
A Software-Defined Storage for Workflow Applications
Samer Al-Kiswany

University of Waterloo
Matei Ripeanu

University of British Columbia
Abstract. We present a software-defined storage
architecture with two key properties: firstly, it enables
external control of storage operations, and, secondly, it
allows extending the storage system with new, workload-
specific, optimizations, all without breaking the file system
abstractions. We argue that this architecture is generic, we
prototype FlexStore following this architecture, we
instantiate it to support workflow applications, and we
report on our preliminary experience.

1 INTRODUCTION
Software defined networks (SDN) enable external control
of network switch operations while providing an
incremental adoption path by continuing to support
traditional network operations. This approach facilitated
investigating new research frontiers and optimizing the
network operations for specific workloads while
maintaining backward compatibility.

Similarly to software defined networks we propose a
software-defined storage architecture that enables
experimentation and workload specific optimization while
providing, as well, an incremental adoption path. The
architecture we propose offers two key properties: firstly, it
enables external control of storage system operations, and,
secondly, it allows extending the storage system with new,
workload-specific optimizations, all without breaking the
file system abstractions.

The architecture we propose divides the storage system into
three planes: the primitives, operations, and control planes.
The primitives plane provides the primitive storage system
operations such as object level operations, data transfer,
metadata operations, system status retrieval, and caching.
The operations plane implements, using these primitives,
complete storage system operations (e.g., the write data
path, space allocation). The operations plane can include
multiple implementations of the same operation (e.g.,
different space allocation policies, or different replication
algorithms). The control plane allows application control
over which version of an operation to invoke per-file.
Finally, to address the wide range of usage scenarios, the
operations plane is extensible, allowing adding new
implementations of operations.

We prototyped the Flexible and Extensible Storage
System: FlexStore, based on the proposed architecture and
extended it with storage operations optimized for workflow
applications (described in detail in §2). While we believe
that external control and extensibility are the key attributes
that make this storage architecture appealing, we have also

evaluated the performance gains our prototype brings to
demonstrate its ability to efficiently support known
optimizations. Compared to two widely used distributed
storage systems Ceph [1] and GlusterFS [2], FlexStore
offers, sizeable gains: up to 6x higher performance and 10x
lower network overhead, at the same time, for real
applications FlexStore offers 1.25 - 1.7x better performance.

2 BACKGROUND AND MOTIVATION
This section starts by briefly setting up the context (§2.1),
presents a summary of workflows data access patterns
(§2.2). and presents other scenarios where the customization
of the storage system supported by FlexStore is essential
(§2.3).

2.1 Intermediate Storage and Workflow Applications
Workflow applications assemble a set of standalone
executables to perform complex data processing [3-6]. The
executables communicate through files stored on a shared
file system. Files generated during the workflow execution
are temporary (i.e., they are not needed after workflow
completion). Consequently, they are often stored in a
‘scratch’ shared storage dedicated to the application. To
avoid accessing the off-cluster backend storage system this
scratch space is often obtained by aggregating the storage
resources of the compute nodes allocated to the application,
a technique called intermediate storage (Figure 1). This
deployment scenario has become popular [7].

The scheduler schedules the individual tasks when all their
input files are available. Through the DAG the scheduler can
infer the files’ access patterns before workflow startup.

Figure 1. Target deployment scenario. The scheduler executes tasks on
compute nodes that access files at intermediate storage. Input/output data is
staged in/out from the backend storage.

Although workflow applications generate well studied data
access patterns [3-6] it is difficult to optimize the

intermediate storage for the generated I/O workload as
different files in the same workflow have different access
patterns (summarized in §2.2). Consequently, system-wide
configurations/optimizations are not useful. Thus, the
requirement to support per-file optimizations and handing
explicit control over data placement, caching, replication,
and space allocation policies to the workflow scheduler.
These optimizations can bring sizable gains as shown by
previous studies [8][19] and by our own evaluation [13].

In addition to supporting workflow applications, an
intermediate storage is often used in other deployment
scenarios that would all benefit from application-specific
optimizations, section (§2.3) discusses few examples.

2.2 Workflows Common Data Access Patterns
We detail a few common data usage patterns identified by
past studies [3-6], and the opportunities for optimizations:
 Pipeline: an optimized space allocation stores the

pipeline files on the local storage node on the same
machine of the tasks to increase access locality.
 Broadcast: A single file is used by multiple tasks. An

optimized replication mechanism can replicate the shared
file to eliminate the possibility of hot spots.
 Reduce: An optimized space allocation operation can

place all reduce files on one node.

2.3 The Need for Extensibility
In addition to intermediate storage for workflow
applications, numerous other scenarios can benefit from
control over storage system operations. As it is challenging
(if not impossible) to build a single storage system that
satisfies all these scenarios, the software-defined storage
architecture can allow extending the storage system with
future operations. Two examples follow:
 Checkpointing. Checkpointing is an indispensable fault

tolerance technique, which generates an intense I/O
workload. A number of optimizations (e.g.,
deduplication) have been proposed [9] to reduce I/O
pressure, reduce checkpoint size, or to simplify the
management of a checkpointing repository, but all
require identifying the checkpointing files and the
checkpointing policy. A software-defined storage can
support checkpointing workloads by: (i) optimizing the
storage operations (e.g., a data path with deduplication),
or a file close() operation that only maintains the last N
versions of the checkpoint files, and (ii) handing control
over these operations to the platform.

 Custom deployment scenarios. Previous work proposes
dedicating a set of storage nodes for format
transformation [10], as a stage-out buffer [11], or as a
data-center scratch space [12]. Higher efficiency can be
achieved in these deployment scenarios via a software-
defined storage system that enables application specific

data placement, caching, or retention policy.

3 A SOFTWARE-DEFINED STORAGE ARCHITECTURE
This section presents the insights (§3.1) that led to the
proposed architecture (§3.2) and to FlexStore design (§3.3).

3.1 Insights
In addition to the specific workload characteristics (§1.1)
and deployment practices (§2.1), the proposed architecture is
made feasible by the following two key observations:
 First, ability to isolate operation implementation:

performance-critical storage operations (e.g., space
allocation, replication, the data path, caching) can be well
modularized with no interaction between operations (with
the exception of updating the file metadata). This makes it
possible to create multiple implementations of storage
operations and select one of them at runtime.

 Second, a common ‘primitives’ substrate: the storage
system relies on well-defined common primitives that
encapsulate data and metadata operations. We encapsulate
these in the primitives plane (described next).

3.2 System Architecture Overview
The storage system has three main components: a centralized
metadata manager that maintains the metadata and system’s
soft state, the storage nodes that store the data, and the
client’s file system (CFS) which provides the client-side
POSIX file system interface.

The architecture (Figure 2) presents the storage system as
three distributed planes (primitives, operations, and control
plane). Each plane functionality is distributed across the
three components (manager node, storage nodes, and CFS).

Figure 2. System Architecture. The operations plane (in gray) is the
extensible plane. The control plane enables aplication control.

The primitives plane provides the basic primitives for
building a storage system, these are, in principle, low level
abstraction for the lower hardware/software operations, for
instance: storage abstraction with simple object
put/get/delete API.

The operations plane uses the functionality offered by the
primitives plane to implement complete storage operations,
for instance: space allocation at the manager, or replication
at storage nodes. The operations plane may include multiple

implementations of the same operation. These
implementations have the same application-level semantics
but differ internally (e.g., in terms of space allocation
policy, or replication protocol), thus, offering different
performance or reliability properties. The operations plane
can be extended with new versions of the operations.

Figure 3. FlexStore design. The figure: (1) presents the design of the
FlexStore metadata manager (full detail, right box, note that the CFS and
storage nodes, follow the same layered design); and (2) presents FlexStore
deployment as an intermediate storage system over the allocated compute
nodes (details in §3.5). The workflow scheduler and the workflow tasks
access the intermediate file system through the CFS (low left). Lines
represent internal invocations (possibly on remote nodes).

The control plane provides the ability for the scheduler, to
control which operation implementation is invoked and to
pass control parameters to specific operations. The
operations plane has a default non-optimized
implementation of every operation which is used if no
control information is provided.

3.3 FlexStore Design
Figure 3 shows the FlexStore design. The rest of this
section details the design of the system three components.

CFS Design. CFS provides a subset of the POSIX file
system API: mainly the file/directory create/read/write/
delete/getattrib API. The CFS translates the application
POSIX calls to FlexStore operations. The file metadata is
committed to the manager only on close() system call.

The CFS primitives plane provides caching (with pin/unpin
interface) and file transfer to storage nodes primitives;
while the operations plane implements default object-
get/put operations, and default metadata get/put operation,
and an cache control optimized for the pipeline pattern.

Storage Node Design. Storage nodes implement a simple
object storage system with simple get/put/delete
functionality. On object-put the node can replicate the
object to other nodes and implement a range of consistency
semantics depending on the file custom attributes.

The storage nodes’ primitives plane provides primitives for
local-disk put/get/delete, and object transfer to another node.
The operations plane includes a default implementation for
object-get/delete/put operations (i.e., unreplicated put), and
two optimized versions of the object-put operations: put with
eager parallel replication used in broadcast pattern and put
with asynchronous chain replication used for reliability).

Manager Node Design. The manager maintains the files
metadata, and the storage nodes soft state (per node free
space). The manager primitives plane provides primitives for
metadata update and retrieval, storage nodes’ status retrieval,
and persistent key-value API for storing operations’ custom
data. The operations plane includes five implementations of
the space allocation operation (each optimized for a different
workflow access pattern).

The control plane in all components selects which operation
version to use for a given request based on the file extended
attributes. Further, these attributes are piggybacked on all
communications between the system components, enabling
the implementation of distributed optimized operations.

Extending the Storage System. To extend the system with a
new version of an operation, the developer needs to choose a
tag (extended attribute) that will trigger the optimized
operation, and implement the callback function on all system
components related to the optimization. While it is hard to
quantitatively measure extensibility, we have verified that it
is possible to implement all optimizations proposed in §2.3.

Finally, the default storage system behavior if no custom
attributes are used is an unreplicated storage system with
round robin allocation policy, and LRU caching.

3.4 Runtime Flexibility: Controlled Operations
Design for Runtime Flexibility. The control plane for all
storage system components follow a ‘dispatcher’ design
pattern: based on the requested operation and the file
extended attributes, the dispatcher dispatches the request to
the specific version of an operation. Figure 3 shows the
detailed internal design of the metadata node (the client CFS
and storage node follow the same design).

Control Interface. To ensure cross-compatibility we
overload Linux extended file attributes API: setx-
/getxattr().

Cross compatibility. We note that the proposed design is
cross compatible. A traditional workflow scheduler that does
not use extended attributes to control the storage operations
can still use the default system implementation. Similarly, a
modified scheduler can still work on traditional storage
system, although the used extended attributes will not
change the storage system behavior. We argue that this
solution unlocks an incremental adoption path in which
schedulers and storage systems can incrementally add

support for software controlled operations.

3.5 Putting it all Together
Figure 3 illustrates how the integrated system operates. The
workflow scheduler indicates (through adding custom
attributes) the usage pattern of every file before the task
producing that file is scheduled (path labeled 1 in Figure 3).
Next the scheduler schedules the task on a compute node
(2). When the task opens the file for write, the CFS
retrieves the file custom attributes (3) and requests a space
allocation from the manager (4) using those attributes. The
manager uses the attributes to guide the data placement.
The manager sends to the CFS a set of storage nodes to
write to. The CFS starts the data write operation. The CFS
uses the custom attributes to select the desired version of
the write operation at the client. Further, the CFS passes the
attributes to the storage nodes to select storage node write
operation implementations (for instance selecting or
parametrizing the replication mechanism). Once the file is
created, its location is exposed through the (“location”)
extended attribute that has value for every file in the system
(thus enabling location-aware scheduling).

4 EVALUATION
We refer the reader to our technical report for detailed
evaluation with syntactic and real applications [13].

Testbed. We used 101 nodes (404 cores) on Grid5000
‘Nancy’ site. Each node: Intel Xeon X3440 4 core, 2.5-
GHz CPU, 16GBRAM, 1Gbps NIC, and 320GB SATA II
disks.

Synthetic Benchmarks. We designed a set of synthetic
benchmarks to mimic the access patterns described in §2.2.
Overall, FlexStore, exhibits close to optimal performance
(estimated by using hardcoded I/O paths different for each
benchmark) and offers higher performance than FlexStore-
D (the default FlexStore implementation without any
optimizations), which, in turn, has better performance than
NFS, Ceph and GlusterFS. This shows that the overheads
brought by the architecture are paid off by the performance
improvements. FlexStore brings 6x higher performance
(10x lower network overhead) for pipeline, 2x better
performance and 87% lower network load for reduce, and
2x better performance and 7% lower network load for
broadcast) compared to FlexStore-D.

Real Applications. We evaluated our prototype using three
real applications: Montage, BLAST, and ModFTDoc [13].
These applications use a mix of the aforementioned access
patterns for different files. FlexStore efficiently used
different optimization for different files in the workflows
and brought 1.25 - 1.7x better performance for the three
application. Our analysis shows that the current prototype
adds 7% scheduling overhead caused by implementation
shortcuts that can be easily overcome in the next version.

5 RELATED WORK
Previous efforts in building software-defined storage
focused on separating the control and data planes to enable
application-informed control of storage operations [14-17,
20]. They are either designed with specific optimization in
mind (e.g., IOFlow focuses solely on providing quality of
service) or provide a one-size-fit-all treatment for all
application files. Unlike previous effort, FlexStore enables
per-file control of all storage operations, and enables
extending the storage with new versions of storage
operations. BAD-FS file system [18] is the closest in
principle to our system. BAD-FS allows the scheduler to
configure the caching, consistency and replication policies
per volume to better serve pipeline based workflows. Unlike
our system, BAD-FS supports only pipeline access, is not
extensible, and controls storage policies per volume not per
file.

6 REFERENCES
1. Sage Weil, et al. Ceph: A Scalable, High-Performance Distributed File

System. OSDI 2006.
2. GlusterFS. cited 2016; https://www.gluster.org/.
3. Wozniak, J. and M. Wilde. Case studies in storage access by loosely

coupled petascale applications. Petascale Data Storage Workshop. '09.
4. Shibata, T., et al. File-access patterns of data-intensive workflow

applications and their implications to distributed filesystems,HPDC '10.
5. Bharathi, S., et al., Characterization of Scientific Workflows, in

Workshop on Workflows in Support of Large-Scale Science. 2008.
6. Yildiz, U., , et al.,Towards scientific workflow patterns, in Workshop on

Workflows in Support of Large-Scale Science. 2009.
7. Trinity/NERSC-8 Use-Case Scenarios. 2013 [cited 2014.
8. Vairavanathan, E., et al. A Workflow-Aware Storage System: An

Opportunity Study. CCGrid 2012.
9. Al-Kiswany, S., et al. stdchk: A Checkpoint Storage System for Desktop

Grid Computing. in Conference on Distributed Computing Sys. 2008.
10. Min, L., et al., Functional Partitioning to Optimize End-to-End

Performance on Many-core Architectures, Supercomputing. 2010.
11. Ramya, P., et al., Provisioning a Multi-tiered Data Staging Area for

Extreme-Scale Machines, International Conference on Distributed
Computing Systems, 2011.

12. Henry, M.M., R.B. Ali, and S.V. Sudharshan, /scratch as a cache:
rethinking HPC center scratch storage, Supercomputing. 2009.

13. Al-Kiswany, S., et al. The Case for Cross-Layer Optimizations in
Storage: A Workflow-Optimized Storage System. Technical Report. The
University of British Columbia. 2016.

14. Eno, T., et al., IOFlow: a software-defined storage architecture, SOSP
2013.

15. Darabseh, A., et al. SDStorage: A Software Defined Storage
Experimental Framework. in International Conference on Cloud
Engineering. 2015.

16. Gracia-Tinedo, R., et al., IOStack: Software-Defined Object Storage.
IEEE Internet Computing, 2016.

17. Alba, A., et al., Efficient and agile storage management in software
defined environments. IBM Journal of Research and Dev. 2014.

18. Bent, J., et al. Explicit Control in a Batch-Aware Distributed File
System. NSDI 2004.

19. Costa, L., et al., The Case for Workflow-Aware Storage: An Opportunity
Study, Journal of Grid Computing, 13(1): 95-113 (2015)

20. Al-Kiswany, S., et al., The Case for a Versatile Storage System,
HotStorage 2009.

