
1

LoLKV: The Logless, Linearizable, RDMA-based

Key-Value Storage System

Ahmed Alquraan, Sreeharsha Udayashankar, Virendra Marathe,

Bernard Wong, Samer Al-Kiswany

1

Oracle LabsUniversity of Waterloo

Production- quality Key-Value Stores

• Leader-based consensus protocols → Strong consistency

2

Paxos

Viewstamped
Replication

Raft

ZAB

DAREAPUS

Mu

3

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

Leader

Follower 1 Follower 2

W(k3)

Shortcomings of Current Systems

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Write (k3, Z)

Ack

4

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

Leader

Follower 1 Follower 2

W(k3)

Shortcomings of Current Systems

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Write (k3, Z)

Ack

• Log-based replication
• Log is a serialization point
• Unnecessary data copying

5

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

Leader

Follower 1 Follower 2

W(k3)

Shortcomings of Current Systems

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Operation Log

Key-value Store

W(k1) W(k5)

k1
k5
k3

X
Y
Z

W(k3)

Write (k3, Z)

Ack

• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas

Shard 2
Leader

Replica 2

Shard 1
Follower

Shard 3
Follower

6

Shortcomings of Current Systems

Replica 1

Shard 2
Follower

Shard 1
Leader

Shard 3
Follower

Shard 2
Follower

Replica 3

Shard 1
Follower

Shard 3
Leader

• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas

• Multiple single-threaded shards
• Inefficient for skewed workloads
• Resource fragmentation: separate

memory regions per shard

7

LoLKV

• Log-based replication
• Log is a serialization point
• Unnecessary data copying

• All replicas apply committed operations
• Work repetition on all replicas

• Multiple single-threaded shards
• Inefficient for skewed workloads
• Resource fragmentation: separate

memory regions per shard

• A novel logless replication

• Combines replication and apply

• Passive followers

• A novel multi-threaded shard design

A new linearizable RDMA-based KV Store

Shortcomings of Current Systems

Design

8

t1Client

object 1

object 2
...

object K

Hash Table
Segment Store

Storage

tN

Replica 2

Replica 3

Leader

• Leader-based system

• Two main components
• Storage

• Worker threads

• RDMA-based system
• UD for communication with clients

• RC for communication between replicas

. ..
Storage

Segment
Store
Hash
Table

Storage

Segment
Store
Hash
Table

Worker Threads

9

t1

Storage

tN

Leader• Design Goals
• Highly-concurrent design

• Avoid sharding the key space among
threads

• Employs multiple worker threads

• Each thread has its own RDMA resources

• Each thread serves requests for any key
• Run the consensus protocol

• Update the storage

. ..

t1

t1

Segment 1

Segment 2

Segment 3
...

Segment N

Storage Design

10

• Design Goals
• Minimize RDMA communication
• Minimize contention between threads

• Storage
• Memory divided into segments
• Each segment stores a set of objects
• A segment is owned by one thread at a time
• One RDMA Write to commit an operation

• Hash Table
• Stores pointers to objects in the storage
• A lock-free linear probing hash table
• Shared between all threads
• One RDMA Write to apply an operation

•

•
Metadata

object 1
...

object K

Storage
Hash Table

Segment

LoLKV Write Request Path

11

• Put operations processing
• Replication phase

• Local apply phase

• Remote apply phase
t1

Client

object 1

object 2
...

Hash Table
Segment Store

Storage

tN

Replica 2

Replica 3

Leader

. ..
Storage

Segment
Store
Hash
Table

Storage

Segment
Store
Hash
Table

Put
1

3

1 2

3

4

One RDMA Write for replication

One async RDMA Write for apply

Replication Phase

12

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

Put (c)

Used Free

Replication Phase

13

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

sequence 6

Thread 1 Metadata

key

value

seq_num

c

val

6

Used Free

Put (c)

Replication Phase

14

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

c, 6

c, 6

c, 6

Used Free

Put (c)

Replication Phase

15

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

c, 6

c, 6

c, 6

Used Free

Put (c)

Local Apply Phase

16

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

c, 6

c, 6

c, 6

Hash Table

c_ptr

• The leader applies the operation
to its hash table

• Hashes the key to find the hash
table entry

• Terminates probing if
• Finds an empty entry

• Finds an entry pointing to the
same key

Used Free

Asynchronous Remote Apply Phase

17

Metadata

a, 1
...

b, 5

Segment 1

Segment 1

Leader

Replica 3

Metadata

a, 1
...

b, 5

Segment 1

Replica 2

Metadata

a, 1
...

b, 5

t1

c, 6

c, 6

c, 6

Hash Table

c_ptr

• The leader updates followers
hash tables lazily
• Using RDMA Write

Hash Table

Hash Table

c_ptr

c_ptr

Used Free

• Concurrent writes

• Fault tolerance
• Follower failure

• Leader failure

• Torn writes

• Leader election protocol

• Garbage collection protocol

• Proof of correctness
• Proof sketch

• TLA+ model checking

LoLKV is a Complete System

18

Concurrent Writes to Different Keys

19

Leader

Metadata

a, …

b, …

Segment 1

t1

Metadata

w, …

z, …

Segment 2

t2

Put (c)

Put (d)

c, …

d, …

Used Free

• Objects are committed in parallel

• Objects are applied in parallel

20

Leader

Metadata

a, …

b, …

Segment 1

t1

Metadata

w, …

z, …

Segment 2

t2

Hash Table

d_ptr

Used Free

• Objects are committed in parallel

• Objects are applied in parallel

• Hash table is updated using CAS

• Handles concurrent access

c, …

d, …

Concurrent Writes to Different Keys

21

Leader

Metadata

a, …

b, …

Segment 1

t1

Metadata

w, …

z, …

Segment 2

t2

Hash Table

d_ptr

Used Free

• Objects are committed in parallel

• Objects are applied in parallel

• Hash table is updated using CAS

• Handles concurrent access

• If CAS fails, repeat linear probing

c_ptr

c, …

d, …

Concurrent Writes to Different Keys

Concurrent Writes to the Same Key

22

Leader

Metadata

a, …, 50

b, …, 3

Segment 1

t1

Metadata

w, …, 17

z, …, 30

Segment 2

t2

100 115 …

Key range [0, 4096) [4096, 8192) …

Incarnation Number

Put (c)

Put (c)

Used Free

• Incarnation Array
• Array of atomic counters

• Each Put has an incarnation number

Concurrent Writes to the Same Key

23

Leader

Metadata

a, …, 50

b, …, 3

Segment 1

t1

Metadata

w, …, 17

z, …, 30

Segment 2

t2

100 115 …

Key range [0, 4096) [4096, 8192) …

Incarnation Number

Put (c)

Put (c)

Used Free

• Incarnation Array
• Array of atomic counters

• Each Put has an incarnation number

Concurrent Writes to the Same Key

24

Leader

Metadata

a, …, 50

b, …, 3

Segment 1

t1

Metadata

w, …, 17

z, …, 30

Segment 2

t2

100 115 …

Key range [0, 4096) [4096, 8192) …

Incarnation Number

Put (c)

101

c, …, 101

Used Free

• Incarnation Array
• Array of atomic counters

• Each Put has an incarnation number

Concurrent Writes to the Same Key

25

Leader

Metadata

a, …, 50

b, …, 3

Segment 1

t1

Metadata

w, …, 17

z, …, 30

Segment 2

t2

100 115 …

Key range [0, 4096) [4096, 8192) …

Incarnation Number 101102

c, …, 101

c, …, 102

Used Free

• Incarnation Array
• Array of atomic counters

• Each Put has an incarnation number

• Orders Puts for the same key

Leader Election

• Any replica can become a leader

• The new leader might be stale for some threads

• Different threads replicate operations on different
majorities

• State synchronization brings the new leader up-to-date

26

Leader

t1 t2 t3

20 25 35

Replica 2

t1 t2 t3

20 22 35

Replica 3

t1 t2 t3

15 25 31

Stale

Stale Stale

Evaluation

Alternatives (best configuration per system)

• DARE

• APUS

• Mu

• uKharon

Workloads

• YCSB benchmark

• Different workload skewness

• Different read-to-write ratios

Metrics
• Throughput
• Latency
• Scalability

Testbed
12 machines in CloudLab

• 8-core CPU (2.1 Ghz)
• 16 GB of RAM
• Infiniband network (56 Gbps)
• Mellanox CX3

27

(8 shards)

(7 shards)

(4 shards)

(4 shards)

28

• APUS requires two RDMA Writes

• Mu and uKharon require one
RDMA Write

• DARE requires two RDMA Writes

LoLKV outperforms other systems in terms of throughput and latency

2.6x

YCSB-A (50% Writes)

Uniform Workload

Skewed Workload

29

• Uniform write-only workload

• One popular shard

• Control the percentage of
operations served by that
shard

LoLKV efficiently handles skewed workloads

U U

Other systems performance decreases with skewness
• Popular shard is overwhelmed

Conclusion

• LoLKV is a low-latency, highly-concurrent, and linearizable object store

• LoLKV adopts a novel logless design
• Eliminates the serialization point
• Eliminates unnecessary memory copy operations

• LoLKV adopts a novel multi-threaded shard design
• Efficient for both uniform and skewed workloads
• Eliminates resource fragmentation

• LoLKV outperforms state-of-the-art systems
• At least 1.7× higher throughput
• At least 20% lower latency
• Better scalability

30

	Slide 1: LoLKV: The Logless, Linearizable, RDMA-based Key-Value Storage System
	Slide 2: Production- quality Key-Value Stores
	Slide 3: Shortcomings of Current Systems
	Slide 4: Shortcomings of Current Systems
	Slide 5: Shortcomings of Current Systems
	Slide 6: Shortcomings of Current Systems
	Slide 7: LoLKV
	Slide 8: Design
	Slide 9: Worker Threads
	Slide 10: Storage Design
	Slide 11: LoLKV Write Request Path
	Slide 12: Replication Phase
	Slide 13: Replication Phase
	Slide 14: Replication Phase
	Slide 15: Replication Phase
	Slide 16: Local Apply Phase
	Slide 17: Asynchronous Remote Apply Phase
	Slide 18: LoLKV is a Complete System
	Slide 19: Concurrent Writes to Different Keys
	Slide 20: Concurrent Writes to Different Keys
	Slide 21: Concurrent Writes to Different Keys
	Slide 22: Concurrent Writes to the Same Key
	Slide 23: Concurrent Writes to the Same Key
	Slide 24: Concurrent Writes to the Same Key
	Slide 25: Concurrent Writes to the Same Key
	Slide 26: Leader Election
	Slide 27: Evaluation
	Slide 28
	Slide 29: Skewed Workload
	Slide 30: Conclusion

