up to 8 TCP connections. We note that the performance of all 
systems degrades with higher replication levels, due to the increased 
overhead of the consistency protocol that dominates small object 
performance. The primary-only design achieves better performance 
than NOOB-2PC due to 2PC protocol overheads. 



 
 
 

 

Figure 9.b shows the put operation time with 1MB objects. 
NICE achieves up to 5.5× better performance than NOOB systems. 
The primary-only and 2PC achieve comparable performance since, 
with large objects; performance is dominated by replication cost. 
While NOOB performance degrades considerably: by 7× when 
increasing the replication from 1 to 9, NICE performance degrades 
slightly when increasing the replication level (by 17% when 
increasing the replication from 1 to 9).  

 
Figure 10. Load Balancing Evaluation. The three systems 
performance under the load balancing workload while varying the 
replication level and number of clients. The figure shows results 
with (a) 4-byte objects and (b) with 1MB objects. Bold markers 
show the performance of the get-only workload. Error bars 
represent standard deviation. 

6.5  Load Balancing 
This experiment measures the performance of NICE storage and 
two NOOB storage configurations (primary-only and 2PC) when 
serving highly-popular frequently-updated objects. We design a 
weak scaling experiment: we increase the number of clients 
proportional to the replication level. In each configuration 1 client 
puts the same object 1000 times, while R-1 clients get the same 
object 1000 times. 

Figure 10 shows performance with 4-byte objects (a) and 1MB 
objects (b). NICE storage achieves better performance than NOOB 
storage systems: up to 7.5× better than the primary-only 
configuration, and up to 5.5× better than the 2PC configuration in 
both object sizes. The line markers on the bars in Figure 10 show 
the performance of the workload without updating the shared key 
(i.e., without the put client). The marker shows that NICE and 2PC 
are able to load balance the get requests across replicas, while the 
primary-only design performance degrades with the increased 
workload as no load balancing is used. The figure also shows the 
significant overhead added by 2PC consistency mechanism (the 
difference between the marker and the top of the bar). 

NOOB storage system performance degrades considerably when 
increasing the replication level and the number of clients, with 
primary-only performance degrading by 10× with small objects and 
3.5× with 1MB object, and the 2PC configuration degrading by 
2.6× with both sizes. This performance degradation is testimony 
that NOOB storage designs are not weakly scalable, i.e., NOOB is 
unable to meet the increasing demand despite the proportional 

increase in the allocated resources. Significant replication costs 
(dominant in large objects) and consistency-protocol overhead 
(dominant in small object) are the reason why. NICE storage 
performance degrades slightly when increasing the replication level 
and the number of clients (only by 20% with 1MB objects and by 
80% with 4-byte objects). 

 
Figure 11. Fault Tolerance Evaluation. Secondary node 2 fails at 
30s mark, triggering the fault tolerance mechanism, and 90s the 
node recovers, retrieves the missed objects from the handoff node, 
and starts serving client requests. 

6.6  Fault Tolerance Evaluation 
This experiment demonstrates the system fault tolerance 
mechanism. Three clients access the system with 20/80 put/get ratio 
and key size of 1KB. All objects are in the same partition. Figure 11 
shows the number of put and get requests served per second. At the 
30s mark, the secondary node 2 fails. The primary node detects the 
failure and informs the metadata service. The metadata service 
removes the failed node from the switch mappings and adds the 
handoff node to the replica set. This process makes the partition 
unavailable for put for less than 2 seconds (Figure 11 second 31). 
Client put requests during this period will fail and the client will 
retry after waiting for 2 seconds, in which case the operations will 
succeed. We are working on shortening this down time through 
allowing put operations to succeed if one node fails (i.e., having R-1 
replicas) and by creating, in the background, one more replica on 
the handoff node when it joins the replica set. 

For get operations, the client selects, in a uniform random 
fashion, one of the recently put objects to get. When the handoff 
node starts serving client requests (second 31), it does not have any 
of the requested objects. In this case, it forwards all get requests to 
the primary replica. As the handoff node stores more objects less 
get requests are forwarded to the primary node. 

At 90s mark, the failed node joins back, and starts retrieving the 
objects it missed. This is represented by the spike in put requests 
(and gets requests at the handoff node). Once the node has a 
consistent set of objects (second 95), the metadata service adds the 
node to the unicast switch mapping and removes the handoff node. 



 

 
Figure 12. Yahoo Benchmark Evaluation. The three systems 
performance under two Yahoo benchmarks: read-only (C), and 
read-modify-write (F). Error bars represent standard deviation. 

6.7 Real Workload Evaluation 
To evaluate the system with real workloads we use the Yahoo 
benchmark (YCSB) [16]. YCSB includes workloads with a variety 
of get-to-put ratios. We use two workloads: C, the read-only 
workload, and F, the read-modify-write workload which generates 
the highest ratio (50%) of puts in YCSB. As in the majority of the 
Yahoo workloads, these two have a zipf popularity distribution.  

The experiment compares the performance of NICE storage and 
two NOOB storage configurations (primary-only and 2PC). The 
system is accessed by 10 clients, each issuing 20K operations. We 
use the default YCSB configuration with 1KB objects. 

Figure 12 shows the yahoo benchmark results. NICE achieves 
the best performance under the two workloads. Nice achieves 1.6× 
and 2.3× better than primary-only configuration under workload C 
and F, respectively. This improvement is due to the lack of load 
balancing in the primary-only configuration. Compared to 2PC 
configuration, NICE achieves 1.25× and 1.5× better performance 
under workload C and F, respectively. 2PC configurations lags 
NICE due to the added load-balancing latency and consistency-
protocol overhead. 

7   OTHER RELATED WORK 
Request Routing. Beehive [35] proposes a different approach for 
achieving, on average, single-hop request routing for special 
workloads: workloads with highly skewed power-law popularity 
distribution. Beehive replicates each object based on its popularity, 
with the extremely popular objects replicated on every node, hence 
accessible in a single-hop. Due to the network and storage 
overheads, this approach is only feasible for highly skewed 
workloads of infrequently updated objects.  

SDN Optimized Systems. Recent research projects utilize SDN 
capabilities to provide load balancing [21, 36, 44], access control 
[31], seamless VM migration [29], and to improve system security, 
virtualization and network efficiency [28]. These systems still use 
the network as a separate entity and use SDN to optimize its 
operations. Unlike current efforts, we co-design network operations 
with system operations and protocols to achieve significant benefits. 

The MOM [34] and SwitchKV [46] projects are the closest in 
spirit to our project. MOM builds an SDN-optimized Paxos protocol 
by building an ordered multicast layer. Unlike MOM, we propose a 
new complete system architecture that co-designs network and 

storage support for higher performance and efficiency. SwitchKV 
[46] builds a key-value storage with a tier of caching nodes. 
SwitchKV uses the SDN-capability to optimize request routing for 
get requests from the cache. Unlike NICE, SwitchKV does not use 
the SDN capability to optimize data replication and consistency 
mechanisms. 

8   CONCLUSION AND FUTURE WORK 
We present network-integrated cluster-efficient (NICE) storage, 
which co-designs storage logic and networking support to realize a 
more efficient, scalable, and reliable distributed storage. Our 
prototype evaluation shows that this approach can realize significant 
benefits: up to 7× performance improvement, substantial network-
load reduction (up to 50%), and improved load balancing and 
scalability. While we focus the discussion on key-value storage 
systems, the proposed techniques for virtualization and consistency-
aware fault tolerance are widely applicable. Our future work will 
investigate building SDN-enabled storage systems that implement a 
more intelligent approaches to load balancing and a better support 
for more complex key-value queries.  
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