
MECBench: A Framework for Benchmarking
Multi-Access Edge Computing Platforms

Omar Naman1, Hala Qadi1, Martin Karsten1, Samer Al-Kiswany1,2

1University of Waterloo, Canada
2Acronis Research

{onaman, hqadi, mkarsten, alkiswany}@uwaterloo.ca

Abstract—We present MECBench, an extensible benchmarking
framework for multi-access edge computing. MECBench is con-
figurable, and can emulate networks with different capabilities
and conditions, can scale the generated workloads to mimic a
large number of clients, and can generate a range of work-
load patterns. MECBench is extensible; it can be extended to
change the generated workload, use new datasets, and integrate
new applications. MECBench’s implementation includes machine
learning and synthetic edge applications.

We demonstrate MECBench’s capabilities through two sce-
narios: an object detection scheme for drone navigation and a
natural language processing application. Our evaluation shows
that MECBench can be used to answer complex what-if questions
pertaining to design and deployment decisions of MEC platforms
and applications. Our evaluation explores the impact of different
combinations of applications, hardware, and network conditions,
as well as the cost-benefit tradeoff of different designs and
configurations.

I. INTRODUCTION

The fifth-generation (5G) mobile network architecture
promises unprecedented characteristics in communication
throughput, latency, and deployment density. These improve-
ments enable new application domains that require these
communication characteristics, such as autonomous driving,
smart cities, drone applications, and Internet of Things (IoT).
A central part of the 5G specification [1] is Multi-Access Edge
Computing (MEC) [2], which refers to small compute clusters
distributed across a mobile network to bring cloud services
closer to users, thus avoiding the high latency imposed by
contacting distant data centers. Service providers can design
their own MEC or use a MEC service such as Amazon
Outpost [3], Amazon Wavelength [4], and Azure Edge [5].
MEC plays a critical role in realizing the full potential of
5G and beyond mobile networks. MEC offers a lower-latency
alternative to data centers, can mask network failures that
disconnect clients from data centers, and provides resources
for offloading complex application logic from resource-limited
devices.

Building and deploying a MEC-supported service is compli-
cated because of challenges in the MEC, the network, and the
applications. First, there are no standard hardware or software
specifications for the MEC, leaving application developers
and service providers guessing what and how many resources
should be provisioned. Second, the network capabilities differ
between cities, even in a mobile network of the same provider.

Third, as this field is in its infancy, there are no estab-
lished applications to guide the service providers’ design and
provisioning steps. These challenges complicate designing,
provisioning, deploying, and billing MEC applications.

For instance, a typical scenario developers and service
providers face is determining whether the provider can support
a specific application with a specific service level agreement
(SLA) in a particular locale. As an example of this scenario,
a drone-based package delivery application could use a MEC-
based mobile service to help with navigation. The operator
expects up to 50 drones at any time and requires a response
time of 100 ms for 95% of the requests sent by drones. The
mobile service provider needs to answer many application-
and platform-specific questions to support this application.
For instance, the service provider needs to find if the MEC
hardware and network at the target city can support these
requirements. What hardware upgrades, if any, are required
to support this application? Which service level it needs to
subscribe to in Amazon Outpost [3]? How much will it cost
to support this application? The application developers need
to explore questions related to the application’s design. For
instance, would data compression make it cheaper to run
this application? How much would changing the drone speed
help scale the system to support more drones? What is the
accuracy/performance trade-off of different image resolutions?

To help application designers and service providers answer
application- and deployment-specific questions, we present
MECBench, an open-source benchmarking tool that can help
answer what-if questions. MECBench takes an application, de-
ploys it on the target MEC platform, then generates workloads
to measure the application and platform performance.

MECBench is highly configurable and extensible. It can
mimic a range of network conditions, generate configurable
client workloads, and tune the MEC resources available for a
particular application. MECBench is designed to facilitate ex-
tending the benchmark with new datasets and applications. If
an application cannot be deployed, MECBench offers a tunable
synthetic workload generator that can mimic an application’s
compute and I/O load.

We demonstrate MECBench’s capabilities through explor-
ing two scenarios: an obstacle avoidance service for drones
and a natural language processing (NLP) service for phone
applications. In our evaluation, we explore questions related
to the MEC hardware, such as the cost-performance trade-off



ControlStorage Data

S
er

vi
ce

 M
an

ag
er

N
et

w
or

k 
E

m
ul

at
or

Lo
ad

 G
en

er
at

or

N
et

w
or

k 
E

m
ul

at
orC1

C2

…

Cn

Storage Controller

Fig. 1: MECBench architecture.
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of different hardware configurations; questions related to the
network capabilities, such as exploring the impact of network
conditions; and questions related to application design, such
as exploring the impact of image resolution.

Our evaluation shows that MECBench is able to evaluate
a range of scenarios and extract surprising insights about
these applications. For instance, for the drone application,
when measuring how many drones each AWS instance can
support, we found that the cost per drone varies between
different AWS instances with the smaller instances offering
lower cost. Consequently, when supporting a large number of
drones it is cheaper to use more lower-end AWS instances
instead of large instances. Surprisingly, we found that GPUs
do not bring performance gains to this use case, hence un-
necessarily increase the deployment cost. Interestingly, while
image compression improves performance for older networks,
it brings little benefit for 5G networks. We discuss our findings
in Section IV.

The implementation of MECBench aims to make it easier
for the community to adopt this tool. We made the tool
extensible to integrate new workloads and new MEC services,
simplified the tool deployment through containerization and
integrating it with Kubernetes, and simplified accessing the
tool through providing a RESTful API. For wider impact, we
will release MECBench as an open source project.

The rest of this paper is organized as follows. Section
II details the design of MECBench. Section III discusses
implementation details. Section IV presents the scenario-based
evaluation. Section V discusses the related work. The paper is
concluded with a summary in Section VI.

II. DESIGN

MECBench comprises five main components: load generator,
service manager, network emulator, storage, and controller.
Figure 1, shows the interaction between the five components.
The service manager runs the service under test (SUT) subject
to the evaluation. SUT is the user-provided MEC service
under evaluation. The load generator generates the workload
representing one or more clients. The network emulator can
emulate different network technologies and conditions. The
storage component stores experiment descriptions, configu-
rations, input data, and results. The controller is the main
engine for starting and managing all components throughout

the experiment. The rest of this section details the design of
each of these components.

A. Load Generator

The load generator (LoadGen) generates the client requests
that are sent to the service manager. Each request has one
or more queries. The service manager processes these queries
using the SUT and sends the response back to LoadGen. The
nature of the query is application-specific. For instance, it
could include an inference request for an ML-based SUT, a
transaction request for a database, or a bookkeeping request
for an IoT application. Each query has a deadline. LoadGen
is notified, if a response misses a deadline. The LoadGen
component is flexible and can be configured to mimic different
workload patterns. It can be deployed on multiple nodes.

Figure 2 shows the design of LoadGen on a single node. The
main component is the orchestrator, which loads an experiment
configuration, sets the workload metadata, starts and controls
clients, and keeps track of the response time for each request.

The dataset generator is a module that defines the data used
in an experiment and provides a list of data items that clients
can retrieve. The orchestrator queries the dataset generator to
retrieve the metadata for the requests before the experiment
starts. The orchestrator uses the metadata to create requests
and send these requests to client modules.

The client module mimics a single client of the target edge
service. The client runs two threads. One thread generates
a request and sends it to the service manager. The second
thread receives the response and sends the response time
to the orchestrator. The scheduler (Figure 2) instructs the
runner to send requests at a configurable rate. The scheduler
is configurable and can generate various workload patterns.

The runner module generates a request and sends it to
the service manager over the network. The runner receives
a request’s metadata from the scheduler, uses the request
metadata to retrieve the request data from the dataset generator,
then forwards the request to the network module. The runner
also receives the response from the service manager and
performs post-processing, such as verifying the correctness or
quality of the response, and returning the response metadata
to the orchestrator.

The orchestrator keeps track of each request’s response
time by assigning a unique ID for each generated request



and pairing it with its corresponding response. The runner
communicates the response time to the LoadGen orchestrator.

Clients can be configured as closed-loop clients that send
one request at a time and wait for its response or open-loop
clients that send one or multiple concurrent requests at a
pre-configured rate. This allows running an evaluation with
different workload patterns.
Workload configuration. The orchestrator can be configured
to change the number of concurrent clients, the number of
requests sent per second, and the number of queries in each
request. These configuration values are defined in the workload
configuration file.

LoadGen can be run on multiple nodes, which allows the
generation of workloads that can saturate system components.
This multi-deployment option of LoadGen can also be con-
figured to generate workloads with different patterns on each
instance of LoadGen.
Scenarios. LoadGen is flexible and can be configured to
generate a range of client workloads. To simplify the usage
of LoadGen, we have implemented the following application
scenarios. These scenarios mimic real request patterns of
online services and are configurable.

• SingleStream: This scenario represents applications con-
cerned with response time. The requests are generated in
a closed loop and contain a single query. A typical test
using this scenario will collect the end-to-end response
time of the queries and analyse the response tail latency.

• MultiStream: This scenario represents an application
with a constant rate of requests that carry queries from
different sources. For example, the requests contain mul-
tiple queries representing multiple sensors, generated at
a constant time interval between each query. LoadGen
will skip generating a request if the last request does not
complete in time and the maximum number of concurrent
requests is reached.

• Server: This scenario represents the workloads of online
services that receive queries from multiple clients. The
requests are generated following a Poisson distribution
in an open loop. Each request has one query.

• Offline: This scenario represents applications that per-
form batch processing. LoadGen pushes all queries in
a dataset to the service manager to process at once
and measures how long it takes to process a complete
batch. The collected results are then analyzed to find the
throughput of the service manager measured in queries
per second (QPS).

B. Service Manager

The service manager manages the SUT. Figure 3 shows the
design of the service manager. The service manager supports
concurrent requests from clients. The service manager dedi-
cates a worker thread for each LoadGen client. A service man-
ager worker receives the stream of requests from a LoadGen
client, parses the requests, passes the requests to SUT, and
sends the results back to the LoadGen client. After passing
the request to the SUT, the SUT implementation is responsible

for processing the request and sending the results of all the
queries back to the service manager. The service manager
provides flexible support for different SUT models. The SUT
can run in a separate process and communicate using OS inter-
process communication techniques, or as a library as part
of the service manager process. While the service manager
implements several parsers for different applications, it offers
an API that can be extended to implement custom parsers.

C. Communication Layer

MECBench provides a communication layer between Load-
Gen and the service manager to abstract the communication
details, including network protocols and serialization. Our im-
plementation uses Google’s remote procedure call framework
gRPC [6] via its streaming API. Each client creates a gRPC
stream connection to its corresponding thread at the service
manager. The stream is used throughout the test to send all
client requests. The same mechanism is used for concurrent re-
quests, which simplifies open-loop clients. Furthermore, gRPC
supports setting deadlines for requests. The communication
layer also offers serialization and deserialization of requests
and responses using the Protocol Buffers (Protobuf) [7] format.

D. Network Emulation

MECBench provides the ability to emulate the network condi-
tions between the service manager and the LoadGen clients by
utilizing Linux’s Traffic Control (TC) [8], using the network
emulation (NetEm) [9] module. NetEm provides the ability to
emulate a variety of network conditions, including:

• Delay and jitter: The network emulator can add a delay
to each outgoing request. The delay can be a fixed
value or generated following a uniform distribution. This
configuration may introduce jitter.

• Packet loss: The network emulator can drop packets. The
packets are dropped following a uniform distribution. The
rate of packet loss is configurable.

• Transfer rate: The network emulator can limit the
throughput per LoadGen instance. Multiple LoadGen in-
stances can be deployed to get a finer granularity control
of the throughput.

• Packet reordering: The network emulator can send pack-
ets out of order. This property can control the percentage
of outgoing packets sent out of order.

MECBench uses these capabilities to facilitate evaluating
services under different network technologies and conditions.
MECBench allows having different settings depending on the
direction of communication from LoadGen to the service man-
ager and from the service manager to LoadGen. This facilitates
emulating mobile networks that typically have different upload
and download characteristics.

E. Storage

MECBench is typically deployed on multiple nodes. Conse-
quently, datasets, configurations, and results must be accessible
over the network. MECBench offers two storage services for
different deployment platforms.



MECBench Storage. MECBench uses an SQL database to
save and aggregate results collected during the experiment,
as well as the experiment configurations. This storage service
can be queried using SQL queries to retrieve the results of a
specific experiment after completion.
Blob Storage. To support cloud deployments of MECBench,
the experiment data and configuration is stored on files on a
network-accessible blob storage service.

F. MECBench Controller

This component is responsible for orchestrating the system’s
deployment, starting and configuring experiments and work-
loads. The controller exposes a RESTful API that can be used
to access most of the functionality of MECBench, allowing
it to be extended by other automation scripts and graphical
user interfaces. The controller abstracts the functionality of
MECBench and its internal services by providing the ability
to start, stop, and configure experiments without knowing
the underlying implementation details of the engine and the
components.

The deployment of the service manager is separated from
the deployment of the experiments to ensure its reusability.
Since the service manager’s configurations are often the same
across different experiments, this allows using the same service
manager deployment for multiple experiments.

G. MECBench’s Extensibility

One of the main objectives of MECBench is to provide a flex-
ible and extensible platform for evaluating the performance of
edge computing systems. Adding new client implementations,
dataset definitions, and SUT servers is all done by extending
the existing classes defined in the MECBench codebase.
LoadGen Extension. Creating a new evaluation use case
is done by extending two main classes of LoadGen’s API:
Dataset and Runner. The Dataset API to be extended is
defined as follows:

• loadDataset: Load the metadata of the dataset into mem-
ory. This method is called once at the beginning of the
evaluation. It loads information related to the generated
queries, including the total number of queries and the
path of the data related to them.

• loadQueryData: Load specific data related to a set of
queries into memory. LoadGen generates a set of indices
to be used by the clients. The partial loading allows
working with datasets that do not entirely fit into memory.

• getQueryData: Retrieve data related to a specific query
from the loaded datasets, given its index. This method is
called each time the runner adds a query to a request.

• postProcess: Perform any needed post-processing on
the results of the queries, including accuracy tests and
processing that a client will perform online as part of the
evaluated application. The runner calls this method each
time a query response is received.

• getNumberOfQueries: Return the total number of
queries in the dataset. This method is called by LoadGen

to correctly generate the query indices based on the
number of queries in the dataset.

The Runner API to be extended is defined as follows:
• runQuery: Handle the query generated by the LoadGen.

This method is called by the LoadGen each time a query
is scheduled containing the metadata of the set of samples
the Runner is to send.

• call: Send a query to the service manager. This method
is called inside the runQuery method after the query’s
data is retrieved from the Dataset.

• clone and init: These methods are used to spawn multiple
instances of the Runner to facilitate running mutliple
clients on the same LoadGen node.

• Constructor: The constructor of Runner receives the
Dataset instance to be used in the evaluation.

Service Manager Extension. To add a new application to
the service manager, one can extend the SUT class, which
defines how the SUT is initiated as well as the serialization
and deserialization of the inputs and outputs. The API to be
extended is:

• load: Load the SUT service. This method initializes the
SUT, including spawning the SUT’s processes if the SUT
runs as a separate process, defining the communication
tunnels between the SUT and service manager’s workers,
and loading any external data needed to run the SUT.

• parseQuery: Deserialize the query received from the
LoadGen client to a format that can be passed to the
running SUT through processQuery.

• processQuery: Pass the deserialized/parsed query to the
running SUT for further processing. The SUT returns the
results in the format defined by the serializeResponse
method.

• serializeResponse: Serialize the SUT’s results to be
streamed back over the network to the LoadGen client.
The client will use its deserialization method to parse the
results for further processing.

III. IMPLEMENTATION

The implementation of MECBench aims to make it easier for
the community to adopt this tool. We made the tool extensible
to integrate new workloads and MEC services, simplified the
tool deployment through containerization and integrating it
with Kubernetes, and simplified accessing the tool through
providing RESTful API.

MECBench is implemented in around 8,000 lines of C++
and 2,500 lines of Python code. We have implemented two
versions of the service manager: a C++ version and a Python
version to integrate machine learning models not available
in C++. The controller and storage of MECBench are im-
plemented in Python. Communication between LoadGen and
the service manager is implemented using gRPC, utilizing
Protobuf for serialization. The controller and the storage can
be contacted using their respective REST APIs. MECBench
has prebuilt support for machine learning SUTs and syn-
thetic benchmarks. The machine learning support is based on



MLPerf [10], a single-node benchmark for machine learning
models. The provided synthetic workloads mimic compute-
and I/O-workloads. Kubernetes is used to deploy MECBench’s
components: LoadGen, the service manager, and storage.

The rest of this section describes the implementation details
for MECBench’s components and the machine learning and
synthetic benchmarks.

A. LoadGen

The LoadGen implementation uses a pool of threads to run
client modules.
Runner. The protocol used by the runner to communicate with
the service manager carries a stream of bytes. This stream of
bytes is in a format defined by the dataset API. The query also
carries metadata describing the query; the request’s id, and
the byte stream’s length. The service manager responds with
a stream of bytes and query metadata; the id of the query and
the length of the byte stream. The runner sends the metadata
to the orchestrator to match a response to a request and to
record the query’s latency.
Dataset. The main dataset module does not perform any pre-
processing or post-processing of the items and assumes the
items are already in the format that the SUT can process.

B. Service Manager

The service manager runs the SUT, usually deployed on a sep-
arate node to reduce resource contention with other processes.
With the focus on providing a high level of flexibility and
extensibility, MECBench’s service manager is implemented
twice; once in Python to allow the ease of integrating Python-
based ML models and once in C++ to accommodate any C++-
based models and synthetic evaluation models.

C. Support for Machine Learning

MECBench comes prebuilt with machine-learning models
that can be used as SUTs for evaluation. These models are
implemented using the Python service manager. We have
implemented three machine learning SUTs starting from their
implementation in the MLPerf benchmark [10]:

• SSD-Mobilenet [11]: An object detection model, de-
signed for computationally limited devices, that utilizes
a single-shot detection (SSD) algorithm to detect and
label objects in images. The model is implemented in
MECBench using the ONNX Runtime [12] library, uti-
lizing the SSD-Mobilenet model used by MLPerf [10].

• EfficientDet [13]: The EfficientDet suite provides a set
of models that target a wide range of accuracy and
performance trade-offs by being trained on different in-
put resolutions. Higher resolution models require more
computation but provide more accurate inference results.
This suite of models is integrated in MECBench using
their original TensorFlow [14] implementation.

• SpaCy [15]: SpaCy is a high-performance NLP library.
SpaCy is not designed to run as a service, it only supports
running a single task at a time. To create a SpaCy service
that can handle multiple requests we explored a design
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Fig. 4: Image pre-processing stages.

with a pool of SpaCy processes ready for serving client
requests. The service manager chooses the next available
process to handle a new incoming request and uses inter-
process communication to submit a request to the process.

Machine Learning Datasets. Along with the machine learn-
ing SUT implementations, we have built a set of datasets that
contain items used as requests for each machine learning SUT.
An image pre-processing pipeline shown in Figure 4 prepares
the images for consumption by the machine learning models.

• Raw COCO and JPEG COCO. We have pre-processed
Microsoft’s COCO dataset [16] for use in SSD-Mobilenet
and EfficientDet SUTs. For Raw COCO, each image
is downsized to match the input of each model and
converted to a bitmap image ready to be passed to the
model. On the other hand, JPEG COCO is composed of
the same images as Raw COCO but compressed using
JPEG. Raw COCO reduces the overall processing time
of the SUT, but poses a bandwidth limitation due to a
larger image size, while JPEG COCO is more bandwidth-
efficient (Figure 5), but requires more processing time to
decompress the images before passing them to the model.

• Labeled Raw COCO. We have also implemented a
dataset that targets the accuracy of the models. We use
the raw COCO dataset paired with the ground truth of the
dataset. The ground truth is used in the post-processing
step to measure the response accuracy.

• SQuAD. We have extracted the paragraphs from the
SQuAD dataset [17], a question-answering dataset. We
use these paragraphs as queries to be sent to the SpaCy
SUT to perform Named Entity Recognition (NER). The
size of the queries in this dataset is small compared to
the other datasets, shown in Figure 6, in which 98% of
the queries are less than 1500 bytes.

D. Synthetic Benchmarks

MECBench also implements a set of synthetic SUTs that
mimic request, compute, and I/O-intensive applications. These
synthetic benchmarks are implemented in C++ as follows:

• I/O Model: This benchmark evaluates the I/O throughput
and latency of the service manager using a single file.
Queries describe operation parameters such as total data,
data written per operation, and whether to fsync data to
disk after each write.

• CPU Model: This benchmark targets the performance
of the CPU by continuously performing floating-point
divisions for a set amount of time specified by the queries.

• Requests Model: This benchmark targets the throughput
of the service manager in terms of the number of requests
it can handle. Each request represents a sleep operation
that sleeps for a time specified by the query.
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E. MECBench’s web services

System controller, blob storage, and MECBench storage are
all implemented as RESTful web servers using Python. Each
service exposes a set of stateless endpoints that can be used
by other services.

F. Deployment

In the current implementation of MECBench, its components
are containerized and deployable using an orchestration sys-
tem. Each component has a corresponding Docker image that
can be pulled and deployed as a pod in a Kubernetes cluster.
All the communication between network-connected compo-
nents is done through the Kubernetes network, deploying the
components as services with addresses that can be resolved at
runtime via the Kubernetes Domain Name System (DNS).

MECBench’s LoadGen can be deployed in a Kubernetes
cluster in two ways; single-run or run-server, depending on
the level of isolation needed between experiments. In single-
run mode, LoadGen is deployed as a single Kubernetes job,
clearing the resources of the pods that ran the experiment
after the experiment is completed. The single-run mode is
used for experiments that could interfere with previously run
experiments on the same node, such as experiments that
leave a trace on the node’s file system or network stack. On
the other hand, in run-server mode LoadGen is deployed as
a Kubernetes service. The primary use of this mode is to
minimize the overhead of pod creation and deletion, allowing
for a faster experiment turnaround time. It is also used to allow
the synchronization of running an experiment on multiple
nodes at the same time.

IV. EVALUATION

A. Evaluation Setup

We demonstrate the capabilities of MECBench using two
different scenarios. For each scenario, we run a set of ex-
periments that evaluate a specific capability of the service
manager. For our evaluations we use AWS, nevertheless,
MECBench can be deployed on other cloud platforms or edge
platforms (e.g., Amazon outpost or Azure Edge). MECBench’s
components are deployed on EC2 instances, and the instances
are controlled by AWS’s Elastic Kubernetes Service (EKS).

The experiments use a selection of the models and datasets
described in Section III on different types of AWS instances
[18]. These instances differ in the number of processors, the
amount of RAM available, and the existence of hardware
accelerators, as shown in Table I. All processors are from
the 2nd generation Intel Xeon Platinum 8000 series. LoadGen

Instance Cores vCPUs RAM
(GiB)

Price
(USD per

hour)

GPU

m5.large 1 2 8 0.096 -
m5.xlarge 2 4 16 0.192 -
m5.2xlarge 4 8 32 0.384 -
m5.4xlarge 8 16 64 0.768 -
m5.8xlarge 16 32 128 1.536 -
m5.16xlarge 32 64 256 3.072 -
p2.xlarge 2 4 61 0.900 K80

TABLE I: AWS EC2 instance resources [18], [19]. The
information was collected on August 8, 2022.

is deployed on a single instance of type m5.xlarge that can
saturate the network link as well as the service manager
resources. We run all our experiments in a single AWS region
(us-east-2) in a single availability zone.

The experiments are set to generate requests for 10 sec-
onds following the SingleStream closed-loop client workload
generation and then wait for all the requests to be completed.
The experiments are repeated 30 times. No online processing
is performed by LoadGen during the experiments, and all
datasets are preprocessed to a format that can be immediately
consumed by the SUT and preloaded into memory.

B. Drone Object Detection

One of MECBench’s goals is to evaluate the trade-off between
offloading onboard processing to a more powerful edge node.
This scenario addresses the viability of running an object
detection model at a MEC to support fast-moving autonomous
drones. In this scenario, a drone sends a photo collected by its
front camera to the closest MEC server. The MEC server runs
an edge service that processes photos coming from the drone
and detects any objects in the drone’s path. For the evaluation,
we use the SSD-Mobilenet model. For this application, it is
critical that the response time is low enough to leave sufficient
time for the drone to avoid an obstacle. We set the condition
that this scenario requires that the 95th percentile latency of
the response time must be less than 100ms.

To understand how best to deploy this application, service
providers and application developers need to answer the
following questions. Which AWS instance can support the
application and is most cost-efficient? Should the service use
more expensive instances with GPU support? How many cores
should be allocated for this application?

Application developers can configure their application to
reduce cost or improve performance. For instance, cameras
can be adjusted to take lower-resolution photos, which intro-
duces an interesting trade-off: lower-resolution photos can be
processed faster as, they have lower transfer and processing
time, but they may lead to lower object detection accuracy.
Which resolution should the system designers use to reduce
the response time while providing adequate accuracy? What
are the network requirements to support this application? Will
it run over 4G networks? How does data loss affect application
performance? Given that a drone’s speed is correlated with
the rate of queries the drone issues to the MEC, this raises the
question: What drone speeds does each networking technology
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support? In this section, we show how we use MECBench to
answer these questions.

1) Cost/Performance Trade-Off of AWS Instances:
Cost/performance trade off is an important factor for prac-
tical deployments. In this section we start by exploring the
cost/performance trade-off of different AWS instances (Table
I). We note that AWS MEC solutions like Outpost [3] and
Wavelength [4] offer a similar pricing models. LoadGen is
configured to act as a set of closed-loop clients sending
queries from the Raw COCO dataset. During the evaluation,
we keep increasing the number of parallel clients until the
service manager or the network is saturated. We also run
SSD-Mobilenet on a GPU-based OnnxRuntime deployed on a
p2.xlarge instance with an NVIDIA K80 GPU.

Figure 7 shows the throughput measured in Queries per
Second (QPS) and 95th percentile latency of an edge service
running an object detection service using the SSD-Mobilenet
model. The figure shows the performance for different AWS
instances, including p2.xlarge with a GPU. It shows that
m5.large, m5.xlarge, m5.2xlarge, and p2.xlarge provide low
throughput for a latency of less than 100 ms. This indicates
that these instances cannot support deployments with a large
number of drones. m5.4xlarge, m5.8xlarge, and m5.16xlarge
achieve a throughput of over 200 queries per second, with
m5.16xlarge achieving around 600 queries per second with
the 95th percentile latency being less than 100ms.

Figure 8 compares the different instances in terms of how
many drones can be supported. The figure shows that only
m5.4xlarge, m5.8xlarge, and m5.16xlarge can support more
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for the object detection scenario with
different number of cores.
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per CPU of the SSD-
Mobilenet model.

than 10 drones. Interestingly, for this application GPUs do not
increase system throughput as p2.xlarge instance with a GPU
costs 3 times more than m5.xlarge, while their performance
is comparable. Figure 9 shows the normalized per-drone cost
of each instance. The figure shows that m5.large, m5.xlarge,
and m5.2xlarge have the lowest cost per drone of 4.8 cents per
hour. This shows that when deploying the SSD-Mobilenet SUT
on AWS, it is better to scale horizontally with more lower-end
instances rather than vertically with more powerful instances.

2) Application Scalability: One important aspect of cloud
applications is scaling to efficiently use all available cores in
a machine to serve client requests. In this experiment, we
evaluate the drone application’s ability to use all cores of
an m5 instance. Kubernetes makes it possible to specify how
many cores are to be used per pod. We use this capability to
vary the number of cores allocated for the service manager
container.

Figure 10 shows the throughput and 95th percentile latency
when using different numbers of cores on an m5.8xlarge AWS
instance. Figure 11 shows the throughput normalized per core
when using different numbers of cores. The drone object
detection application leverages all the cores on a machine
effectively. This result shows that this edge application benefits
from allocating more cores at edge servers. The application
experiences a slight dip in performance when using all the
cores on the machine; this is due to the implementation causing
frequent context switches between threads.

3) Accuracy/Performance Trade-off of Image Resolution:
Drone cameras can take photos at different resolutions. Photo
resolution presents a trade-off between response time and
object detection accuracy. Larger images take longer to transfer
to the MEC and longer to process, but are expected to lead
to a higher object detection accuracy. Using higher-resolution
images can help detect smaller objects or, in the case of
autonomous drone decision-making, objects that are further
away, creating a larger time window for the vehicle to react.

Unfortunately, we could not find a dataset of images
captured by a flying drone and corresponding ML mod-
els. The model we found with varying input resolutions is



0 5 10 15 20 25 30 35 40 45 50
Throughput (QPS)

0
1000
2000
3000
4000
5000

La
te

nc
y 

(m
s) Model

D3 (896x896)
D2 (768x768)
D1 (640x640)
D0 (512x512)

Fig. 12: Performance evaluation of EfficientDet deployments
with an m5.8xlarge service manager.

Model Name Resolution Accuracy
D0 512×512 0.466
D1 640×640 0.519
D2 768×768 0.558
D3 896×896 0.632

TABLE II: EffecientDet Model Detection Accuracy.

Google’s EfficientDet [13] model suite. Table II shows the
model names, input image resolution, and object detection
accuracy. Although the team providing this suite states that
these models are not suitable for latency-critical use [20],
we use them to demonstrate MECBench’s ability to explore
the accuracy/performance trade-off of different models. The
models in Table II use the same underlying dataset scaled to
different image resolutions.

Figure 12 shows the throughput and 95th percentile latency
for object detection using the four different models. The
experiment uses the m5.8xlarge instance with 32 cores. Table
II shows the detection accuracy of different models.

Figure 12 shows that increasing the image resolution sig-
nificantly reduces the system performance. Using the highest-
resolution model reduces the peak throughput by 92% and the
95th percentile latency is 500 ms. Table II shows the object
detection rate of the EfficientDet suite when evaluated using
the COCO Dataset. The table shows a noticeable improvement
in the number of objects detected in the dataset, increasing
with dataset resolution and reaching up to a 25% better
detection rate in the highest-resolution model when compared
to the model with the lowest resolution. The D1 model offers
a midpoint in terms of accuracy and performance between D0
and D3. This experiment demonstrates MECBench’s ability to
explore this trade-off.

4) Impact of Network Performance on Number of Drones:
One of the main concerns when deploying an application on
the edge is the required network performance in terms of
throughput, latency, and packet loss. Applications often do
not clearly express their network requirements or how network
performance affects application performance. It is especially
challenging to estimate the effect of network performance on
an application in mobile networks because they offer asym-
metric downlink and uplink performance. Using MECBench,
we evaluate the performance of the SSD-Mobilenet model
when deployed on an m5.8xlarge instance with different
network conditions. We use MECBench’s network emulation
capabilities to emulate a variety of networks. Table III shows
the characteristics of the network standards we use in our

Network Spec. RTT (ms) Download (Mbps) Upload (Mbps)
5G spec. [1] 1 10,000 1,000

4G-LTE+ [21] 10 1000 500
4G-LTE [21] 10 100 50
WiMAX [22] 30 128 64

TABLE III: Network specifications used in our evaluation.
Network Name RTT (ms) Download (Mbps) Upload (Mbps)

Net8.0 25 8,000 800
Net6.0 25 6,000 600
Net4.0 25 4,000 400
Net2.0 25 2,000 200
Net1.0 25 1,000 100
Net0.5 25 500 50

TABLE IV: Synthetic network specifications.

evaluation. We also emulate a set of synthetic networks (Table
IV) offered publicly by different network providers due to
the difficulty of deploying the 5G standard. We use the same
methodology as in Section IV-B1 to evaluate the performance
of the model.

Figure 13 shows the throughput and 95th percentile latency
of the same edge service running the object detection service
on an m5.8xlarge AWS instance. The figure shows the per-
formance of the system under different network conditions.
We see from the figure that networks with low bandwidth
capabilities, like 4G-LTE and WiMAX, struggle to serve any
number of drones for request latencies less than 100ms. On
the other hand, networks like 4G-LTE+ and 5G, which have
higher bandwidth capabilities, can serve around 20 and 32
drones, respectively, as shown in Figure 14, which looks into
the maximum number of drones that can be served by the edge
service while maintaining a 95th percentile latency of 100ms.

5) Impact of Data Compression: Drone cameras produce
images that are processed before sending them to the service
manager. Compressing images before sending them to the
edge service reduces the amount of data transferred over the
network, but increases the computational overhead on the edge
service [23]. In this experiment, we evaluate the effect of
image compression on performance. We use the Raw COCO
dataset, which contains raw images, and the JPEG COCO
dataset, which contains JPEG compressed images. We use
the same methodology as in Section IV-B1 to evaluate the
performance of the model on each dataset.

Figure 15 shows the system throughput when using different
network conditions. The figure shows that the system’s per-
formance is limited by the network bandwidth, where it only
saturates the instance’s resources when using the theoretical
limits of a 5G network [1], when sending queries from the
Raw COCO dataset. Figure 16 shows the results of the same
experiment with the compressed JPEG COCO dataset. The
results show that image compression significantly improves
performance for all networks except for the 5G network. Sur-
prisingly, for the 5G network, compression reduces the system
throughput by 5% compared to the Raw COCO dataset; that
is because compression increases the computational overhead
and introduces a performance bottleneck. This computational
overhead was masked by the longer transfer time in other
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Fig. 13: Throughput-latency figure for the object detection
scenario under different networks.
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of 100ms under different networks.

networks.
6) Impact of Network Performance on Drone Speed: Sensor

frame rates are usually controlled and limited to fit the needs of
the application or hardware limitations. When reducing drones
speed, we can reduce the sensors frame rate, hence reducing
the load on the system and enables supporting more drones.

To evaluate the impact of network characteristics on drones
speed, in this experiment, we emulate drone with a Multi-
Stream scenario (Section II-A) and send requests at different
rates to emulate different speeds. The server-side queue size
is 4 requests per drone. We use an m5.8xlarge instance
serving the SSD-Mobilenet model, using 4G and 5G emulated
networks (Table III), using MECBench’s network emulation
capabilities, and with data rates varying from 10 frames per
second (FPS) to 30 FPS. Figure 17 shows the response latency
when increasing the number of drones with different data rates.
By assuming that a drone should abide by a safety distance
and its ability to instantly stop when it detects an obstacle, the
drone must not travel more than the safety distance between
each frame processed.

Equations 1 and 2 are used to convert between drone speed
and perception-reaction time. Perception-Reaction (PR) is the
time it takes for a drone to react to a perceived object by the
sensors. We use the PR time to calculate the maximum speed
of the drone in Equation (1). For instance, assume a safety
distance of 1 meter must be maintained between the drone
and the obstacles. Equations 1 and 2 tells us that a drone
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Fig. 15: Raw COCO through-
put evaluation.
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Fig. 16: JPEG COCO through-
put evaluation.
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Fig. 17: The effect of varying the frame rate of the data being
sent to the service manager on the system’s performance.

traveling 18km/h or 5m/s that is capturing a frame every
100ms (10FPS) needs a response from the server in under
100ms. Following the same assumption, Figure 17 shows that
the service manager can only serve this kind of service over
a 5G network. Over 4G-LTE, drones traveling at the same
speed cannot be served by the service manager due to its high
latency (600ms), the drones’ speed must be less than 5Km/h
to maintain the safety distance.

Safe Speed × PR Time ≤ Safety Distance (1)

PR Time =
1

Frame Rate
+ Processing Time (2)

C. Text-Based NER Evaluation

The second evaluation scenario is to evaluate the performance
of the service manager when serving a text-based NER model.
This scenario studies the viability of serving a NER model on
the MEC to assist grammar-checking applications, commonly
found in smartphone devices. In this scenario, a smartphone
sends a paragraph of English text to the closest MEC server,
which then extracts all the entities from the text and returns
them to the smartphone. The entire process should be com-
pleted as fast as possible to provide a seamless experience
to the user; thus, the 95th percentile response time should
be under 70 ms. Compared to the drone application, this
application sends less data but can generate a higher number
of requests per second.

The same questions brought up in the drone evaluation come
up when deploying the application, with emphasis on the effect
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Fig. 18: Performance of SpaCy NER on different networks.

of increasing the number of clients on the response latency
due to smartphones being more available and widespread than
drones. Which AWS instance provides support for the greatest
number of clients? Is allocating more resources for the appli-
cation beneficial? Are all the networks capable of supporting
the application? And what is the most important aspect of the
network to consider when deploying the application?

This application is less demanding in terms of network
bandwidth but with a similar processing time compared to
the drone application. The NER deployment uses the SpaCy
model (Section III-C). We use an m5.8xlarge instance and
configure it to start 33 SpaCy worker processes to perform the
NER process on queries constructed from the SQuAD dataset
(Section III-C).

1) Application Feasibility by Network Technology: This ap-
plication is directly impacted by network latency. We evaluate
the SpaCy model using MECBench on an m5.8xlarge instance
with different network conditions.

Figure 18 shows the performance of the application when
deployed on different networks (Tables III and IV). The figure
shows that the system reaches service manager saturation
before being limited by the bandwidth of the network, even
in the case of the lower-end WiMAX network. This is due to
the small size of the queries being sent to the service manager
which is typically in the range of a few KB.

The evaluation shows that the results are clustered based on
the round trip time (RTT) of the different network. 4G-LTE
and 4G-LTE+ networks show a similar performance due to
the similarity in their RTT of 10ms, with a 28% drop in the
throughput of the system when compared to the 5G network.

Going back to our latency requirement, we can see that even
the WiMAX network, with a 30ms RTT, can support up to 33
concurrent clients with a 95th percentile latency of 75ms. On
the other hand, the 5G network, with 1ms RTT, can support
up to 41 concurrent clients but provides 25% faster responses
when serving 33 clients. The performance in the case of the
5G network is limited by the application implementation not
the network capabilities.

2) Application Scalability: In this section, we look into the
effect of allocating more cores to the application on the overall
performance of the system. We utilize Kubernetes to gradually
increase the number of available CPUs for the service manager
running on an m5.8xlarge instance. We set SpaCy’s worker
processes to be one more than the number of CPUs available
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to the service manager, i.e., if the number of CPUs available
is 4, the number of worker processes is 5.

The results (Figure 19) show diminishing returns on the
throughput of the system as the number of CPUs available to
the service manager increases. The growth in the number of
clients supported per 4 cores drops from 9 clients to 4 clients.
This is clearer when normalizing the throughput of the system
per core, as shown in Figure 20, where the throughput per core
drops by 55% when increasing the number of cores from 4
to 32. These results show a clear limitation in the scalability
of the application and highlights the need for redesigning the
application for higher concurrency.

V. RELATED WORK

A few previous efforts proposed a benchmark tool for edge
applications. ComB [24] provides a fixed load generator to
evaluate edge applications. It includes an object tracking
application and uses TrackEval [25] metrics that are often used
to measure the performance of this application domain.

Defog [26] targets evaluating the impact a MEC may have
on cloud applications. Defog evaluates a set of applications
under different deployment modes: cloud-only, edge-only, and
cloud-edge combined mode. The framework offers a fixed load
generator and a set of applications that can be deployed on
different cloud/edge configurations.

EdgeBench [27] evaluates the performance of edge plat-
forms, such as AWS’s IoT Greengrass [28] and Azure’s IoT
Edge [29], using speech-to-text, image recognition, and scalar
value generator applications. BenchFaas [30] and EdgeFaas-
Bench [31] explore the different methodologies of evalu-
ating the performance of OpenFaas platforms. EdgeBench,
BenchFaas, and EdgeFaasBench are geared towards evaluating
serverless edge platforms using a set of implemented applica-
tions and workloads.

pCamp [32] focuses on comparing machine learning pack-
ages on commercially available edge devices. pCamp measures
the latency, memory footprint, and energy usage of ML
packages on an edge machine like a MacBook pro.

Unlike previous efforts, MECBench offers more flexible,
extensible, and deployable options. MECBench offers a flexi-



ble and extensible workload generator that can be configured
to generate a wide range of workloads, it uses containers to
simplify deployments, and uses network emulation to emulate
different network conditions. MECBench also allows evalua-
tions in controlled environments without actual edge hardware,
using network emulation and orchestration engine capabilities
to limit resources available to edge nodes.

VI. CONCLUSION

We present MECBench, a framework for benchmarking
edge computing applications. MECBench’s design is centered
around high configurability and extensibility. MECBench fa-
cilitates the extension of the framework with new applications
that can be used to evaluate the performance of service man-
agers. If an SUT is not available, MECBench can mimic the
application workload using a pre-built synthetic benchmark.
We demonstrate the utility of MECBench in answering a
number of what-if questions in an edge application. We are
able to detect bottlenecks in a selection of network conditions
as well as assess the cost efficiency of the pricing of AWS
instances on object detection and NLP models. Furthermore,
we can compare performance-accuracy tradeoffs for the Effi-
cientDet model suite. MECBench’s source-code can be found
at https://github.com/UWASL/MECBench
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