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Abstract. We present a software-defined storage 
architecture with two key properties: firstly, it enables 
external control of storage operations, and, secondly, it 
allows extending the storage system with new, workload-
specific, optimizations, all without breaking the file system 
abstractions. We argue that this architecture is generic, we 
prototype FlexStore following this architecture, we 
instantiate it to support workflow applications, and we 
report on our preliminary experience.  

1 INTRODUCTION 
Software defined networks (SDN) enable external control 
of network switch operations while providing an 
incremental adoption path by continuing to support 
traditional network operations. This approach facilitated 
investigating new research frontiers and optimizing the 
network operations for specific workloads while 
maintaining backward compatibility.  

Similarly to software defined networks we propose a 
software-defined storage architecture that enables 
experimentation and workload specific optimization while 
providing, as well, an incremental adoption path. The 
architecture we propose offers two key properties: firstly, it 
enables external control of storage system operations, and, 
secondly, it allows extending the storage system with new, 
workload-specific optimizations, all without breaking the 
file system abstractions.  

The architecture we propose divides the storage system into 
three planes: the primitives, operations, and control planes. 
The primitives plane provides the primitive storage system 
operations such as object level operations, data transfer, 
metadata operations, system status retrieval, and caching. 
The operations plane implements, using these primitives, 
complete storage system operations (e.g., the write data 
path, space allocation). The operations plane can include 
multiple implementations of the same operation (e.g., 
different space allocation policies, or different replication 
algorithms). The control plane allows application control 
over which version of an operation to invoke per-file. 
Finally, to address the wide range of usage scenarios, the 
operations plane is extensible, allowing adding new 
implementations of operations. 

We prototyped the Flexible and Extensible Storage 
System: FlexStore, based on the proposed architecture and 
extended it with storage operations optimized for workflow 
applications (described in detail in §2). While we believe 
that external control and extensibility are the key attributes 
that make this storage architecture appealing, we have also 

evaluated the performance gains our prototype brings to 
demonstrate its ability to efficiently support known 
optimizations. Compared to two widely used distributed 
storage systems Ceph [1] and GlusterFS [2], FlexStore 
offers, sizeable gains: up to 6x higher performance and 10x 
lower network overhead, at the same time, for real 
applications FlexStore offers 1.25 - 1.7x better performance. 

2 BACKGROUND AND MOTIVATION 
This section starts by briefly setting up the context (§2.1), 
presents a summary of workflows data access patterns 
(§2.2). and presents other scenarios where the customization 
of the storage system supported by FlexStore is essential 
(§2.3). 

2.1 Intermediate Storage and Workflow Applications  
Workflow applications assemble a set of standalone 
executables to perform complex data processing [3-6]. The 
executables communicate through files stored on a shared 
file system. Files generated during the workflow execution 
are temporary (i.e., they are not needed after workflow 
completion). Consequently, they are often stored in a 
‘scratch’ shared storage dedicated to the application. To 
avoid accessing the off-cluster backend storage system this 
scratch space is often obtained by aggregating the storage 
resources of the compute nodes allocated to the application, 
a technique called intermediate storage (Figure 1). This 
deployment scenario has become popular [7]. 

The scheduler schedules the individual tasks when all their 
input files are available. Through the DAG the scheduler can 
infer the files’ access patterns before workflow startup. 

 
Figure 1. Target deployment scenario. The scheduler executes tasks on 
compute nodes that access files at intermediate storage. Input/output data is 
staged in/out from the backend storage.  

Although workflow applications generate well studied data 
access patterns [3-6] it is difficult to optimize the 



intermediate storage for the generated I/O workload as 
different files in the same workflow have different access 
patterns (summarized in §2.2). Consequently, system-wide 
configurations/optimizations are not useful. Thus, the 
requirement to support per-file optimizations and handing 
explicit control over data placement, caching, replication, 
and space allocation policies to the workflow scheduler. 
These optimizations can bring sizable gains as shown by 
previous studies [8][19] and by our own evaluation [13].  

In addition to supporting workflow applications, an 
intermediate storage is often used in other deployment 
scenarios that would all benefit from application-specific 
optimizations, section (§2.3) discusses few examples. 

2.2 Workflows Common Data Access Patterns 
We detail a few common data usage patterns identified by 
past studies [3-6], and the opportunities for optimizations:  
 Pipeline: an optimized space allocation stores the 

pipeline files on the local storage node on the same 
machine of the tasks to increase access locality. 
 Broadcast: A single file is used by multiple tasks. An 

optimized replication mechanism can replicate the shared 
file to eliminate the possibility of hot spots. 
 Reduce: An optimized space allocation operation can 

place all reduce files on one node.  

2.3 The Need for Extensibility 
In addition to intermediate storage for workflow 
applications, numerous other scenarios can benefit from 
control over storage system operations. As it is challenging 
(if not impossible) to build a single storage system that 
satisfies all these scenarios, the software-defined storage 
architecture can allow extending the storage system with 
future operations. Two examples follow: 
 Checkpointing. Checkpointing is an indispensable fault 

tolerance technique, which generates an intense I/O 
workload. A number of optimizations (e.g., 
deduplication) have been proposed [9] to reduce I/O 
pressure, reduce checkpoint size, or to simplify the 
management of a checkpointing repository, but all 
require identifying the checkpointing files and the 
checkpointing policy. A software-defined storage can 
support checkpointing workloads by: (i) optimizing the 
storage operations (e.g., a data path with deduplication), 
or a file close() operation that only maintains the last N 
versions of the checkpoint files, and (ii) handing control 
over these operations to the platform.  

 Custom deployment scenarios. Previous work proposes 
dedicating a set of storage nodes for format 
transformation [10], as a stage-out buffer [11], or as a 
data-center scratch space [12]. Higher efficiency can be 
achieved in these deployment scenarios via a software-
defined storage system that enables application specific 

data placement, caching, or retention policy.  

3 A SOFTWARE-DEFINED STORAGE ARCHITECTURE 
This section presents the insights (§3.1) that led to the 
proposed architecture (§3.2) and to FlexStore design (§3.3). 

3.1 Insights 
In addition to the specific workload characteristics (§1.1) 
and deployment practices (§2.1), the proposed architecture is 
made feasible by the following two key observations:  
 First, ability to isolate operation implementation: 

performance-critical storage operations (e.g., space 
allocation, replication, the data path, caching) can be well 
modularized with no interaction between operations (with 
the exception of updating the file metadata). This makes it 
possible to create multiple implementations of storage 
operations and select one of them at runtime.  

 Second, a common ‘primitives’ substrate: the storage 
system relies on well-defined common primitives that 
encapsulate data and metadata operations. We encapsulate 
these in the primitives plane (described next). 

3.2 System Architecture Overview 
The storage system has three main components: a centralized 
metadata manager that maintains the metadata and system’s 
soft state, the storage nodes that store the data, and the 
client’s file system (CFS) which provides the client-side 
POSIX file system interface.  

The architecture (Figure 2) presents the storage system as 
three distributed planes (primitives, operations, and control 
plane). Each plane functionality is distributed across the 
three components (manager node, storage nodes, and CFS).  

 
Figure 2. System Architecture.  The operations plane (in gray) is the 
extensible plane. The control plane enables aplication control.  

The primitives plane provides the basic primitives for 
building a storage system, these are, in principle, low level 
abstraction for the lower hardware/software operations, for 
instance: storage abstraction with simple object 
put/get/delete API.  

The operations plane uses the functionality offered by the 
primitives plane to implement complete storage operations, 
for instance: space allocation at the manager, or replication 
at storage nodes. The operations plane may include multiple 



implementations of the same operation. These 
implementations have the same application-level semantics 
but differ internally (e.g., in terms of space allocation 
policy, or replication protocol), thus, offering different 
performance or reliability properties. The operations plane 
can be extended with new versions of the operations.  

 
Figure 3. FlexStore design. The figure: (1) presents the design of the 
FlexStore metadata manager (full detail, right box, note that the CFS and 
storage nodes, follow the same layered design); and (2) presents FlexStore 
deployment as an intermediate storage system over the allocated compute 
nodes (details in §3.5).  The workflow scheduler and the workflow tasks 
access the intermediate file system through the CFS (low left). Lines 
represent internal invocations (possibly on remote nodes).  

The control plane provides the ability for the scheduler, to 
control which operation implementation is invoked and to 
pass control parameters to specific operations. The 
operations plane has a default non-optimized 
implementation of every operation which is used if no 
control information is provided. 

3.3 FlexStore Design 
Figure 3 shows the FlexStore design. The rest of this 
section details the design of the system three components. 

CFS Design. CFS provides a subset of the POSIX file 
system API: mainly the file/directory create/read/write/ 
delete/getattrib API. The CFS translates the application 
POSIX calls to FlexStore operations. The file metadata is 
committed to the manager only on close() system call. 

The CFS primitives plane provides caching (with pin/unpin 
interface) and file transfer to storage nodes primitives; 
while the operations plane implements default object-
get/put operations, and default metadata get/put operation, 
and an cache control optimized for the pipeline pattern. 

Storage Node Design. Storage nodes implement a simple 
object storage system with simple get/put/delete 
functionality. On object-put the node can replicate the 
object to other nodes and implement a range of consistency 
semantics depending on the file custom attributes. 

The storage nodes’ primitives plane provides primitives for 
local-disk put/get/delete, and object transfer to another node. 
The operations plane includes a default implementation for 
object-get/delete/put operations (i.e., unreplicated put), and 
two optimized versions of the object-put operations: put with 
eager parallel replication used in broadcast pattern and put 
with asynchronous chain replication used for reliability).  

Manager Node Design. The manager maintains the files 
metadata, and the storage nodes soft state (per node free 
space). The manager primitives plane provides primitives for 
metadata update and retrieval, storage nodes’ status retrieval, 
and persistent key-value API for storing operations’ custom 
data. The operations plane includes five implementations of 
the space allocation operation (each optimized for a different 
workflow access pattern). 

The control plane in all components selects which operation 
version to use for a given request based on the file extended 
attributes. Further, these attributes are piggybacked on all 
communications between the system components, enabling 
the implementation of distributed optimized operations. 

Extending the Storage System. To extend the system with a 
new version of an operation, the developer needs to choose a 
tag (extended attribute) that will trigger the optimized 
operation, and implement the callback function on all system 
components related to the optimization. While it is hard to 
quantitatively measure extensibility, we have verified that it 
is possible to implement all optimizations proposed in §2.3. 

Finally, the default storage system behavior if no custom 
attributes are used is an unreplicated storage system with 
round robin allocation policy, and LRU caching. 

3.4 Runtime Flexibility: Controlled Operations  
Design for Runtime Flexibility. The control plane for all 
storage system components follow a ‘dispatcher’ design 
pattern: based on the requested operation and the file 
extended attributes, the dispatcher dispatches the request to 
the specific version of an operation. Figure 3 shows the 
detailed internal design of the metadata node (the client CFS 
and storage node follow the same design). 

Control Interface. To ensure cross-compatibility we 
overload Linux extended file attributes API: setx-
/getxattr(). 

Cross compatibility. We note that the proposed design is 
cross compatible. A traditional workflow scheduler that does 
not use extended attributes to control the storage operations 
can still use the default system implementation. Similarly, a 
modified scheduler can still work on traditional storage 
system, although the used extended attributes will not 
change the storage system behavior. We argue that this 
solution unlocks an incremental adoption path in which 
schedulers and storage systems can incrementally add 



support for software controlled operations. 

3.5 Putting it all Together 
Figure 3 illustrates how the integrated system operates. The 
workflow scheduler indicates (through adding custom 
attributes) the usage pattern of every file before the task 
producing that file is scheduled (path labeled 1 in Figure 3). 
Next the scheduler schedules the task on a compute node 
(2). When the task opens the file for write, the CFS 
retrieves the file custom attributes (3) and requests a space 
allocation from the manager (4) using those attributes. The 
manager uses the attributes to guide the data placement. 
The manager sends to the CFS a set of storage nodes to 
write to. The CFS starts the data write operation. The CFS 
uses the custom attributes to select the desired version of 
the write operation at the client. Further, the CFS passes the 
attributes to the storage nodes to select storage node write 
operation implementations (for instance selecting or 
parametrizing the replication mechanism). Once the file is 
created, its location is exposed through the (“location”) 
extended attribute that has value for every file in the system 
(thus enabling location-aware scheduling). 

4 EVALUATION 
We refer the reader to our technical report for detailed 
evaluation with syntactic and real applications [13].  

Testbed. We used 101 nodes (404 cores) on Grid5000 
‘Nancy’ site. Each node: Intel Xeon X3440 4 core, 2.5-
GHz CPU, 16GBRAM, 1Gbps NIC, and 320GB SATA II 
disks. 

Synthetic Benchmarks. We designed a set of synthetic 
benchmarks to mimic the access patterns described in §2.2.  
Overall, FlexStore, exhibits close to optimal performance 
(estimated by using hardcoded I/O paths different for each 
benchmark) and offers higher performance than FlexStore-
D (the default FlexStore implementation without any 
optimizations), which, in turn, has better performance than 
NFS, Ceph and GlusterFS. This shows that the overheads 
brought by the architecture are paid off by the performance 
improvements. FlexStore brings 6x higher performance 
(10x lower network overhead) for pipeline, 2x better 
performance and 87% lower network load for reduce, and 
2x better performance and 7% lower network load for 
broadcast) compared to FlexStore-D. 

Real Applications. We evaluated our prototype using three 
real applications: Montage, BLAST, and ModFTDoc [13]. 
These applications use a mix of the aforementioned access 
patterns for different files. FlexStore efficiently used 
different optimization for different files in the workflows 
and brought 1.25 - 1.7x better performance for the three 
application. Our analysis shows that the current prototype 
adds 7% scheduling overhead caused by implementation 
shortcuts that can be easily overcome in the next version. 

5 RELATED WORK 
Previous efforts in building software-defined storage 
focused on separating the control and data planes to enable 
application-informed control of storage operations [14-17, 
20]. They are either designed with specific optimization in 
mind (e.g., IOFlow focuses solely on providing quality of 
service) or provide a one-size-fit-all treatment for all 
application files. Unlike previous effort, FlexStore enables 
per-file control of all storage operations, and enables 
extending the storage with new versions of storage 
operations. BAD-FS file system [18] is the closest in 
principle to our system. BAD-FS allows the scheduler to 
configure the caching, consistency and replication policies 
per volume to better serve pipeline based workflows. Unlike 
our system, BAD-FS supports only pipeline access, is not 
extensible, and controls storage policies per volume not per 
file. 
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