
IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID 1

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

Accelerating Reads with In-Network
Consistency-Aware Load Balancing

Ibrahim Kettaneh, Ahmed Alquraan, Hatem Takruri, Ali José Mashtizadeh, Samer Al-Kiswany

Abstract—We present FLAIR, a novel approach for accelerating read operations in leader-based consensus protocols. FLAIR

leverages the capabilities of the new generation of programmable switches to serve reads from follower replicas without

compromising consistency. The core of the new approach is a packet-processing pipeline that can track client requests and system

replies, identify consistent replicas, and at line speed, forward read requests to replicas that can serve the read without sacrificing

linearizability. An additional benefit of FLAIR is that it facilitates devising novel consistency-aware load balancing techniques.

Following the new approach, we designed FlairKV, a key-value store atop Raft. FlairKV implements the processing pipeline using

the P4 programming language. We evaluate the benefits of the proposed approach and compare it to previous approaches using

a cluster with a Barefoot Tofino switch. Our evaluation indicates that, compared to state-of-the-art alternatives, the proposed

approach can bring significant performance gains: up to 42% higher throughput and 35-97% lower latency for most workloads.

Furthermore, our evaluation shows that our novel load balancing techniques can cope with heterogeneous load and hardware to

achieve higher performance, and that FLAIR can scale to support large data sets and clusters.

Index Terms—Distributed systems, Load balancing and task assignment, Network Architecture and Design, Reliability

——————————  ——————————

1 INTRODUCTION

R eplication is the main reliability technique for many
modern cloud services that process billions of requests
each day. Unfortunately, modern strongly-consistent rep-
lication protocols [1] – such as multi-Paxos [2], Raft [3], Zab
[4], and Viewstamped Replication (VR) [5] – deliver poor
read performance. This is because these protocols are
leader-based: a single leader replica (or leader, for short)
processes every read and write request, while follower rep-
licas (followers for short) are used for reliability only.

Optimizing read performance is clearly important; for
instance, the read-to-write ratio is 380:1 in Google’s F1 ad-
vertising system [6], 500:1 in Facebook’s TAO [7], and 30:1
in Facebook memcached deployments [8]. Previous efforts
have attempted to accelerate reads by giving read leases [9]
to some [10] or all followers [11]. While holding a lease, a
follower can serve read requests without consulting the
leader; each lease has an expiration period. Unfortunately,
this approach complicates the system’s design, as it re-
quires careful management of leases, imposes long delays
when a follower holding a lease fails, and affects the write
operation as all granted leases need to be revoked before
an object can be modified [11].

Alternatively, many systems support a relaxed con-
sistency model (e.g., eventual [12], [13] or read-your-write
[7], [13], [14]), in exchange for the ability to read from fol-
lowers, albeit the possibility of reading stale data.

In this paper, we present the fast, linearizable, network-accel-
erated client reads (FLAIR), a novel protocol to serve reads from
follower replicas with minimal changes to current leader-based
consensus protocols without using leases, all while preserving

linearizability. In addition to improving read performance,
FLAIR improves write performance by reducing the num-
ber of requests that must be handled by the leader and em-
ploying consistency-aware load-balancing.

FLAIR is positioned as a shim layer on top of a leader-
based protocol (3). FLAIR assumes a few properties of the
underlying consensus protocol: the operations are stored
in a replicated log; at any time, there is at most one leader
in the system that can commit new entries in the log; reads
served by the leader are linearizable; and after committing
an entry in the log, the leader knows which followers have
a log consistent with its log up to that entry. These proper-
ties hold for all major leader-based protocols (Raft [3],
Viewstamped Replication [5], DARE [15], Zookeeper [16],
and multi-Paxos [17], [18]).

FLAIR leverages the power and flexibility of the new
generation of programmable switches. The core of FLAIR
is a packet-processing pipeline (Section 4) that maintains
compact information about all objects stored in the system.
FLAIR tracks every write request and the corresponding
system reply to identify which objects are stable (i.e., not
being modified) and which followers hold a consistent
value for each object, then uses this information to forward
reads of stable objects to consistent followers. Followers
optimistically serve reads and the FLAIR switch validates
read replies to detect stale values. If the switch suspects
that a reply from a follower is stale, it will drop the reply
and resubmit the read request to the leader.

An additional benefit of FLAIR is that it facilitates the
building of novel consistency-aware load balancing tech-
niques. In systems that grant a lease to followers [10], [11],
[19] clients send read requests to a randomly selected fol-
lower. If the follower does not hold a lease, it blocks the
request until it obtains a lease, or it forwards the request to
the leader; either way, this approach adds additional de-
lay. FLAIR does not incur this inefficiency as FLAIR load

————————————————

 The authors are with the David Cheriton School of Computer Science, Uni-
versity of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1.
E-mails: {iskettan, ahmed.alquraan, htakruri}@uwaterloo.ca,
ali@rcs.uwaterloo.ca, alkiswany@uwaterloo.ca

2 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

balances read requests only among followers that hold a
consistent value for the requested object.

Unlike other systems that use switch new capabilities
[20], [21], [22], FLAIR does not rely on the controller to up-
date the switch information after every write operation, as
this approach would add unacceptable delays. Instead,
FLAIR piggybacks control messages on system replies, and
the switch extracts and processes them.

In a nutshell, FLAIR implements a logically simple look-
through metadata cache at a network switch. Write re-
quests invalidate the switch metadata related to the ac-
cessed object, and write replies update the switch
metadata. The switch maintains only a soft state that can
be instantiated by contacting the leader replica.

Despite its simplicity, implementing this approach is
complicated by the limitations of programmable switches
(2) and the complexity of handling switch failures, net-
work partitioning, and packet loss and reordering (4).

To demonstrate the powerful capabilities of the pro-
posed approach, we prototyped FlairKV (Section 6), a key-
value store built atop Raft [3]. We made only minor
changes to Raft’s implementation [23] to enable followers
to serve reads, make the leader order write requests fol-
lowing the sequence numbers assigned by the switch, and
expose leader’s log information to the FLAIR layer. The
packet-processing pipeline was implemented using the P4
programming language [24].

Our evaluation of FlairKV (7) on a cluster with a Bare-
foot Tofino switch shows that FLAIR can bring sizable per-
formance gains without increasing the complexity of the
leader-based protocols or the write operation overhead.
Our evaluation with different read-to-write ratios and
workload skewness shows that FlairKV brings up to 2.8
times higher throughput than an optimized Raft imple-
mentation, at least 4 times higher throughput compared to
Viewstamped Replication, Raft, and FastPaxos, and up to
42% higher throughput and up to 35–97% lower latency for
most workloads compared to state-of-the-art leases-based
design [11], [19].

Compared to our previous work [25], in this paper, we
evaluate three novel load balancing techniques that are
built atop of FLAIR, including random, leader avoidance,
and load awareness. Our evaluation shows that imple-
menting an in-network a load balancing technique that is
aware of the overhead difference between read and write

operations and of heterogeneity of the cluster nodes can
significantly improve performance. Furthermore, we eval-
uate FLAIR’s scalability and show that it can scale to sup-
port large data sets and large clusters without significantly
increasing the system overhead. Finally, we present a de-
tailed proof of the safety of FLAIR.

The performance and programmability of the new gen-
eration of switches opens the door for the switches to be
used beyond traditional network functionalities. We hope
our experience will inform a new generation of distributed
systems that co-design network protocols with systems op-
erations.

2 BACKGROUND

In this section, we present an overview of leader-based
consensus protocols, followed by a look at the new pro-
grammable switches and their limitations.

2.1 Leader-based Consensus

Leader-based consensus (LC) protocols [3], [4], [5], [15],
[17], [18] are widely adopted in modern systems. The idea
of having a leader that can commit an operation in a single
round trip dates back to the early consensus protocols [2],
[26]. Having a leader reduces contention and the number
of messages, which greatly improves performance [2], [17].

LC protocols divide time into terms (a.k.a. views or
epochs). Each term has a single leader; if the leader fails, a
new term starts and a new leader is elected.

Clients send write requests to the leader (1 in Fig. 1). The
leader appends the request to its local log (2) and then
sends the request to all follower replicas (3). A follower ap-
pends the request to its log (4) before sending an acknowl-
edgment to the leader (5). If the leader receives an ac-
knowledgment from a majority of its followers, the opera-
tion is considered committed. The leader applies the
operation to its local state machine (e.g., in memory key-
value store in Fig. 1) in (6), then acknowledges the opera-
tion to the client (7). The leader will asynchronously inform
the followers that it committed the operation. Followers
maintain a commit_index, a log index pointing to the last
committed operation in the log; when a follower receives
the commit notification, it advances its commit_index and
applies the write to its local store.

The replicated log has two properties that make it easy
to reason about: it is guaranteed that if an operation at in-
dex i is committed, then every operation with an index
smaller than i is committed as well; and if a follower ac-
cepts a new entry to its log, it is guaranteed that its log is
identical to the leader’s log up to that entry.

Client read requests are also sent to the leader. In Raft,
the leader sends a heartbeat to all followers to make sure it
is still the leader. If a majority of followers reply, the leader
serves the read form its local store: it will check that all
committed operations related to the requested object are
applied to the local store before serving the request.

A common optimization is the leader lease optimiza-
tion. Instead of collecting a majority of heartbeats for every
read request, a majority of the followers can give the leader
a lease [3], [17]. While holding a lease, the leader serves
reads locally without contacting followers. Unfortunately,

Fig. 1. The path for a write operation.

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 3

even with this optimization, the performance of the leader-
based protocols is limited to a single-node performance.

2.2 Programmable Switches

Programmable switches allow the implementation of an
application-specific packet-processing pipeline that is de-
ployed on network devices and executed at line speed. A
number of vendors produce network-programmable
ASICs, including Barefoot’s Tofino [27], Cavium’s XPliant
[28], and Broadcom Trident 3 [29].

Fig. 2.a illustrates the basic data plane architecture of
modern programmable switches. The data plane contains
three main components: ingress pipelines, a traffic man-
ager, and egress pipelines. A packet is first processed by an
ingress pipeline before it is forwarded by the traffic man-
ager to the egress pipeline that will finally emit the packet.

Each pipeline is composed of multiple stages. At each
stage, one or more tables match fields in the packet header
or metadata; if a packet matches, the corresponding action
is executed. Programmers can define custom headers and
metadata as well as custom actions. Each stage has its own
dedicated resources, including tables and register arrays (a
memory buffer). Fig. 2.b shows a simple example of a pipe-
line that routes a request to a key-value store based on the
key, and Fig. 2.c shows the details of the KV routing stage.
The stage forwards the request based on the key in the
packet’s custom L4 header. The programmer implements
a forward() action that accesses the register array holding
nodes’ IP addresses. An external controller can modify the
register array and the table entries.

Stages can share data through the packet header and
small per-packet metadata (a few hundred bytes in size)
that is propagated between the stages as the packet is pro-
cessed throughout the pipeline (Fig. 2.b). The processing of
packets can be viewed as a graph of match-action stages.

Programmers use domain-specific languages like P4
[30] to define their own packet headers, define tables, im-
plement custom actions, and configure the processing
graphs.
Challenges. While programmable ASICs and their do-

main-specific languages significantly increase the flexibil-
ity of network switches, the need to execute custom actions
at line speed restricts what can be done. To process packets
at line speed, P4 and modern programmable ASICs have
to meet strict resource and timing requirements. Conse-
quently, modern ASICs limit (1) the number of stages per
pipeline, (2) the number of tables and registers per stage,
(3) the number of times any register can be accessed per
packet, (4) the amount of data that can be read/written
per-packet per register, (5) the size of per-packet metadata
that is passed between stages. Finally, modern ASIC’s lack
support of loops or recursion.

3 FLAIR OVERVIEW

FLAIR is a novel protocol that targets deployments in a sin-
gle data center. Fig. 3 shows the system architecture, which
consists of a programmable switch, a central controller,
and storage nodes. Typically, multiple FLAIR instances are
deployed with each serving a disjoint set of objects. For
simplicity, we present a FLAIR deployment with one rep-
lica set (i.e., one leader and its followers).
Clients. FLAIR is accessed through a client library with a
simple read/write/delete interface. Read (get) and write
(put) operations read or write entire objects. The library
adds a special FLAIR packet header to every request, that
contains an operation code (e.g., read) and a key (a hash-
based object identifier).
Controller. Our design targets data centers that use a SDN
network following a variant of the multi-rooted tree topol-
ogy. A central controller uses OpenFlow [31] to manage the
network by installing per-flow forwarding, filtering, and
rewriting rules in switches.

As with previous projects that leverage SDN capabili-
ties [20], [22], [32], [33] the controller assigns a distinct ad-
dress for each replica set. The controller can use a different
switch for different replica sets. The controller installs for-
warding rules to guarantee that every client request for a
range of keys served by a single replica set is passed
through a specific switch (dubbed FLAIR switch); that
switch will run the FLAIR logic for that range of keys. The
controller typically selects a common ancestor switch of all
replicas and installs rules to forward system replies
through the same switch. Only client request/replies are
routed through the FLAIR switch, leader-follower mes-
sages do not have the FLAIR header nor are necessarily

(a) Switch data plane.
(b) Pipeline for routing based on a
hash-based key

(c) Simple match-action stage for routing based on a hash-based key
for the KV routing table in subfigure (b)

Fig. 2. Switch data plane.

Fig. 3. System architecture. The solid arrow shows a client request,
while the dashed arrow show control messages.

4 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

routed through the FLAIR switch.
While this approach may create a longer path than tra-

ditional forwarding, the effect of this change is minimal. Li
et al. [32] reported that for 88% of cases, there is no addi-
tional latency, and the 99th percentile had less than 5 µs of
added latency. This minimal added latency is due to the
fact that the selected switch is the common ancestor of tar-
get replicas and client packets have to traverse that switch
anyway.

This approach naturally facilitates scaling the system to
use multiple switches. The controller can make different
switches serve different replica set, effectively load balanc-
ing the load on multiple switches.
Storage Nodes. The storage nodes run the FLAIR and LC
protocols. Each node runs a FLAIR module. For read re-
quests, before serving a read, followers verify that all com-
mitted writes to the requested object have been applied to
the follower’s local storage.

Write requests are processed by the leader. After a suc-
cessful write operation, the leader passes to the local
FLAIR module the commit index of the write and the list
of followers that accepted the write operation and have a
consistent log up to the commit index. The FLAIR module
encodes this list into a compact bitmap and uploads it and
the commit index to the switch (piggybacked on the write
reply).
Programmable Switch. The switch is a core component of
FLAIR: it tracks every write request and the corresponding
reply to identify which objects are stable (i.e., not being
modified) and which replicas have a consistent value of
each object. If a read is issued while there are outstanding
writes for the target object (i.e., writes without correspond-
ing replies), the read is forwarded to the leader. If a read
request is processed by the switch when there are no out-
standing writes to the requested object, the switch for-
wards the request to one of the followers included in the
last bitmap for the object sent by the leader. Followers op-
timistically serve read requests. The switch inspects every
read reply; if it suspects that a follower returned stale data
(4.4), it will conservatively drop the reply and forward the
request to the leader. FLAIR forwards all writes to the
leader.

FLAIR also includes techniques to handle multiple con-
current writes to the same object (4.3), packets reordering
(4.7), and tolerating switch, node, and network failures
(4.7).

4 SYSTEM Design

FLAIR is based on the following assumptions: the network
is unreliable and asynchronous, as there are no guarantees
that packets will be received in a timely manner or even
delivered at all, and there is no limit on the time a node or
switch takes to process a packet. Clocks are not synchro-
nized. Finally, FLAIR assumes a fail-stop failure model in
which nodes and switches may stop working but will
never send erroneous messages.
FLAIR assumes a few properties of the underlying consen-
sus protocol: the operations are stored in a replicated log;
at any time, there is at most one leader in the system that
can commit new entries in the log; and after committing an

entry in the log, the leader knows which followers have a
log consistent with its log up to that entry. If an operation
at index i in the log is committed, then every operation
with an index smaller than i is committed as well. If a fol-
lower accepts a new entry to its log, then it is guaranteed
that the follower log is identical to the leader’s log up to
that entry.

We note that all major leader-based consensus protocols
(e.g., Raft [3], Viewstamped Replication [5], [34], DARE
[15], Zab [16], and multi-Paxos implementations [17], [35])
hold these properties.

The underlying consensus protocol divides time into
terms. Each term has a single leader; if the leader fails, a
new term starts and a new leader is elected. FLAIR further
divides time into sessions (Fig. 4). During a session the
leader is bonded to a single switch that runs the FLAIR
pipeline. A session ends when a leader fails or the leader
suspects that the switch has failed. An LC term may have
one or more sessions, but a session does not span multiple
terms.

4.1 Network Protocol

Packet format. FLAIR introduces an application-layer pro-
tocol embedded in the L4 payload of packets. FLAIR uses
UDP to issue client requests in order to achieve low latency
and simplify request routing. Communication between
replicas uses TCP for its reliability. A special UDP port is
reserved to distinguish FLAIR packets; for UDP packets
with this port, the switch invokes the FLAIR custom pro-
cessing pipeline. Other switches do not need to understand
the FLAIR header and will treat FLAIR packets as normal
packets. In this way, FLAIR can coexist with other network
protocols.

Fig. 5 shows the main fields in the FLAIR header. We
briefly discuss the fields here (a detailed discussion of the
protocol is presented next):
 OP: the request type. Clients populate this field in the re-

quest packet (e.g., read, or write); replicas populate this
field in the reply packets (e.g., read_reply, write_reply).

 KEY: hash-based object identifier.
 SEQ: a sequence number added by the switch. The switch

increments the sequence number on every write request.
 SID: a unique session id. The <SID, SEQ> combination rep-

resents a unique identifier for every write request.
 LOG_IDX: a log index. In a write_reply, the log index is the

index at which the write was committed. For reads, the
switch populates LOG_IDX to make sure the followers’
logs are committed and applied up to that index.

Fig. 4. FLAIR sessions. Time is divided into terms. Each term starts
with a leader election. Each term has one or more sessions that
start with updating the switch data.

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 5

 CFLWRS: In write_reply, the CFLWRS is a map of the fol-
lowers that have a consistent log up to LOG_IDX.

Following the FLAIR header is the original LC protocol
payload, which includes the value for read/write request.

4.2 Switch Data Structures

To process a read request, the switch performs two specific
tasks (4.4). First, it forwards read requests to consistent fol-
lowers while balancing the load among them. Second, it
verifies the read replies to preserve safety. To perform
these tasks, the switch maintains two data structures: a ses-
sion array and a key group array.
Session array. A single switch typically supports multiple
replica sets (i.e., FLAIR+LC instances) with each set storing
a disjoint set of keys. Each entry in the session array main-
tains the session status for a single replica set. An entry
contains an is_active flag, session id, leader IP address, cur-
rent session sequence number, and the timestamp of the
last heartbeat received from the leader FLAIR module
(dubbed lflair) (Listing 1). When is_active is true, we say the
session is active, which indicates that the session entry and
kgroup array are consistent with the leader’s information.
The switch processes packets using the FLAIR custom
pipeline only if the session is active; otherwise, it will drop
all FLAIR packets, rendering the system unavailable to cli-
ents until the switch can reach the lflair module and sync
its session entry and key group array.
Key group (KGroup) array. To decide if followers can
serve a certain read request, the switch needs to maintain
information about which followers have the latest commit-
ted value of every object. Maintaining such information in
the switch ASIC’s memory is not feasible; instead, FLAIR
groups objects based on their key and maintains aggregate
information per group. We use the most significant k bits
of the key to map an object to a key group (kgroup).

Every FLAIR+LC instance has a dedicated kgroup ar-
ray. Each entry in the array (Listing 1) contains the status
of a single kgroup, including an is_stable flag that indicates
if all objects in the kgroup are stable. If a kgroup is not sta-
ble (is_stable is false), this indicates that at least one object
in the kgroup is being modified (i.e., has an outstanding
write in the system). The array entry also includes the se-

quence number (seq_num) of the last write request pro-
cessed by the switch for any object in the kgroup, the log
index (log_idx) of the last successful write to any object in
the kgroup, and the consistent_followers bitmap pointing to
all followers that have a consistent log up to log_idx.

4.3 Handling Write Requests

To issue a write request, a client populates the OP and KEY
fields of the FLAIR packet header and puts the value in the
payload, then sends the request.

When the switch receives the request, it will mark the
corresponding kgroup entry as unstable. The switch will
increment the session_seq_num in the session array and use
it to populate the sequence number (seq_num) in the
kgroup entry and the sequence number (SEQ) in the request
header. Finally, the switch populates the session id (SID)
field in the header and forwards the request to the leader.

The lflair module will verify that the session id is valid
and will pass the write request to the leader. The leader
verifies that the <SID, SEQ> combination is larger than the
<SID, SEQ> number of any previous write request it ever
received, else it will drop the packet. The LC leader will
process the write request following the LC protocol (2.1): it
will replicate the request to all followers, and when a ma-
jority of followers acknowledge the operation, the write
operation is considered committed. A follower will
acknowledge a write operation only if its log is identical to
the leader’s log up to that entry.

For the write reply, the leader will pass the following to
the lflair module: the LC protocol payload for the write_re-
ply, the log index at which the write was committed, and
the list of followers that acknowledged the write. The lflair
module will create the write reply packet with the leader
provided payload, and will populate the LOG_IDX and the
bitmap of the consistent followers (CFLWRS) using the in-
formation provided by the leader. lflair module populates
the sequence number (SEQ) in the write_reply header using
the SEQ of the corresponding write request. The lflair mod-
ule then sends the write_reply packet.

The switch will process the write_reply header and ver-
ify its session id. The switch will compare the sequence
number (SEQ) of the reply to the sequence number
(seq_num) in the kgroup entry; if they are equal, this signi-
fies that no other write is concurrently being processed in
the system for any object in the kgroup. Consequently, it
will update the log_idx and the consistent_followers fields in
the kgroup entry using the values in the write reply. Then
it will mark the kgroup stable and forward the reply to the
client.

If the sequence number in the reply is smaller than the
sequence number in the kgroup entry, this indicates that a
later write to an object in the same kgroup has been pro-
cessed by the switch. In this case, the switch forwards the
write reply to the client without modifying the kgroup en-
try. The kgroup entry remains unstable until the last write
(with a SEQ number in the write_reply equal to the seq_num
in the kgroup entry) is acknowledged by the leader.

In a nutshell, the switch acts as a look-through metadata
cache. Write requests invalidate the switch metadata re-
lated to the accessed kgroup, and write replies update the

Fig. 5. FLAIR packet format.

SessionArrayEntry {
bit<1> is_active;
bit<32> session_id;
bit<32> leader_ip;
bit<64> session_seq_num;

 bit<48> heartbeat_tstamp;

}

KGroupArrayEntry {
bit<1> is_stable;
bit<64> seq_num;
bit<64> log_idx;
bit<8> consistent_followers;

}

Listing 1. Session and kgroup entries. The numbers indicate the field
size in bits.

6 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

kgroup metadata at the switch. An additional advantage
of this approach is that by hosting a simple cache at the
switch we can consistently load balance reads across fol-
lowers without substantially effecting complexity.

4.4 Handling Read Requests

Clients fill the OP and KEY fields of the FLAIR header and
send the request. When the switch receives the request, it
will check the kgroup entry. If the entry is stable, the
switch will fill the sequence number (SEQ) and log index
(LOG_IDX) header fields using the values in the kgroup en-
try. Then it will forward the request to one of the followers
indicated in the consistent_followers bitmap. 6.2 details our
load balancing techniques.

If the kgroup entry is not stable, the switch forwards the
read request to the leader. We note that there is a chance
for false positives in this design, as a single write will ren-
der all the objects in the same kgroup unstable. This is a
drawback of maintaining information per group of keys.
This inefficiency is incurred by leases-based protocols as
well, as they maintain a lease per group of objects.

When a follower receives a read request, the follower’s
FLAIR module validates the request, then calls
advance_then_read(LOG_IDX, key) routine, which compares
the follower’s commit_index to LOG_IDX. If the commit_in-
dex is smaller, the follower advances its commit_index to
equal LOG_IDX, apply all the log entries to the local store,
then serve the read request. The FLAIR module will popu-
late the read_reply header; for the SEQ and SID fields, it will
use the values found in the read request header.

We note that it is safe to advance the follower’s com-
mit_index to match the LOG_IDX in the read request, as the
switch forwards read requests to a follower only if the
leader indicates that all entries in the log up to that log in-
dex are committed, and that this specific follower is one of
the replicas that have a log consistent to the leader’s log up
to that index. We discuss FLAIR correctness in 5 .

When the switch receives a read_reply from a follower,
it validates the session id, then verifies that the SEQ number
of the read_reply equals the seq_num of the kgroup entry.
If the sequence numbers are not equal, this signifies that a
later write request was processed by the switch and there
is a chance the follower has returned stale value. In this
case, the switch drops the read_reply, generates a new read
request using the KEY field from read_reply packet, and
submits the read request to the leader. If the sequence
number of the reply equals the sequence number in the
kgroup entry, the switch forwards the reply to the client.

If a read request is forwarded to the leader, the lflair
module verifies the session id, then calls advance_then_read
(LOG_IDX, key). The switch verifies that the leader reply is
valid (i.e., has the correct session id) before forwarding it
to the client.

4.5 Load Balancing

FLAIR facilitates designing load balancing policies that are
data consistency aware. We designed three such load bal-
ancing techniques that choose which replica from the list
of consistent replicas will serve a read request.
 Random. This technique selects a replica to serve a read

request in random fashion from the list of consistent fol-
lowers.

 Leader avoidance. Our benchmarking revealed that the
write operation takes 35 times longer than a read opera-
tion; most of this overhead is borne by the leader. Con-
sequently, this load-balancing technique avoids sending
read requests to the leader for stable kgroups if there are
any writes in the system. The aim is to reduce the leader
load, as it is already busy serving writes and serving
reads for unstable kgroups.
We can detect if a leader is serving any writes by com-
paring the sequence number of a write_reply with the
session_seq_num. If they are not equal, then there are
pending writes in the system and the leader should not
be burdened with any reads to stable kgroups.

 Follower load awareness. This technique distributes the
load across followers proportionally to their load in the
last n seconds. This technique is especially useful for de-
ployments that use heterogeneous hardware, experience
workload variations, or deploy more than one replica
(i.e., for different key ranges) on the same machine.

4.6 Session Start Process

On the start of a new session, the lflair module reads the
last session id from the LC log, increments it, and commits
the new session id to the LC log. Then the lflair module
asks the central controller for a new switch. The central
controller neutralizes the old switch (making it drop all
FLAIR packets) and reroutes FLAIR packets to a new
switch, then confirms the switch change to the lflair mod-
ule. This step guarantees that at any time at most one
FLAIR switch is active. The lflair module updates the ses-
sion entry (Listing 1) at the switch with the current leader
IP and session id. For each new session, session_seq_num is
reset to zero.
Populating the kgroup array. The lflair module maintains
a copy of the kgroup array similar to the one maintained
by the switch. If the leader did not change between ses-
sions (e.g., the session change is due to switch failure), the
kgroup array at the lflair module is up-to-date. The lflair
module will set the seq_num entry in all kgroup entries to
zero (equal to the session_seq_num in the session entry),
and upload it to the switch.

If the kgroup array at the lflair module is empty – for
instance, after electing a new leader – the lflair module will
query the leader for three pieces of information: its com-
mit_index, the list of followers with the same commit_in-
dex, and a list of all uncommitted operations in the log (i.e.,
the operations after the commit_index in the log). The list
of uncommitted operations is typically small, as it only in-
cludes operations that were received before the end of the
last term but were not committed yet. The lflair module
will traverse the list of uncommitted writes and mark their
target kgroup entries unstable. For all other kgroup entries,
the lflair module will mark them stable and set their
seq_num to zero, log_idx to the leader’s commit_index, and
consistent_followers to include all the followers that have
the same commit_index as the leader’s. After updating the
session entry and the kgroup array at the switch, the lflair
module activates the switch session (sets is_active to true).

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 7

4.7 Fault Tolerance

Follower Failure. We rely on the LC protocol to handle fol-
lower failures. To avoid sending read requests to a failing
follower, the leader notifies the lflair module when it de-
tects the failure of a follower. The lflair module removes the
follower from the switch-forwarding table (3).
Leader Failure. On leader failure, a new leader is elected
and a new term starts. The new leader informs the lflair
module of the term change; and the lflair module starts a
new session (3).

The lflair module sends periodic heartbeats to the
switch. Upon receiving a heartbeat, the switch determines
whether it is from the current session. If the heartbeat is
valid, the switch updates the heartbeat_timestamp in the
session array and replies to the lflair module.
Switch Failure. If the lflair module misses three heartbeats
from the switch, the lflair module will suspect that the
switch has failed and will start a new session (4.5). For ef-
ficiency (i.e., does not affect safety), if the switch misses
three heartbeats from the leader, it will deactivate the ses-
sion.
Network Partitioning. If a network partition isolates the
switch from the leader, the leader treats it as a failed
switch, as detailed above. If a network partition isolates the
switch from a follower, read requests forwarded to the fol-
lower will time out and the client will resubmit the request.
This failure affects performance, but not correctness. Upon
determining that a follower is not reachable, the leader re-
moves it from the forwarding table, as in the case of the
failed follower described above.
Packet Loss. If a read or write request is lost, the client
times out and resubmits the request. If a write reply is lost
before reaching the switch, the kgroup entry will remain
unstable until a new write operation to any key in the
kgroup succeeds. While the kgroup entry is not stable, all
read requests are forwarded to the leader.
Packet Reordering. It is critical for FLAIR’s correctness
that the leader processes write requests in the same order
that they are processed by the switch. Every write opera-
tion gets a unique <SID, SEQ> number. The switch marks a
kgroup entry unstable until the leader replies to the last
write issued for a key in the kgroup. Consequently, if the
leader processes the requests out of order, the switch will
incorrectly mark a kgroup stable while the out-of-order
writes modify its objects. To prevent this scenario, the
leader keeps track of the largest <SID, SEQ> it has ever
processed and drops any write request with a smaller
number. While session numbers (SIDs) are maintained in
the log, the largest processed sequence number is retained
in memory. If the leader fails, the new leader starts a new
session, increments the session id (SID), and sets the session
sequence number (SEQ) to zero.

5 CORRECTNESS
FLAIR only adds the ability to serve reads from followers.
In this section we present an informal discussion of the
safety of the read operations in FLAIR. Furthermore, we
used the TLA+ model checking tool to verify the FLAIR
correctness. The TLA specification is available in our tech-
nical report [36].

FLAIR processes read and write requests only when the
switch is in an active state. We say the switch is active if it
has an active leader-switch session, meaning the leader
and the switch did not miss three consecutive heartbeats
from each other. This signifies that the switch information
is up-to-date with the lflair module’s information. We first
discuss safety during the active state then we discuss the
safety during failure scenarios.

5.1 Safety during an Active Session

The correctness condition for reads is that the value re-
turned by FLAIR is identical as if the read was served by
the leader. This is guaranteed using the following two
steps.

First, the switch only forwards read requests to follow-
ers when the kgroup entry is stable. The switch assigns a
unique and strictly increasing sequence number for every
write request. The switch keeps track of the sequence num-
ber of the last write operation in the wlseq field in the
kgroup entry. The leader processes writes in an increasing
order of sequence numbers. The leader ignores write re-
quests with a sequence number smaller than the sequence
number of the last write it received. The leader includes the
sequence number of the write request in the write reply.

We say a kgroup is stable if the switch receives a write
reply with a sequence number equal to wlseq. This signifies
that there are no on-the-fly writes in the system that can
change an object’s value since the leader processes requests
in the order of sequence numbers. Hence, the last leader-
provided consistent_followers bitmap points to followers
that have the last committed value for every object in the
kgroup. The kgroup stays in the stable state until the
switch receives a write request for an object in the kgroup,
then the kgroup becomes unstable.

If a kgroup is stable, FLAIR may forward read requests
to one of the replicas included in the last leader-provided
consistent_followers bitmap. Since this is the last list pro-
vided by the leader and there are no later writes in the sys-
tem, all followers in the list are consistent with the leader
for this kgroup and will serve values identical to the value
at the leader.

Second, after forwarding a read request to a follower
(say, follower A), the switch may receive a write request
that modifies the object. The leader may replicate the write
request to a majority of nodes that does not include A. If
the leader processes the write request before A serves the
read request, A will return stale data. To avoid this case,
followers include in the read reply the last sequence num-
ber that modified a kgroup. The switch performs a safety
check on every read reply coming from followers: it veri-
fies that the kgroup is still stable, and that the sequence
number in the read_reply is equal to the sequence number
in the kgroup entry. If the sequence numbers do not match
(which indicates that there are later writes to objects in the
kgroup), the switch resends the read request to the leader.

5.2 Safety under Failure Scenarios

Leader Failure. If a leader fails, the switch misses three
heartbeats from the leader and changes to an inactive state.
The switch drops all FLAIR requests during the inactive

8 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

state rendering the system unavailable. When a new leader
is elected, it will send heartbeats with a new leader_ip and
session_id. The switch will detect that this is a new leader
and will start the session startup process before entering
an active state.

Switch Failure. If a switch fails, a new switch will be se-
lected to run the FLAIR pipeline (4.6). The switch starts in
an inactive state. The session start process syncs the switch
with the leader before switching to active state.

Packet Loss. Two packets modify the switch metadata:
write requests and replies. If a write request is dropped af-
ter it was processed by the switch, a client will eventually
time out and repeat the request. The kgroup stays unstable
until a new write is received and processed. Consequently,
this only impacts performance but not safety. If a write re-
ply packet is dropped before reaching the switch, the
kgroup will stay unstable until a future write is processed.
Again, this only affects performance, not safety.

Follower Failure. If a follower fails while processing a read
request, the client will time out and repeat the read request.
The resubmitted request is handled as a new request. All
other follower failure scenarios are handled by the under-
lying consensus protocols.

6 IMPLEMENTATION
To demonstrate the benefits of the new approach, we pro-
totyped FlairKV, a FLAIR-based key-value store built atop
Raft [23]. We chose Raft due to its adoption in production
systems and the availability of standalone production-
quality implementations [37].

6.1 Storage System Implementation

We have implemented FlairKV, including all switch data
plane features, the FLAIR module, leaders’ and followers’
modifications, and the client library. We extended the
Raft’s follower code to implement an advance_then_read()
function. We extended the leader to notify the lflair mod-
ule as soon as it gets elected, and to extract its commit_in-
dex, the list of followers with a commit_index equal to the
leader’s commit_index, and the list of uncommitted writes.
We extended the write reply with the list of followers
which acknowledged the write. We implemented the
leader lease optimization [3], [17] and modified Raft’s cli-
ent library to add the FLAIR header to client requests.

6.2 Switch Data Plane Implementation

The switch data plane is written in P4 v14 [24] and is com-
piled for Barefoot’s Tofino ASIC [27], with Barefoot’s
P4Studio software suite [38]. Our P4 code defines 30 tables
and 12 registers: six for the session array and six for the
kgroup array. The kgroup array has 4K entries. Larger
number of kgroups had negligible effect on performance.
In total, our implementation uses less than 5% of the on-
chip memory available in the Tofino ASIC, leaving ample
resources to support other switch functionalities or more
FlairKV instances. The rest of this section discusses optimi-
zations implemented in FlairKV to cope with the strict tim-
ing and memory constraints of P4 and switch ASIC.
Heartbeats implementation. The leader and the switch ex-
change periodic heartbeats. If the switch misses three
heartbeats from the leader, the switch deactivates the ses-
sion. Instead of running a process in the controller to con-
tinuously track heartbeats, the switch monitors missed
heartbeats as part of the validation step in the processing
pipeline. The switch keeps track of the timestamp of the
last heartbeat received in the session array (Listing 1).
When processing any FLAIR packet, the switch computes
the difference between the current time and the last heart-
beat timestamp; if the difference is larger than three heart-
beats, the switch deactivates the session, making the sys-
tem unavailable until the leader starts a new session.

Forwarding logic translates the consistent followers’
bitmap to follower IP addresses. Storing the IP addresses
of consistent followers for every entry in the kgroup array
significantly increases the memory footprint. Moreover,
randomly selecting a follower from the list while avoiding
inconsistent ones is tricky given the P4 and current ASIC
challenges (2.2). Instead, the FlairKV leader encodes the
follower status in a one-byte consistent_followers bitmap
(Listing 1). Replicas are ordered in a list. If the least signif-
icant bit in the consistent_follower bitmap is set, this indi-
cates that the first replica in the list is consistent, and so
forth.

When forwarding a read request, the switch translates
the encoded bitmap of consistent followers to select one
follower; Fig. 6 shows the translation process. The con-
sistent_followers bitmap is used as an index to the transla-
tion table. Each entry in the table has an action that ran-
domly selects a number that is then used as an index to the
IP addresses table.

This design has two benefits: it significantly reduces the
memory footprint of the kgroup array, and it can be accel-
erated using P4 “action profiles” [39].
Load balancing. In our implementation of the follower
load awareness load balancing technique followers report
the length of the request queue in every heartbeat. Every
second, the leader calculates the average queue length for
each follower and assigns proportional weights to each fol-
lower. The leader updates the translation table (Fig. 6) to
reflect these weights. For instance, if follower 1 should re-
ceive double the load of any other replica, the action for a
bitmap 00111 will be rand(1, 1, 2, 3), doubling the chance
replica 1 is selected.

Fig. 6. Logical view of the forwarding logic. The stability bitmap
matches an entry in the translation table and executes the corre-
sponding action, generating an index of the selected destination’s IP
address. Using the index, the IP address table sets the destination’s
IP address in the metadata.

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 9

Register access logic. Each stage has its own dedicated
registers, and a register can be accessed only once in a
stage. This restriction complicates FlairKV’s logic, as dif-
ferent packet types (e.g., read and write_reply) must access
the same registers at different stages in the pipeline. To
cope with this restriction, FlairKV adds a dedicated table
to access each register. Fig. 7 shows an example of an action
table for accessing register r1. Our code aggregates the in-
formation about all possible modes of accessing r1 in the
packet’s metadata, including the access type (read or
write), the index, and which data should be written or
where the value should be read to. We then use a dedicated
match-action table (Fig. 7) to perform the actual read or
write operation to/from the register in a single stage with
a single invocation of the table. This approach has the ad-
ditional benefit of reducing the number of stages.
Processing concurrent requests. The switch processes
packets sequentially in a pipeline. Each pipeline stage pro-
cesses one packet at a time. The switch may have multiple
pipelines, each serving a subset of switch ports. FLAIR
uses a single ingress pipeline and all egress pipelines. If a
FLAIR packet is received on a different ingress pipeline,
the packet is recirculated [39] to the FLAIR pipeline.

7 EVALUATION
We compare our prototype with previous approaches in
terms of throughput and latency (7.1) with different work-
load skewness and read/write ratios (7.2). Then, we eval-
uate FLAIR’s performance under different failure scenar-
ios (7.3), scalability (7.4), load-balancing performance (7.5),
and performance with larger data sets (7.6).
Testbed. We conducted our experiments using a 13-node
cluster. Each node has an Intel Xeon Silver 10-core CPU, 48
GB of RAM, and 100 Gbps Mellanox NIC. The nodes are
connected to an Edgecore Wedge 100 ×32BF switch with 32
100 Gbps ports. The switch has Barefoot’s Tofino ASIC,
which is P4 programmable. Unless otherwise specified,
three machines ran the server code, while the other 10 ma-
chines generated the workload.
Alternatives. We compare the throughput and latency of
the following designs and optimizations:
 Leader-based. We used two leader-based protocol im-

plementations: LogCabin [23] and Viewstamped Repli-
cation (VR) [40].

 Optimized Leader-based (Opt. Raft). Our benchmarking
revealed that the original Raft implementation could not

utilize the resources of our cluster. We implemented two
main optimizations: first, we changed the request-pro-
cessing logic from an event-driven to a thread-pool de-
sign, as our benchmarking indicated a thread-pool per-
forms better; second, we implemented the leader-lease
optimization. These changes significantly improved
Raft’s performance.

 Fast Paxos. An alternative to the leader-based design is
the quorum design. Client read requests are sent to all
followers, and each follower responds directly to the cli-
ent. The client waits for a reply from a supermajority [41]
before completing a read. We used a Fast Paxos imple-
mentation that implements only the normal case [40].

 Follower-lease optimization (FLeases). Similar to Meg-
aStore [11], the leader grants read leases to all followers.
Before serving a write, the leader revokes all leases, pro-
cesses the write operation, and then grants a new lease
to followers. The lease’s grant/revoke messages are pig-
gybacked on the consensus protocol messages. How-
ever, writes should be processed by all followers before
replying to the client. In our experiments, if a follower
receives a read request for an object for which it does not
have an active lease, it forwards the request to the leader.
MegaStore applications typically partition the keys into
groups, each group contains logically-related keys [11]
(e.g., a key group per blog [11]). We partitioned the keys
into 4K groups (the same number of kgroups in
FlairKV), and followers get a lease per group. Clients
randomly select a follower for each read request and
send the request directly to it.

 Unreplicated/NOPaxos (Unrep.). We use an unrepli-
cated Optimized-Raft on a single node as a baseline. The
single node stores the data set and serves all operations
without replication. This configuration also represents
the best possible performance of the network-optimized
NOPaxos [32] protocol. NOPaxos uses a network switch
to order and multicast operations to all replicas. An op-
eration is successful if the majority accepts a write or re-
turns the same value for a read. Consequently, NOPaxos
read performance is limited by the slowest node in the
majority of nodes. NOPaxos evaluation shows that the
best throughput and latency the protocol can achieve are
within 4% of an unreplicated system [32].

 FlairKV. Unless otherwise specified, we used FlairKV
with the leader-avoidance load-balancing technique.

We benchmarked every system and selected a configura-
tion that maximized its performance. We stored all data in
memory. In all experiments, all systems’ performance
(with the exception of FastPaxos) was stable with a stand-
ard deviation less than 1%.

Fig. 7. Register access table. P4 code aggregates access infor-
mation that is used by a dedicated register access table.

10 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

Workload. We used synthetic benchmarks and the YCSB
benchmark [42] to evaluate the performance of all systems.
In our evaluation, we considered both uniform and
skewed workloads. The skewed workload follows the Zipf
distribution with a skewness parameter of 0.99. We present
our results with a data set of 100,000 keys. We present our
results with two additional data sets, 1 million and 4 mil-
lion keys, in 7.6. The key size is 24 bytes, and the hash of
the key string is used as the key in the FLAIR protocol. The
value size is 1 KB.

7.1 Performance Evaluation

We compared the seven systems using YCSB workload B
(95:5 read:write ratio) while varying the number of clients,
with uniform and skewed workload distribution. Fig. 8
shows the throughput and average latency with a uniform
distribution. FlairKV achieves up to 42% higher through-
put and 23.7% lower average latency than FLeases, and 1.3
to 2.1 times higher throughput and 1.5 to 2.4 times lower
latency compared to optimized Raft and unreplicated
setup. Fast Paxos, Raft, and VR, achieve the lowest
throughput and highest latency as these systems contact
the majority of nodes for every read. FlairKV performance
has a similar pattern under skewed workloads [25].

FlairKV achieves better performance than FLeases for
three reasons. First, FlairKV uses the leader-avoidance
load-balancing technique, which reduces the load on the
leader when there are writes, thereby accelerating writes
and shortening the time period in which kgroups are
marked unstable. This approach is effective as writes take
almost 35 times longer than reads in Opt.Raft, and 30 times

longer in the unreplicated setup. We recorded the number
of read requests served by the leader. For instance, with
300 clients (Fig. 8.a) the leader served 2% of the reads in
FlairKV (those are reads to unstable kgroups), while it
served 34% of the reads in FLeases. We note that the
leader-avoidance technique cannot be applied to FLeases
which tasks the clients with selecting a follower to send the
read request to. This technique requires accurate infor-
mation about the current load of the leader and which fol-
lowers are stable which are not available to clients.

Second, in FLeases, when an object is not stable, if a cli-
ent sends a request to a follower, the follower will redirect
the request to the leader, increasing overhead and incur-
ring extra latency. Unlike FLeases, FlairKV switch knows
if an object is not stable and forwards read requests for that
object directly to the leader. The third reason which had a
minor impact when using three replicas is that the write
operation in FLeases needs to reach all followers, while
FlairKV writes only need a majority.

Optimized-Raft’s performance is better than that of
Raft, VR, and FastPaxos. The unreplicated deployment
slightly improves throughput and latency over Optimized-
Raft by avoiding the replication overhead for write opera-
tions. These two systems still lag behind FlairKV as they
only utilize a single node (the leader) for serving all reads
and writes.

We note that all systems have a dip in the throughput
curve at high number of clients. This is a side effect of using
a thread-per-request server design which has a high over-
head with large number of clients. Using a thread-pool de-
sign should eliminate this performance dip.
Latency evaluation. Fig. 9.a shows the latency CDF of
FlairKV, FLeases, OptRaft, and Raft. Under the uniform
workload B with 300 clients (other workloads had similar
results). FlairKV lowered the latency for the slowest 40%
requests by at least 38% relative to FLeases. Under the Zip-
fian workload (Fig. 9.b), FlairKV lowered the slowest 50%
of request by up to 35% relative to FLeases.

FLeases has higher latency as it incurs extra delay due
to the load imbalance between nodes (e.g., the leader
serves 41% of requests for workload B with Zipf distribu-
tion) and due to followers redirecting 4% of requests to the
leader.

Under all workloads, FlairKV significantly improved
operation’s latency relative to Opt.Raft and Raft. The me-
dian latency of FlairKV is 2% of Raft’s latency and 2-8% of
OptRaft’s latency.

7.2 Workload Variations

We measured the impact of two workload variations:
skewness (Fig. 10) and read/write ratios (Fig. 11). We vary
the Zipfian constant from 0.5 to 0.99. FlairKV consistently
achieves better performance: 1.26 to 2.25 times higher
throughput and 1.13 to 2.48 times lower average latency
compared to all other systems.

Our evaluation with different read to write ratios (Fig.
11) shows that FlairKV has up to 1.5 times higher through-
put for all read to write ratios, with the exception of the
read-only workload in which their performance is compa-

 (a) Throughput - Uniform (b) Latency-Uniform
Fig. 8. Throughput and Latency while varying the number of clients
for workload B for the uniform distribution

(a) B-Uniform (b) B-Zipf

Fig. 9. Latency CDF. The figures show the latency CDF for reads
under workload B using 300 clients with a uniform distribution (a), and
a Zipf distribution with skewness of 0.99 (b). The lines for Opt. Raft
and Unrep. almost overlap.

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 11

rable. FlairKV has 1.25 to 2.8 times higher throughput com-
pared to the Opt. Raft. Compared to the unreplicated
setup, FlairKV has up to 2.8 times higher throughput for
workloads with 70% reads or more and a comparable per-
formance under write heavy workloads (read ratio 50-
70%).

7.3 Fault Tolerance

To demonstrate FlairKV fault tolerance techniques, we
measured the system throughput using workload C under
three failure scenarios: switch, leader, and follower failure.
Switch Failure. We ran FlairKV at peak throughput for 35
seconds (Fig. 12). At the 10s mark, the controller emulated
a switch failure by wiping out the switch registers and in-
stalling rules to drop switch heartbeats. After missing 3
heartbeats, the leader suspects that the switch has failed
and starts a new session. During this process, the switch is
inactive, which causes the throughput to drop to zero for
750ms. Afterwards, the switch resumes normal operations.
Leader Failure. Fig. 13 shows FlairKV throughput during
the leader failure. We ran FlairKV at peak throughput for
35 seconds. At the 10s mark, we kill the leader process.
Write requests fail, but the switch continues to forward
read requests to followers. After missing 3 heartbeats the
switch deactivates the session, and the throughput drops
to zero. After 6 heartbeats, the followers elect a new leader
that starts a new session. The system resumes its operation
with one leader and one follower.
Follower Failure. We ran FlairKV at peak throughput for
35 seconds (Fig. 14). At the 10s mark, we kill a follower
process. This causes a drop in throughput as fewer replicas

are available to serve read requests. The switch keeps for-
warding client requests to the failed follower until the
leader updates the switch. The dip in throughput at the
second 10 is because we use closed-loop clients and some
of the clients block waiting for the failed replica before tim-
ing out and retrying. Afterwards, the system throughput
drops by 33% due to the loss of one follower.

7.4 Scalability

To demonstrate FlairKV scalability, we measured the sys-
tem throughput using a read-only YSCB workload C while
varying the number of replicas (Fig. 15). The figure shows
that FlairKV throughput scales linearly with the number of
replicas, reaching 5.4 million request per second with 6 fol-
lowers. We notice that the system achieves much higher
performance under the read-only workload mainly due to
the lower operation overhead (as writes take 35 times
longer than reads even without accounting for the replica-
tion overhead). FlairKV is almost perfectly scalable, it only
deviates by 1.1% from perfect linearly scalable perfor-
mance.

(a) Throughput (b) Read latency
Fig. 10. Throughput and Latency while varying skewness. The figures show the throughput (a) and the
average latency (b) for different zifpian constants for a uniform workload B with 300 clients.

Fig. 11. Throughput while varying read
ratio. Using uniform workload B

Fig. 12. Throughput during a switch failover. Fig. 13. Throughput during leader failover. Fig. 14. Throughput during a follower failure.

Fig. 15. FlairKV scalability with different number of replicas

0

1

2

3

0 5 10 15 20 25 30 35

Th
ro

u
gh

p
u

t
(M

 o
p

s/
se

c)

Time (sec)

0

1

2

3

0 5 10 15 20 25 30 35

Th
ro

u
gh

p
u

t
(M

 o
p

s/
se

c)

Time (sec)

0

1

2

3

0 5 10 15 20 25 30 35

Th
ro

u
gh

p
u

t
(M

 o
p

s/
se

c)

Time (sec)

12 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

7.5 Load-balancing Performance Evaluation

We measured the system throughput using the following
three configurations of FlairKV (detailed in 6.2)
 FlairKV-Rand selects a follower or the leader at random.

Consequently, read requests for stable kgroups are uni-
formly spread across the followers and the leader.

 FlairKV-LA applies the leader-avoidance technique.
 FlairKV-LA+FL uses both leader-avoidance and follower

load-awareness techniques.
The FlairKV-LA+FL awareness technique (6.2) helps in

deployments with heterogeneous hardware and load vari-
ance between followers. To emulate a heterogeneous plat-
form, we manually reduced the CPU frequency for one fol-
lower by 10%.

FlairKV-LA avoids the leader when it is busy serving
write requests. To measure the efficiency of this approach
we measure the system throughput with workload B that
has 5% writes with uniform key popularity distribution.
The results (Fig. 16.a) show that FlairKV-LA brings 40%
higher throughput than FlairKV-Rand. This is due to
avoiding the leader that becomes overloaded when receiv-
ing write requests. This reduces the load on the leader, con-
sequently it accelerates write operations and reduces the
period in which kgroups are marked unstable. FlairKV-
LA+FL had comparable performance to FlairKV-LA as
nodes are homogenous.

We run the same experiment on the emulated hetero-
geneous setup. Fig. 16.b shows the throughput of the dif-
ferent load balancing techniques. FlairKV-LA and FlairKV-
LA+FL send majority of the reads to the two followers.
Since one of the followers is slower the total system
throughput is reduced. Nevertheless, FlairKV-LA+FL

achieves 17% higher throughput than FlairKV-Rand and
3% higher throughput than FlairKV-LA. The negligible im-
provement over FlairKV-LA is because the high overhead
of the write operations.

To eliminate the write operation overhead, we com-
pared the systems’ throughput with the read only work-
load C with a uniform distribution on the emulated heter-
ogeneous setup (Fig. 16.d). FlairKV-LA+FL brings 17%
higher throughput compared with the other two tech-
niques, because it distributes the load proportionally to the
node’s request queue length. Furthermore, we noticed that
FlairKV-LA+FL reduces latency by 10%. FlairKV-LA and
FlairKV-Rand are equivalent under the read-only work-
load, because they distributed the load equally across the
nodes. Fig. 16.c shows that under a read-only workload
with a homogenous hardware, all load-balancing tech-
niques achieve similar throughput.

7.6 Different Number of Keys

We compared the performance of FlairKV against FLeases
using YCSB B workload (95:5 read:write ratio) while vary-
ing the number of keys in the system from 100K to 4M
keys. Fig. 17 shows the throughput and the average latency
with uniform and skewed workloads. For the uniform
workload (Fig. 17.a and 17.c), FlairKV achieves up to 45%
higher throughput and up to 51% lower latency compared
to FLeases when using 4M keys. For the skewed workload
 (Fig. 17.b and Fig. 17.d), FlairKV achieved up to 21%
higher throughput and up to 23% lower latency compared
to FLeases when using 4M keys. We note that the perfor-
mance of FlairKV and FLeases degrades slightly with
larger data sets. For instance, FlairKV’s has 10% lower
throughput when storing 4M objects compared with when

 (a) (b) (c) (d)

Fig. 16. Throughput using different load-balancing techniques. (a) Uses workload B without slowing any follower. (b) Uses workload B and
slows one follower. (c) uses workload C without slowing any follower. (d) Uses workload C and slows one of the followers.

 (a) Throughput - Uniform (b) Throughput -Zipf (c) Latency-Uniform (d) Latency-Zipf
Fig. 17. Throughput and Latency while varying the number of clients. The figures show the throughput and the average latency for different
number of keys for workload B for the uniform distribution (a, c), and for the Zipf distribution (b, d).

IBRAHIM KETTANEH ET AL.: ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 13

storing 100K objects. This performance degradation is due
to Raft’s implementation of the key value store and not due
any changes in the level of contention on the object stability
array.

8 RELATED WORK

Network-accelerated systems. SwitchKV [22] uses SDN
capabilities to route client requests to the caching node
serving the key. A central controller populates the for-
warding rules to invalidate routes for objects that are being
modified and installs routes for newly cached objects.
NetCache [21] proposes using the limited switch memory
as a look-through cache. Due to the memory limitation
NetCache prototype had 8 MB of cache in the switch. We
note that the NetCache approach is orthogonal to FLAIR’s.
FLAIR can be further optimized by caching the most pop-
ular values in the switch.
Network-accelerated consensus. A number of recent ef-
forts leverage SDN’s capabilities to optimize consensus
protocols. Speculative Paxos [33] builds a mostly ordered
multicast primitive and uses it to optimize the multi-Paxos
consensus protocol. Network-ordered Paxos (NOPaxos)
[32] leverages modern network capabilities to order mul-
ticast messages and add a unique sequence number to
every client request. NOPaxos uses these sequence number
to serialize operations and to detect packet loss. Specula-
tive Paxos and NOPaxos are optimized for operations that
update the log but not for read operations. NetChain [43]
and NetPaxos [44] implement replication protocols on a
group of switches. These protocols are suitable for systems
that store only a few megabytes of data (e.g., 8MB in the
NetChain prototype). Unlike FLAIR, these efforts do not
optimize for read operations. Reads are still served by the
leader or a quorum of replicas. HovercRaft [45] is Raft-
based protocol that offload the replication operation to a
programmable switch. When the leader receives a read re-
quest, it can ask one of the followers to serve this read re-
quest. Hovercraft does not explore new consistency-aware
load balancing techniques.
Consensus protocols optimized for the WAN. A number
of consensus protocols are optimized for WAN deploy-
ments. Quorum leases [10] proposes giving a read lease to
some of the followers. Mencius [46] is a multi-leader pro-
tocol in which each leader controls part of the log. EPaxos
[47] is a leaderless protocol where clients can submit a re-
quest to any replica. Non-conflicting write can commit in
one round trip, while conflicting writes will be resolved
using Paxos. CURP [48] optimizes the write operation
through exploiting commutativity between concurrent
writes. In data center deployments, CURP reads are served
by the leader and hence are limited to a single node perfor-
mance, in WAN deployment CURP applies a technique
similar to FLeases. Tempo [49] is a leaderless protocol that
relies on timestamps to guarantee consistency. Each log en-
try is tagged with a timestamp and is considered commit-
ted only after all log entries with lower timestamps are
committed. Delos [50] provides a virtual shared log with a
convenient API. Applications are oblivious to the real im-
plementation of the shared log, which can consist of mul-
tiple consensus instances with different implementations.

A number of recent protocols leverages RDMA to opti-
mize consensus protocols. DARE [15] implements RAFT
protocol over RDMA, and committing a write operation re-
quires two RDMA write operations. APUS [51] is a Paxos-
based consensus library that requires one RDMA write op-
eration to commit an operations. Mu [52] is a microsecond
scale consensus library. The three aforementioned proto-
cols are leader-based and aim to utilize RDMA to optimize
the replication of the log. Hermes [53] is leaderless protocol
that uses logical timestamps to resolve write conflicts lo-
cally at each replica. A write operation is committed if rep-
licated on all replicas. Hence, replicas can serve read oper-
ations locally. However, in a case of a replica or network
failure, the system stalls until the failed replica is removed
from the cluster.

9 CONCLUSION

We present FLAIR, a novel protocol that leverages the ca-
pabilities of the new generation of programmable switches
to accelerate read operations without affecting writes or
using leases. FLAIR identifies, at line rate, which replicas
can serve a read request consistently, and implements a set
of load-balancing techniques to distribute the load across
consistent replicas. We detailed our experience building
FlairKV and presented several techniques to cope with the
restrictions of the current programmable switches. We
hope our experience informs a new generation of systems
that co-design network protocols with system operations.

ACKNOWLEDGMENT

We thank Lori Paniak for his help in running the experi-
ments. This research was supported by an NSERC Discov-
ery grant, NSERC Collaborative Research and Develop-
ment grant, Canada Foundation for Innovation (CFI)
grant, and a grant from Waterloo-Huawei Joint Innovation
Lab.

REFERENCES

[1] H. Attiya and J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons, Inc., 2004.

[2] L. Lamport, "Paxos made simple," ACM Sigact News, vol. 32, no.
4, pp. 18-25, 2001.

[3] D. Ongaro and J. Ousterhout, "In search of an understandable
consensus algorithm," in Proceedings of the USENIX Annual
Technical Conference, Philadelphia, PA, 2014: USENIX
Association.

[4] F. P. Junqueira, B. C. Reed, and M. Serafini, "Zab: High-
performance broadcast for primary-backup systems," in
Proceedings of IEEE/IFIP International Conference on
Dependable Systems&Networks, 2011: IEEE Computer Society,
doi: 10.1109/dsn.2011.5958223.

[5] B. Liskov and J. Cowling, "Viewstamped replication revisited,"
Technical Report MIT-CSAIL-TR-2012-021, MIT, 2012.

[6] J. Shute, R. Vingralek, B. Samwel et al., "F1: a distributed SQL
database that scales," Proc. VLDB Endow., vol. 6, no. 11, pp.
1068-1079, 2013, doi: 10.14778/2536222.2536232.

[7] N. Bronson, Z. Amsden, G. Cabrera et al., "TAO: Facebook's
distributed data store for the social graph," in Proceedings of the
USENIX Technical Conference, San Jose, CA, 2013: USENIX
Association.

[8] B. Atikoglu, Y. Xu, E. Frachtenberg et al., "Workload analysis of
a large-scale key-value store," presented at the Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer
Systems, London, England, UK, 2012.

14 IEEE/ACM TRANSACTIONS ON NETWORKING, MANUSCRIPT ID

[9] C. Gray and D. Cheriton, "Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency," in
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 1989: ACM, doi: 10.1145/74850.74870.

[10] I. Moraru, D. G. Andersen, and M. Kaminsky, "Paxos Quorum
Leases: Fast Reads Without Sacrificing Writes," in Proceedings of
the ACM Symposium on Cloud Computing, Seattle, WA, USA,
2014: ACM, doi: 10.1145/2670979.2671001.

[11] J. Baker, C. Bond, J. C. Corbett et al., "Megastore: Providing
scalable, highly available storage for interactive services," in
Proceedings of the Conference on Innovative Data system
Research (CIDR), 2011.

[12] G. DeCandia, D. Hastorun, M. Jampani et al., "Dynamo:
amazon's highly available key-value store," in Proceedings of the
ACM SIGOPS Symposium on Operating Systems Principles
(SOSP), Stevenson, Washington, USA, 2007: ACM, doi:
10.1145/1294261.1294281.

[13] D. B. Terry, V. Prabhakaran, R. Kotla et al., "Consistency-based
service level agreements for cloud storage," in Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
Farminton, Pennsylvania, 2013: ACM, doi:
10.1145/2517349.2522731.

[14] B. F. Cooper, R. Ramakrishnan, U. Srivastava et al., "PNUTS:
Yahoo!'s hosted data serving platform," Proc. VLDB Endow., vol.
1, no. 2, pp. 1277-1288, 2008, doi: 10.14778/1454159.1454167.

[15] M. Poke and T. Hoefler, "DARE: High-Performance State
Machine Replication on RDMA Networks," in Proceedings of the
International Symposium on High-Performance Parallel and
Distributed Computing, Portland, Oregon, USA, 2015, 2749267:
ACM, pp. 107-118, doi: 10.1145/2749246.2749267.

[16] P. Hunt, M. Konar, F. P. Junqueira et al., "ZooKeeper: wait-free
coordination for internet-scale systems," in Proceedings of the
USENIX annual technical conference, Boston, MA, 2010.

[17] T. D. Chandra, R. Griesemer, and J. Redstone, "Paxos made live:
an engineering perspective," in Proceedings of the annual ACM
symposium on Principles of distributed computing, Portland,
Oregon, USA, 2007: ACM, doi: 10.1145/1281100.1281103.

[18] D. Mazieres, "Paxos made practical," ed, 2007.
[19] M. Burrows, "The Chubby lock service for loosely-coupled

distributed systems," OSDI 2006.
[20] S. Al-Kiswany, S. Yang, A. C. Arpaci-Dusseau et al., "NICE:

Network-Integrated Cluster-Efficient Storage," in Proceedings of
the International Symposium on High-Performance Parallel and
Distributed Computing, Washington, DC, USA, 2017: ACM, doi:
10.1145/3078597.3078612.

[21] X. Jin, X. Li, H. Zhang et al., "NetCache: Balancing Key-Value
Stores with Fast In-Network Caching," SOSP 2017.

[22] X. Li, R. Sethi, M. Kaminsky et al., "Be fast, cheap and in control
with SwitchKV," NSDI 2016.

[23] "LogCabin storage system." https://logcabin.github.io (accessed
April 14, 2019.

[24] "P4." https://p4.org (accessed April 14, 2019.
[25] H. Takruri, I. Kettaneh, A. Alquraan et al., "FLAIR: Accelerating

Reads with Consistency-Aware Network Routing," in 17th
USENIX Symposium on Networked Systems Design and
Implementation, 2020.

[26] L. Lamport, "The part-time parliament," ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133-169, 1998, doi:
10.1145/279227.279229.

[27] "Barefoot Tofino."
https://www.barefootnetworks.com/products/brief-tofino/
(accessed April 14, 2019.

[28] "Cavium / XPliant." https://origin-
www.marvell.com/documents/netpxrx94dcdhk8sksbp/
(accessed April 14, 2019.

[29] "High-Capacity StrataXGS® Trident 3 Ethernet Switch Series."
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56870-series (accessed
September 9, 2019.

[30] P. Bosshart, D. Daly, G. Gibb et al., "P4: programming protocol-
independent packet processors," SIGCOMM Comput. Commun.
Rev., vol. 44, no. 3, pp. 87-95, 2014, doi: 10.1145/2656877.2656890.

[31] N. McKeown, T. Anderson, H. Balakrishnan et al., "OpenFlow:
enabling innovation in campus networks," SIGCOMM 2008

[32] J. Li, E. Michael, N. K. Sharma et al., "Just say no to paxos
overhead: replacing consensus with network ordering," OSDI
2016.

[33] D. Ports, J. Li, V. Liu et al., "Designing distributed systems using
approximate synchrony in data center networks," NSDI 2015

[34] B. M. Oki and B. H. Liskov, "Viewstamped Replication: A New
Primary Copy Method to Support Highly-Available Distributed
Systems," presented at the Proceedings of the ACM Symposium
on Principles of Distributed Computing, Toronto, Ontario,
Canada, 1988.

[35] D. Mazieres, "Paxos made practical," Technical Report on
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf,
2007.

[36] H. Takruri, I. Kettaneh, A. Alquraan et al., "Network-Accelerated
Consensus for Read-Intensive Workloads " University of
Waterloo, 2021. [Online]. Available:
https://cs.uwaterloo.ca/~alkiswan/papers/FLAIR-TR.pdf

[37] "The Raft Consensus Algorithm." https://raft.github.io/ (accessed
April 14, 2019.

[38] "Barefoot P4 Studio."
https://www.barefootnetworks.com/products/brief-p4-studio/
(accessed April 14, 2019.

[39] "P4 v16 Portable Switch Architecture (PSA)." https://p4.org/p4-
spec/docs/PSA-v1.0.0.html (accessed April 14, 2019.

[40] "NOPaxos consensus protocol."
https://github.com/UWSysLab/NOPaxos (accessed April 14,
2019.

[41] L. Lamport, "Fast paxos," Distributed Computing, vol. 19, no. 2,
pp. 79-103, 2006.

[42] "Yahoo! Cloud Serving Benchmark in C++, a C++ version of
YCSB." https://github.com/basicthinker/YCSB-C (accessed April
14, 2019.

[43] X. Jin, X. Li, H. Zhang et al., "Netchain: scale-free sub-RTT
coordination," NSDI 2018.

[44] H. T. Dang, D. Sciascia, M. Canini et al., "NetPaxos: consensus
at network speed," ACM SIGCOMM 2015.

[45] M. Kogias and E. Bugnion, "HovercRaft: achieving scalability
and fault-tolerance for microsecond-scale datacenter services.,"
EuroSys 2020.

[46] Y. Mao, F. P. Junqueira, and K. Marzullo, "Mencius: building
efficient replicated state machines for WANs," OSDI 2008.

[47] I. Moraru, D. G. Andersen, and M. Kaminsky, "There is more
consensus in Egalitarian parliaments," SOSP 2013.

[48] S. J. Park and J. Ousterhout, "Exploiting commutativity for
practical fast replication," NSDI 2019.

[49] V. Enes, C. Baquero, A. Gotsman et al., "Efficient Replication via
Timestamp Stability," in Proceedings of the Sixteenth European
Conference on Computer Systems, 2021.

[50] M. Balakrishnan, J. Flinn, C. Shen et al., "Virtual Consensus in
Delos," in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), 2020.

[51] C. Wang, J. Jiang, X. Chen et al., "APUS: Fast and Scalable Paxos
on RDMA," in Proceedings of the 2017 Symposium on Cloud
Computing (SoCC '17), 2017.

[52] M. K. Aguilera, N. Ben-David, R. Guerraoui et al., "Microsecond
Consensus for Microsecond Applications," OSDI 2020.

[53] A. Katsarakis, V. Gavrielatos, M. R. S. Katebzadeh et al.,
"Hermes: A Fast, Fault-Tolerant and Linearizable Replication
Protocol," ASPLOS 2020.

https://logcabin.github.io/
https://p4.org/
https://www.barefootnetworks.com/products/brief-tofino/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://origin-www.marvell.com/documents/netpxrx94dcdhk8sksbp/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://cs.uwaterloo.ca/~alkiswan/papers/FLAIR-TR.pdf
https://raft.github.io/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://p4.org/p4-spec/docs/PSA-v1.0.0.html
https://p4.org/p4-spec/docs/PSA-v1.0.0.html
https://github.com/UWSysLab/NOPaxos
https://github.com/basicthinker/YCSB-C

