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Production- quality Key-Value Stores

• Leader-based consensus protocols → Strong consistency
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• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas
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Shortcomings of Current Systems
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• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas

• Multiple single-threaded shards
• Inefficient for skewed workloads
• Resource fragmentation: separate 

memory regions per shard
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LoLKV

• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas

• Multiple single-threaded shards
• Inefficient for skewed workloads
• Resource fragmentation: separate 

memory regions per shard

• A novel logless replication

• Combines replication and apply

• Passive followers

• A novel multi-threaded shard design

A new linearizable RDMA-based KV Store

Shortcomings of Current Systems



Design
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• Leader-based system

• Two main components
• Storage 

• Worker threads

• RDMA-based system
• UD for communication with clients 

• RC for communication between replicas
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Worker Threads
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t1

Storage

tN

Leader• Design Goals
• Highly-concurrent design

• Avoid sharding the key space among 
threads

• Employs multiple worker threads

• Each thread has its own RDMA resources

• Each thread serves requests for any key
• Run the consensus protocol

• Update the storage

. ..
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Storage Design
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• Design Goals
• Minimize RDMA communication
• Minimize contention between threads

• Storage
• Memory divided into segments
• Each segment stores a set of objects
• A segment is owned by one thread at a time
• One RDMA Write to commit an operation

• Hash Table
• Stores pointers to objects in the storage
• A lock-free linear probing hash table
• Shared between all threads
• One RDMA Write to apply an operation

•  

•  
Metadata
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LoLKV Write Request Path
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• Put operations processing
• Replication phase

• Local apply phase

• Remote apply phase
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One RDMA Write for replication

One async RDMA Write for apply



Replication Phase
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Replication Phase
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Replication Phase
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Replication Phase
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Local Apply Phase
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to its hash table
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table entry

• Terminates probing if
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same key

Used Free



Asynchronous Remote Apply Phase
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• Concurrent writes

• Fault tolerance
• Follower failure

• Leader failure

• Torn writes

• Leader election protocol 

• Garbage collection protocol

• Proof of correctness
• Proof sketch

• TLA+ model checking

LoLKV is a Complete System
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Concurrent Writes to Different Keys
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• Objects are committed in parallel

• Objects are applied in parallel
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• Objects are committed in parallel

• Objects are applied in parallel

• Hash table is updated using CAS

• Handles concurrent access

• If CAS fails, repeat linear probing
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Concurrent Writes to the Same Key
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• Incarnation Array
• Array of atomic counters

• Each Put has an incarnation number



Concurrent Writes to the Same Key
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Concurrent Writes to the Same Key
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Concurrent Writes to the Same Key
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• Incarnation Array
• Array of atomic counters
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Leader Election

• Any replica can become a leader

• The new leader might be stale for some threads

• Different threads replicate operations on different 
majorities

• State synchronization brings the new leader up-to-date
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Evaluation

Alternatives (best configuration per system)

• DARE

• APUS

• Mu

• uKharon

Workloads

• YCSB benchmark

• Different workload skewness

• Different read-to-write ratios

Metrics
• Throughput
• Latency
• Scalability

Testbed
12 machines in CloudLab

• 8-core CPU (2.1 Ghz)
• 16 GB of RAM
• Infiniband network (56 Gbps)
• Mellanox CX3
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• APUS requires two RDMA Writes

• Mu and uKharon require one 
RDMA Write

• DARE requires two RDMA Writes

LoLKV outperforms other systems in terms of throughput and latency

2.6x

YCSB-A (50% Writes)

Uniform Workload



Skewed Workload
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• Uniform write-only workload

• One popular shard

• Control the percentage of 
operations served by that 
shard

LoLKV efficiently handles skewed workloads

U U

Other systems performance decreases with skewness
• Popular shard is overwhelmed



Conclusion

• LoLKV is a low-latency, highly-concurrent, and linearizable object store

• LoLKV adopts a novel logless design
• Eliminates the serialization point
• Eliminates unnecessary memory copy operations 

• LoLKV adopts a novel multi-threaded shard design
• Efficient for both uniform and skewed workloads
• Eliminates resource fragmentation

• LoLKV outperforms state-of-the-art systems
• At least 1.7× higher throughput
• At least 20% lower latency
• Better scalability
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