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Abstract—We present FLAIR, a novel approach for accelerating read operations in leader-based consensus protocols. FLAIR 

leverages the capabilities of the new generation of programmable switches to serve reads from follower replicas without 

compromising consistency. The core of the new approach is a packet-processing pipeline that can track client requests and system 

replies, identify consistent replicas, and at line speed, forward read requests to replicas that can serve the read without sacrificing 

linearizability. An additional benefit of FLAIR is that it facilitates devising novel consistency-aware load balancing techniques. 

Following the new approach, we designed FlairKV, a key-value store atop Raft. FlairKV implements the processing pipeline using 

the P4 programming language. We evaluate the benefits of the proposed approach and compare it to previous approaches using 

a cluster with a Barefoot Tofino switch. Our evaluation indicates that, compared to state-of-the-art alternatives, the proposed 

approach can bring significant performance gains: up to 42% higher throughput and 35-97% lower latency for most workloads. 

Furthermore, our evaluation shows that our novel load balancing techniques can cope with heterogeneous load and hardware to 

achieve higher performance, and that FLAIR can scale to support large data sets and clusters. 
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1  INTRODUCTION

R eplication is the main reliability technique for many 
modern cloud services that process billions of requests 
each day. Unfortunately, modern strongly-consistent rep-
lication protocols [1] – such as multi-Paxos [2], Raft [3], Zab 
[4], and Viewstamped Replication (VR) [5] – deliver poor 
read performance. This is because these protocols are 
leader-based: a single leader replica (or leader, for short) 
processes every read and write request, while follower rep-
licas (followers for short) are used for reliability only. 

Optimizing read performance is clearly important; for 
instance, the read-to-write ratio is 380:1 in Google’s F1 ad-
vertising system [6], 500:1 in Facebook’s TAO [7], and 30:1 
in Facebook memcached deployments [8]. Previous efforts 
have attempted to accelerate reads by giving read leases [9] 
to some [10] or all followers [11]. While holding a lease, a 
follower can serve read requests without consulting the 
leader; each lease has an expiration period. Unfortunately, 
this approach complicates the system’s design, as it re-
quires careful management of leases, imposes long delays 
when a follower holding a lease fails, and affects the write 
operation as all granted leases need to be revoked before 
an object can be modified [11].  

Alternatively, many systems support a relaxed con-
sistency model (e.g., eventual [12], [13] or read-your-write 
[7], [13], [14]), in exchange for the ability to read from fol-
lowers, albeit the possibility of reading stale data. 

In this paper, we present the fast, linearizable, network-accel-
erated client reads (FLAIR), a novel protocol to serve reads from 
follower replicas with minimal changes to current leader-based 
consensus protocols without using leases, all while preserving 

linearizability. In addition to improving read performance, 
FLAIR improves write performance by reducing the num-
ber of requests that must be handled by the leader and em-
ploying consistency-aware load-balancing. 

FLAIR is positioned as a shim layer on top of a leader-
based protocol (3 ). FLAIR assumes a few properties of the 
underlying consensus protocol: the operations are stored 
in a replicated log; at any time, there is at most one leader 
in the system that can commit new entries in the log; reads 
served by the leader are linearizable; and after committing 
an entry in the log, the leader knows which followers have 
a log consistent with its log up to that entry. These proper-
ties hold for all major leader-based protocols (Raft [3], 
Viewstamped Replication [5], DARE [15], Zookeeper [16], 
and multi-Paxos [17], [18]). 

FLAIR leverages the power and flexibility of the new 
generation of programmable switches. The core of FLAIR 
is a packet-processing pipeline (Section 4 ) that maintains 
compact information about all objects stored in the system. 
FLAIR tracks every write request and the corresponding 
system reply to identify which objects are stable (i.e., not 
being modified) and which followers hold a consistent 
value for each object, then uses this information to forward 
reads of stable objects to consistent followers. Followers 
optimistically serve reads and the FLAIR switch validates 
read replies to detect stale values. If the switch suspects 
that a reply from a follower is stale, it will drop the reply 
and resubmit the read request to the leader. 

An additional benefit of FLAIR is that it facilitates the 
building of novel consistency-aware load balancing tech-
niques. In systems that grant a lease to followers [10], [11], 
[19] clients send read requests to a randomly selected fol-
lower. If the follower does not hold a lease, it blocks the 
request until it obtains a lease, or it forwards the request to 
the leader; either way, this approach adds additional de-
lay. FLAIR does not incur this inefficiency as FLAIR load 
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balances read requests only among followers that hold a 
consistent value for the requested object.  

Unlike other systems that use switch new capabilities 
[20], [21], [22], FLAIR does not rely on the controller to up-
date the switch information after every write operation, as 
this approach would add unacceptable delays. Instead, 
FLAIR piggybacks control messages on system replies, and 
the switch extracts and processes them.  

In a nutshell, FLAIR implements a logically simple look-
through metadata cache at a network switch. Write re-
quests invalidate the switch metadata related to the ac-
cessed object, and write replies update the switch 
metadata. The switch maintains only a soft state that can 
be instantiated by contacting the leader replica. 

Despite its simplicity, implementing this approach is 
complicated by the limitations of programmable switches 
(2 ) and the complexity of handling switch failures, net-
work partitioning, and packet loss and reordering (4 ). 

To demonstrate the powerful capabilities of the pro-
posed approach, we prototyped FlairKV (Section 6 ), a key-
value store built atop Raft [3]. We made only minor 
changes to Raft’s implementation [23] to enable followers 
to serve reads, make the leader order write requests fol-
lowing the sequence numbers assigned by the switch, and 
expose leader’s log information to the FLAIR layer. The 
packet-processing pipeline was implemented using the P4 
programming language [24].  

Our evaluation of FlairKV (7 ) on a cluster with a Bare-
foot Tofino switch shows that FLAIR can bring sizable per-
formance gains without increasing the complexity of the 
leader-based protocols or the write operation overhead. 
Our evaluation with different read-to-write ratios and 
workload skewness shows that FlairKV brings up to 2.8 
times higher throughput than an optimized Raft imple-
mentation, at least 4 times higher throughput compared to 
Viewstamped Replication, Raft, and FastPaxos, and up to 
42% higher throughput and up to 35–97% lower latency for 
most workloads compared to state-of-the-art leases-based 
design [11], [19]. 

Compared to our previous work [25], in this paper, we 
evaluate three novel load balancing techniques that are 
built atop of FLAIR, including random, leader avoidance, 
and load awareness. Our evaluation shows that imple-
menting an in-network a load balancing technique that is 
aware of the overhead difference between read and write 

operations and of heterogeneity of the cluster nodes can 
significantly improve performance. Furthermore, we eval-
uate FLAIR’s scalability and show that it can scale to sup-
port large data sets and large clusters without significantly 
increasing the system overhead. Finally, we present a de-
tailed proof of the safety of FLAIR. 

The performance and programmability of the new gen-
eration of switches opens the door for the switches to be 
used beyond traditional network functionalities. We hope 
our experience will inform a new generation of distributed 
systems that co-design network protocols with systems op-
erations. 

2  BACKGROUND 

In this section, we present an overview of leader-based 
consensus protocols, followed by a look at the new pro-
grammable switches and their limitations. 

2.1 Leader-based Consensus 

Leader-based consensus (LC) protocols [3], [4], [5], [15], 
[17], [18] are widely adopted in modern systems. The idea 
of having a leader that can commit an operation in a single 
round trip dates back to the early consensus protocols [2], 
[26]. Having a leader reduces contention and the number 
of messages, which greatly improves performance [2], [17]. 

LC protocols divide time into terms (a.k.a. views or 
epochs). Each term has a single leader; if the leader fails, a 
new term starts and a new leader is elected. 

Clients send write requests to the leader (1 in Fig. 1). The 
leader appends the request to its local log (2) and then 
sends the request to all follower replicas (3). A follower ap-
pends the request to its log (4) before sending an acknowl-
edgment to the leader (5). If the leader receives an ac-
knowledgment from a majority of its followers, the opera-
tion is considered committed. The leader applies the 
operation to its local state machine (e.g., in memory key-
value store in Fig. 1) in (6), then acknowledges the opera-
tion to the client (7). The leader will asynchronously inform 
the followers that it committed the operation. Followers 
maintain a commit_index, a log index pointing to the last 
committed operation in the log; when a follower receives 
the commit notification, it advances its commit_index and 
applies the write to its local store.  

The replicated log has two properties that make it easy 
to reason about: it is guaranteed that if an operation at in-
dex i is committed, then every operation with an index 
smaller than i is committed as well; and if a follower ac-
cepts a new entry to its log, it is guaranteed that its log is 
identical to the leader’s log up to that entry.  

Client read requests are also sent to the leader. In Raft, 
the leader sends a heartbeat to all followers to make sure it 
is still the leader. If a majority of followers reply, the leader 
serves the read form its local store: it will check that all 
committed operations related to the requested object are 
applied to the local store before serving the request. 

A common optimization is the leader lease optimiza-
tion. Instead of collecting a majority of heartbeats for every 
read request, a majority of the followers can give the leader 
a lease [3], [17]. While holding a lease, the leader serves 
reads locally without contacting followers. Unfortunately, 

 
Fig. 1. The path for a write operation. 
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even with this optimization, the performance of the leader-
based protocols is limited to a single-node performance. 

2.2 Programmable Switches 

Programmable switches allow the implementation of an 
application-specific packet-processing pipeline that is de-
ployed on network devices and executed at line speed. A 
number of vendors produce network-programmable 
ASICs, including Barefoot’s Tofino [27], Cavium’s XPliant 
[28], and Broadcom Trident 3 [29]. 

Fig. 2.a illustrates the basic data plane architecture of 
modern programmable switches. The data plane contains 
three main components: ingress pipelines, a traffic man-
ager, and egress pipelines. A packet is first processed by an 
ingress pipeline before it is forwarded by the traffic man-
ager to the egress pipeline that will finally emit the packet. 

Each pipeline is composed of multiple stages. At each 
stage, one or more tables match fields in the packet header 
or metadata; if a packet matches, the corresponding action 
is executed. Programmers can define custom headers and 
metadata as well as custom actions. Each stage has its own 
dedicated resources, including tables and register arrays (a 
memory buffer). Fig. 2.b shows a simple example of a pipe-
line that routes a request to a key-value store based on the 
key, and Fig. 2.c shows the details of the KV routing stage. 
The stage forwards the request based on the key in the 
packet’s custom L4 header. The programmer implements 
a forward() action that accesses the register array holding 
nodes’ IP addresses. An external controller can modify the 
register array and the table entries. 

Stages can share data through the packet header and 
small per-packet metadata (a few hundred bytes in size) 
that is propagated between the stages as the packet is pro-
cessed throughout the pipeline (Fig. 2.b). The processing of 
packets can be viewed as a graph of match-action stages. 

Programmers use domain-specific languages like P4 
[30] to define their own packet headers, define tables, im-
plement custom actions, and configure the processing 
graphs.  
Challenges. While programmable ASICs and their do-

main-specific languages significantly increase the flexibil-
ity of network switches, the need to execute custom actions 
at line speed restricts what can be done. To process packets 
at line speed, P4 and modern programmable ASICs have 
to meet strict resource and timing requirements. Conse-
quently, modern ASICs limit (1) the number of stages per 
pipeline, (2) the number of tables and registers per stage, 
(3) the number of times any register can be accessed per 
packet, (4) the amount of data that can be read/written 
per-packet per register, (5) the size of per-packet metadata 
that is passed between stages. Finally, modern ASIC’s lack 
support of loops or recursion. 

3  FLAIR OVERVIEW 

FLAIR is a novel protocol that targets deployments in a sin-
gle data center. Fig. 3 shows the system architecture, which 
consists of a programmable switch, a central controller, 
and storage nodes. Typically, multiple FLAIR instances are 
deployed with each serving a disjoint set of objects. For 
simplicity, we present a FLAIR deployment with one rep-
lica set (i.e., one leader and its followers).  
Clients. FLAIR is accessed through a client library with a 
simple read/write/delete interface. Read (get) and write 
(put) operations read or write entire objects. The library 
adds a special FLAIR packet header to every request, that 
contains an operation code (e.g., read) and a key (a hash-
based object identifier).  
Controller. Our design targets data centers that use a SDN 
network following a variant of the multi-rooted tree topol-
ogy. A central controller uses OpenFlow [31] to manage the 
network by installing per-flow forwarding, filtering, and 
rewriting rules in switches.  

As with previous projects that leverage SDN capabili-
ties [20], [22], [32], [33] the controller assigns a distinct ad-
dress for each replica set. The controller can use a different 
switch for different replica sets. The controller installs for-
warding rules to guarantee that every client request for a 
range of keys served by a single replica set is passed 
through a specific switch (dubbed FLAIR switch); that 
switch will run the FLAIR logic for that range of keys. The 
controller typically selects a common ancestor switch of all 
replicas and installs rules to forward system replies 
through the same switch. Only client request/replies are 
routed through the FLAIR switch, leader-follower mes-
sages do not have the FLAIR header nor are necessarily 

(a) Switch data plane. 
(b) Pipeline for routing based on a 
hash-based key 

 
(c) Simple match-action stage for routing based on a hash-based key 
for the KV routing table in subfigure (b) 

Fig. 2. Switch data plane. 

 
Fig. 3. System architecture. The solid arrow shows a client request, 
while the dashed arrow show control messages. 
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routed through the FLAIR switch. 
While this approach may create a longer path than tra-

ditional forwarding, the effect of this change is minimal. Li 
et al. [32] reported that for 88% of cases, there is no addi-
tional latency, and the 99th percentile had less than 5 µs of 
added latency. This minimal added latency is due to the 
fact that the selected switch is the common ancestor of tar-
get replicas and client packets have to traverse that switch 
anyway. 

This approach naturally facilitates scaling the system to 
use multiple switches. The controller can make different 
switches serve different replica set, effectively load balanc-
ing the load on multiple switches. 
Storage Nodes. The storage nodes run the FLAIR and LC 
protocols. Each node runs a FLAIR module. For read re-
quests, before serving a read, followers verify that all com-
mitted writes to the requested object have been applied to 
the follower’s local storage. 

Write requests are processed by the leader. After a suc-
cessful write operation, the leader passes to the local 
FLAIR module the commit index of the write and the list 
of followers that accepted the write operation and have a 
consistent log up to the commit index. The FLAIR module 
encodes this list into a compact bitmap and uploads it and 
the commit index to the switch (piggybacked on the write 
reply).  
Programmable Switch. The switch is a core component of 
FLAIR: it tracks every write request and the corresponding 
reply to identify which objects are stable (i.e., not being 
modified) and which replicas have a consistent value of 
each object. If a read is issued while there are outstanding 
writes for the target object (i.e., writes without correspond-
ing replies), the read is forwarded to the leader. If a read 
request is processed by the switch when there are no out-
standing writes to the requested object, the switch for-
wards the request to one of the followers included in the 
last bitmap for the object sent by the leader. Followers op-
timistically serve read requests. The switch inspects every 
read reply; if it suspects that a follower returned stale data 
(4.4), it will conservatively drop the reply and forward the 
request to the leader. FLAIR forwards all writes to the 
leader. 

FLAIR also includes techniques to handle multiple con-
current writes to the same object (4.3), packets reordering 
(4.7), and tolerating switch, node, and network failures 
(4.7). 

4  SYSTEM Design 

FLAIR is based on the following assumptions: the network 
is unreliable and asynchronous, as there are no guarantees 
that packets will be received in a timely manner or even 
delivered at all, and there is no limit on the time a node or 
switch takes to process a packet. Clocks are not synchro-
nized. Finally, FLAIR assumes a fail-stop failure model in 
which nodes and switches may stop working but will 
never send erroneous messages.  
FLAIR assumes a few properties of the underlying consen-
sus protocol: the operations are stored in a replicated log; 
at any time, there is at most one leader in the system that 
can commit new entries in the log; and after committing an 

entry in the log, the leader knows which followers have a 
log consistent with its log up to that entry. If an operation 
at index i in the log is committed, then every operation 
with an index smaller than i is committed as well. If a fol-
lower accepts a new entry to its log, then it is guaranteed 
that the follower log is identical to the leader’s log up to 
that entry.  

We note that all major leader-based consensus protocols 
(e.g., Raft [3], Viewstamped Replication [5], [34], DARE 
[15], Zab [16], and multi-Paxos implementations [17], [35]) 
hold these properties.  

The underlying consensus protocol divides time into 
terms. Each term has a single leader; if the leader fails, a 
new term starts and a new leader is elected. FLAIR further 
divides time into sessions (Fig. 4). During a session the 
leader is bonded to a single switch that runs the FLAIR 
pipeline. A session ends when a leader fails or the leader 
suspects that the switch has failed. An LC term may have 
one or more sessions, but a session does not span multiple 
terms. 

4.1 Network Protocol 

Packet format. FLAIR introduces an application-layer pro-
tocol embedded in the L4 payload of packets. FLAIR uses 
UDP to issue client requests in order to achieve low latency 
and simplify request routing. Communication between 
replicas uses TCP for its reliability. A special UDP port is 
reserved to distinguish FLAIR packets; for UDP packets 
with this port, the switch invokes the FLAIR custom pro-
cessing pipeline. Other switches do not need to understand 
the FLAIR header and will treat FLAIR packets as normal 
packets. In this way, FLAIR can coexist with other network 
protocols. 

Fig. 5 shows the main fields in the FLAIR header. We 
briefly discuss the fields here (a detailed discussion of the 
protocol is presented next):  
 OP: the request type. Clients populate this field in the re-

quest packet (e.g., read, or write); replicas populate this 
field in the reply packets (e.g., read_reply, write_reply).  

 KEY: hash-based object identifier.  
 SEQ: a sequence number added by the switch. The switch 

increments the sequence number on every write request. 
 SID: a unique session id. The <SID, SEQ> combination rep-

resents a unique identifier for every write request. 
 LOG_IDX: a log index. In a write_reply, the log index is the 

index at which the write was committed. For reads, the 
switch populates LOG_IDX to make sure the followers’ 
logs are committed and applied up to that index. 

 

Fig. 4. FLAIR sessions. Time is divided into terms. Each term starts 
with a leader election. Each term has one or more sessions that 
start with updating the switch data. 
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 CFLWRS: In write_reply, the CFLWRS is a map of the fol-
lowers that have a consistent log up to LOG_IDX. 

Following the FLAIR header is the original LC protocol 
payload, which includes the value for read/write request. 

4.2 Switch Data Structures 

To process a read request, the switch performs two specific 
tasks (4.4). First, it forwards read requests to consistent fol-
lowers while balancing the load among them. Second, it 
verifies the read replies to preserve safety. To perform 
these tasks, the switch maintains two data structures: a ses-
sion array and a key group array. 
Session array. A single switch typically supports multiple 
replica sets (i.e., FLAIR+LC instances) with each set storing 
a disjoint set of keys. Each entry in the session array main-
tains the session status for a single replica set. An entry 
contains an is_active flag, session id, leader IP address, cur-
rent session sequence number, and the timestamp of the 
last heartbeat received from the leader FLAIR module 
(dubbed lflair) (Listing 1). When is_active is true, we say the 
session is active, which indicates that the session entry and 
kgroup array are consistent with the leader’s information. 
The switch processes packets using the FLAIR custom 
pipeline only if the session is active; otherwise, it will drop 
all FLAIR packets, rendering the system unavailable to cli-
ents until the switch can reach the lflair module and sync 
its session entry and key group array. 
Key group (KGroup) array. To decide if followers can 
serve a certain read request, the switch needs to maintain 
information about which followers have the latest commit-
ted value of every object. Maintaining such information in 
the switch ASIC’s memory is not feasible; instead, FLAIR 
groups objects based on their key and maintains aggregate 
information per group. We use the most significant k bits 
of the key to map an object to a key group (kgroup).  

Every FLAIR+LC instance has a dedicated kgroup ar-
ray. Each entry in the array (Listing 1) contains the status 
of a single kgroup, including an is_stable flag that indicates 
if all objects in the kgroup are stable. If a kgroup is not sta-
ble (is_stable is false), this indicates that at least one object 
in the kgroup is being modified (i.e., has an outstanding 
write in the system). The array entry also includes the se-

quence number (seq_num) of the last write request pro-
cessed by the switch for any object in the kgroup, the log 
index (log_idx) of the last successful write to any object in 
the kgroup, and the consistent_followers bitmap pointing to 
all followers that have a consistent log up to log_idx. 

4.3 Handling Write Requests 

To issue a write request, a client populates the OP and KEY 
fields of the FLAIR packet header and puts the value in the 
payload, then sends the request.  

When the switch receives the request, it will mark the 
corresponding kgroup entry as unstable. The switch will 
increment the session_seq_num in the session array and use 
it to populate the sequence number (seq_num) in the 
kgroup entry and the sequence number (SEQ) in the request 
header. Finally, the switch populates the session id (SID) 
field in the header and forwards the request to the leader. 

The lflair module will verify that the session id is valid 
and will pass the write request to the leader. The leader 
verifies that the <SID, SEQ> combination is larger than the   
<SID, SEQ> number of any previous write request it ever 
received, else it will drop the packet. The LC leader will 
process the write request following the LC protocol (2.1): it 
will replicate the request to all followers, and when a ma-
jority of followers acknowledge the operation, the write 
operation is considered committed. A follower will 
acknowledge a write operation only if its log is identical to 
the leader’s log up to that entry. 

For the write reply, the leader will pass the following to 
the lflair module: the LC protocol payload for the write_re-
ply, the log index at which the write was committed, and 
the list of followers that acknowledged the write. The lflair 
module will create the write reply packet with the leader 
provided payload, and will populate the LOG_IDX and the 
bitmap of the consistent followers (CFLWRS) using the in-
formation provided by the leader. lflair module populates 
the sequence number (SEQ) in the write_reply header using 
the SEQ of the corresponding write request. The lflair mod-
ule then sends the write_reply packet. 

The switch will process the write_reply header and ver-
ify its session id. The switch will compare the sequence 
number (SEQ) of the reply to the sequence number 
(seq_num) in the kgroup entry; if they are equal, this signi-
fies that no other write is concurrently being processed in 
the system for any object in the kgroup. Consequently, it 
will update the log_idx and the consistent_followers fields in 
the kgroup entry using the values in the write reply. Then 
it will mark the kgroup stable and forward the reply to the 
client.  

If the sequence number in the reply is smaller than the 
sequence number in the kgroup entry, this indicates that a 
later write to an object in the same kgroup has been pro-
cessed by the switch. In this case, the switch forwards the 
write reply to the client without modifying the kgroup en-
try. The kgroup entry remains unstable until the last write 
(with a SEQ number in the write_reply equal to the seq_num 
in the kgroup entry) is acknowledged by the leader. 

In a nutshell, the switch acts as a look-through metadata 
cache. Write requests invalidate the switch metadata re-
lated to the accessed kgroup, and write replies update the 

 
Fig. 5. FLAIR packet format. 

SessionArrayEntry { 
bit<1>   is_active; 
bit<32> session_id; 
bit<32> leader_ip; 
bit<64> session_seq_num; 

   bit<48> heartbeat_tstamp;   

} 

KGroupArrayEntry { 
bit<1>   is_stable; 
bit<64> seq_num; 
bit<64> log_idx; 
bit<8>   consistent_followers;    

} 

Listing 1. Session and kgroup entries. The numbers indicate the field 
size in bits. 
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kgroup metadata at the switch. An additional advantage 
of this approach is that by hosting a simple cache at the 
switch we can consistently load balance reads across fol-
lowers without substantially effecting complexity. 

4.4 Handling Read Requests 

Clients fill the OP and KEY fields of the FLAIR header and 
send the request. When the switch receives the request, it 
will check the kgroup entry. If the entry is stable, the 
switch will fill the sequence number (SEQ) and log index 
(LOG_IDX) header fields using the values in the kgroup en-
try. Then it will forward the request to one of the followers 
indicated in the consistent_followers bitmap. 6.2 details our 
load balancing techniques.  

If the kgroup entry is not stable, the switch forwards the 
read request to the leader. We note that there is a chance 
for false positives in this design, as a single write will ren-
der all the objects in the same kgroup unstable. This is a 
drawback of maintaining information per group of keys. 
This inefficiency is incurred by leases-based protocols as 
well, as they maintain a lease per group of objects. 

When a follower receives a read request, the follower’s 
FLAIR module validates the request, then calls                       
advance_then_read(LOG_IDX, key) routine, which compares 
the follower’s commit_index to LOG_IDX. If the commit_in-
dex is smaller, the follower advances its commit_index to 
equal LOG_IDX, apply all the log entries to the local store, 
then serve the read request. The FLAIR module will popu-
late the read_reply header; for the SEQ and SID fields, it will 
use the values found in the read request header.  

We note that it is safe to advance the follower’s com-
mit_index to match the LOG_IDX in the read request, as the 
switch forwards read requests to a follower only if the 
leader indicates that all entries in the log up to that log in-
dex are committed, and that this specific follower is one of 
the replicas that have a log consistent to the leader’s log up 
to that index. We discuss FLAIR correctness in 5 . 

When the switch receives a read_reply from a follower, 
it validates the session id, then verifies that the SEQ number 
of the read_reply equals the seq_num of the kgroup entry. 
If the sequence numbers are not equal, this signifies that a 
later write request was processed by the switch and there 
is a chance the follower has returned stale value. In this 
case, the switch drops the read_reply, generates a new read 
request using the KEY field from read_reply packet, and 
submits the read request to the leader. If the sequence 
number of the reply equals the sequence number in the 
kgroup entry, the switch forwards the reply to the client. 

If a read request is forwarded to the leader, the lflair 
module verifies the session id, then calls advance_then_read 
(LOG_IDX, key). The switch verifies that the leader reply is 
valid (i.e., has the correct session id) before forwarding it 
to the client. 

4.5 Load Balancing 

FLAIR facilitates designing load balancing policies that are 
data consistency aware. We designed three such load bal-
ancing techniques that choose which replica from the list 
of consistent replicas will serve a read request. 
 Random. This technique selects a replica to serve a read 

request in random fashion from the list of consistent fol-
lowers. 

 Leader avoidance. Our benchmarking revealed that the 
write operation takes 35 times longer than a read opera-
tion; most of this overhead is borne by the leader. Con-
sequently, this load-balancing technique avoids sending 
read requests to the leader for stable kgroups if there are 
any writes in the system. The aim is to reduce the leader 
load, as it is already busy serving writes and serving 
reads for unstable kgroups. 
We can detect if a leader is serving any writes by com-
paring the sequence number of a write_reply with the 
session_seq_num. If they are not equal, then there are 
pending writes in the system and the leader should not 
be burdened with any reads to stable kgroups. 

 Follower load awareness. This technique distributes the 
load across followers proportionally to their load in the 
last n seconds. This technique is especially useful for de-
ployments that use heterogeneous hardware, experience 
workload variations, or deploy more than one replica 
(i.e., for different key ranges) on the same machine. 

4.6 Session Start Process 

On the start of a new session, the lflair module reads the 
last session id from the LC log, increments it, and commits 
the new session id to the LC log. Then the lflair module 
asks the central controller for a new switch. The central 
controller neutralizes the old switch (making it drop all 
FLAIR packets) and reroutes FLAIR packets to a new 
switch, then confirms the switch change to the lflair mod-
ule. This step guarantees that at any time at most one 
FLAIR switch is active. The lflair module updates the ses-
sion entry (Listing 1) at the switch with the current leader 
IP and session id. For each new session, session_seq_num is 
reset to zero.  
Populating the kgroup array. The lflair module maintains 
a copy of the kgroup array similar to the one maintained 
by the switch. If the leader did not change between ses-
sions (e.g., the session change is due to switch failure), the 
kgroup array at the lflair module is up-to-date. The lflair 
module will set the seq_num entry in all kgroup entries to 
zero (equal to the session_seq_num in the session entry), 
and upload it to the switch. 

If the kgroup array at the lflair module is empty – for 
instance, after electing a new leader – the lflair module will 
query the leader for three pieces of information: its com-
mit_index, the list of followers with the same commit_in-
dex, and a list of all uncommitted operations in the log (i.e., 
the operations after the commit_index in the log). The list 
of uncommitted operations is typically small, as it only in-
cludes operations that were received before the end of the 
last term but were not committed yet. The lflair module 
will traverse the list of uncommitted writes and mark their 
target kgroup entries unstable. For all other kgroup entries, 
the lflair module will mark them stable and set their 
seq_num to zero, log_idx to the leader’s commit_index, and 
consistent_followers to include all the followers that have 
the same commit_index as the leader’s. After updating the 
session entry and the kgroup array at the switch, the lflair 
module activates the switch session (sets is_active to true). 
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4.7 Fault Tolerance 

Follower Failure. We rely on the LC protocol to handle fol-
lower failures. To avoid sending read requests to a failing 
follower, the leader notifies the lflair module when it de-
tects the failure of a follower. The lflair module removes the 
follower from the switch-forwarding table (3 ). 
Leader Failure. On leader failure, a new leader is elected 
and a new term starts. The new leader informs the lflair 
module of the term change; and the lflair module starts a 
new session (3 ). 

The lflair module sends periodic heartbeats to the 
switch. Upon receiving a heartbeat, the switch determines 
whether it is from the current session. If the heartbeat is 
valid, the switch updates the heartbeat_timestamp in the 
session array and replies to the lflair module.  
Switch Failure. If the lflair module misses three heartbeats 
from the switch, the lflair module will suspect that the 
switch has failed and will start a new session (4.5). For ef-
ficiency (i.e., does not affect safety), if the switch misses 
three heartbeats from the leader, it will deactivate the ses-
sion. 
Network Partitioning. If a network partition isolates the 
switch from the leader, the leader treats it as a failed 
switch, as detailed above. If a network partition isolates the 
switch from a follower, read requests forwarded to the fol-
lower will time out and the client will resubmit the request. 
This failure affects performance, but not correctness. Upon 
determining that a follower is not reachable, the leader re-
moves it from the forwarding table, as in the case of the 
failed follower described above. 
Packet Loss. If a read or write request is lost, the client 
times out and resubmits the request. If a write reply is lost 
before reaching the switch, the kgroup entry will remain 
unstable until a new write operation to any key in the 
kgroup succeeds. While the kgroup entry is not stable, all 
read requests are forwarded to the leader. 
Packet Reordering. It is critical for FLAIR’s correctness 
that the leader processes write requests in the same order 
that they are processed by the switch. Every write opera-
tion gets a unique <SID, SEQ> number. The switch marks a 
kgroup entry unstable until the leader replies to the last 
write issued for a key in the kgroup. Consequently, if the 
leader processes the requests out of order, the switch will 
incorrectly mark a kgroup stable while the out-of-order 
writes modify its objects. To prevent this scenario, the 
leader keeps track of the largest <SID, SEQ> it has ever 
processed and drops any write request with a smaller 
number. While session numbers (SIDs) are maintained in 
the log, the largest processed sequence number is retained 
in memory. If the leader fails, the new leader starts a new 
session, increments the session id (SID), and sets the session 
sequence number (SEQ) to zero. 

5  CORRECTNESS 
FLAIR only adds the ability to serve reads from followers. 
In this section we present an informal discussion of the 
safety of the read operations in FLAIR. Furthermore, we 
used the TLA+ model checking tool to verify the FLAIR 
correctness. The TLA specification is available in our tech-
nical report [36]. 

FLAIR processes read and write requests only when the 
switch is in an active state. We say the switch is active if it 
has an active leader-switch session, meaning the leader 
and the switch did not miss three consecutive heartbeats 
from each other. This signifies that the switch information 
is up-to-date with the lflair module’s information. We first 
discuss safety during the active state then we discuss the 
safety during failure scenarios.   

5.1 Safety during an Active Session  

The correctness condition for reads is that the value re-
turned by FLAIR is identical as if the read was served by 
the leader. This is guaranteed using the following two 
steps. 

First, the switch only forwards read requests to follow-
ers when the kgroup entry is stable. The switch assigns a 
unique and strictly increasing sequence number for every 
write request. The switch keeps track of the sequence num-
ber of the last write operation in the wlseq field in the 
kgroup entry. The leader processes writes in an increasing 
order of sequence numbers. The leader ignores write re-
quests with a sequence number smaller than the sequence 
number of the last write it received. The leader includes the 
sequence number of the write request in the write reply.  

We say a kgroup is stable if the switch receives a write 
reply with a sequence number equal to wlseq. This signifies 
that there are no on-the-fly writes in the system that can 
change an object’s value since the leader processes requests 
in the order of sequence numbers. Hence, the last leader-
provided consistent_followers bitmap points to followers 
that have the last committed value for every object in the 
kgroup. The kgroup stays in the stable state until the 
switch receives a write request for an object in the kgroup, 
then the kgroup becomes unstable. 

If a kgroup is stable, FLAIR may forward read requests 
to one of the replicas included in the last leader-provided 
consistent_followers bitmap. Since this is the last list pro-
vided by the leader and there are no later writes in the sys-
tem, all followers in the list are consistent with the leader 
for this kgroup and will serve values identical to the value 
at the leader. 

Second, after forwarding a read request to a follower 
(say, follower A), the switch may receive a write request 
that modifies the object. The leader may replicate the write 
request to a majority of nodes that does not include A. If 
the leader processes the write request before A serves the 
read request, A will return stale data. To avoid this case, 
followers include in the read reply the last sequence num-
ber that modified a kgroup. The switch performs a safety 
check on every read reply coming from followers: it veri-
fies that the kgroup is still stable, and that the sequence 
number in the read_reply is equal to the sequence number 
in the kgroup entry. If the sequence numbers do not match 
(which indicates that there are later writes to objects in the 
kgroup), the switch resends the read request to the leader. 

5.2 Safety under Failure Scenarios 

Leader Failure. If a leader fails, the switch misses three 
heartbeats from the leader and changes to an inactive state. 
The switch drops all FLAIR requests during the inactive 
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state rendering the system unavailable. When a new leader 
is elected, it will send heartbeats with a new leader_ip and 
session_id. The switch will detect that this is a new leader 
and will start the session startup process before entering 
an active state.  

Switch Failure. If a switch fails, a new switch will be se-
lected to run the FLAIR pipeline (4.6). The switch starts in 
an inactive state. The session start process syncs the switch 
with the leader before switching to active state. 

Packet Loss. Two packets modify the switch metadata: 
write requests and replies. If a write request is dropped af-
ter it was processed by the switch, a client will eventually 
time out and repeat the request. The kgroup stays unstable 
until a new write is received and processed. Consequently, 
this only impacts performance but not safety. If a write re-
ply packet is dropped before reaching the switch, the 
kgroup will stay unstable until a future write is processed. 
Again, this only affects performance, not safety.  

Follower Failure. If a follower fails while processing a read 
request, the client will time out and repeat the read request. 
The resubmitted request is handled as a new request. All 
other follower failure scenarios are handled by the under-
lying consensus protocols. 

6  IMPLEMENTATION 
To demonstrate the benefits of the new approach, we pro-
totyped FlairKV, a FLAIR-based key-value store built atop 
Raft [23]. We chose Raft due to its adoption in production 
systems and the availability of standalone production-
quality implementations [37]. 

6.1 Storage System Implementation 

We have implemented FlairKV, including all switch data 
plane features, the FLAIR module, leaders’ and followers’ 
modifications, and the client library. We extended the 
Raft’s follower code to implement an advance_then_read() 
function. We extended the leader to notify the lflair mod-
ule as soon as it gets elected, and to extract its commit_in-
dex, the list of followers with a commit_index equal to the 
leader’s commit_index, and the list of uncommitted writes. 
We extended the write reply with the list of followers 
which acknowledged the write. We implemented the 
leader lease optimization [3], [17] and modified Raft’s cli-
ent library to add the FLAIR header to client requests. 

6.2 Switch Data Plane Implementation 

The switch data plane is written in P4 v14 [24] and is com-
piled for Barefoot’s Tofino ASIC [27], with Barefoot’s 
P4Studio software suite [38]. Our P4 code defines 30 tables 
and 12 registers: six for the session array and six for the 
kgroup array. The kgroup array has 4K entries. Larger 
number of kgroups had negligible effect on performance. 
In total, our implementation uses less than 5% of the on-
chip memory available in the Tofino ASIC, leaving ample 
resources to support other switch functionalities or more 
FlairKV instances. The rest of this section discusses optimi-
zations implemented in FlairKV to cope with the strict tim-
ing and memory constraints of P4 and switch ASIC. 
Heartbeats implementation. The leader and the switch ex-
change periodic heartbeats. If the switch misses three 
heartbeats from the leader, the switch deactivates the ses-
sion. Instead of running a process in the controller to con-
tinuously track heartbeats, the switch monitors missed 
heartbeats as part of the validation step in the processing 
pipeline. The switch keeps track of the timestamp of the 
last heartbeat received in the session array (Listing 1). 
When processing any FLAIR packet, the switch computes 
the difference between the current time and the last heart-
beat timestamp; if the difference is larger than three heart-
beats, the switch deactivates the session, making the sys-
tem unavailable until the leader starts a new session. 

Forwarding logic translates the consistent followers’ 
bitmap to follower IP addresses. Storing the IP addresses 
of consistent followers for every entry in the kgroup array 
significantly increases the memory footprint. Moreover, 
randomly selecting a follower from the list while avoiding 
inconsistent ones is tricky given the P4 and current ASIC 
challenges (2.2). Instead, the FlairKV leader encodes the 
follower status in a one-byte consistent_followers bitmap 
(Listing 1). Replicas are ordered in a list. If the least signif-
icant bit in the consistent_follower bitmap is set, this indi-
cates that the first replica in the list is consistent, and so 
forth. 

When forwarding a read request, the switch translates 
the encoded bitmap of consistent followers to select one 
follower; Fig. 6 shows the translation process. The con-
sistent_followers bitmap is used as an index to the transla-
tion table. Each entry in the table has an action that ran-
domly selects a number that is then used as an index to the 
IP addresses table. 

This design has two benefits: it significantly reduces the 
memory footprint of the kgroup array, and it can be accel-
erated using P4 “action profiles” [39]. 
Load balancing. In our implementation of the follower 
load awareness load balancing technique followers report 
the length of the request queue in every heartbeat. Every 
second, the leader calculates the average queue length for 
each follower and assigns proportional weights to each fol-
lower. The leader updates the translation table (Fig. 6) to 
reflect these weights. For instance, if follower 1 should re-
ceive double the load of any other replica, the action for a 
bitmap 00111 will be rand(1, 1, 2, 3), doubling the chance 
replica 1 is selected. 

 

Fig. 6. Logical view of the forwarding logic. The stability bitmap 
matches an entry in the translation table and executes the corre-
sponding action, generating an index of the selected destination’s IP 
address. Using the index, the IP address table sets the destination’s 
IP address in the metadata. 
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Register access logic. Each stage has its own dedicated 
registers, and a register can be accessed only once in a 
stage. This restriction complicates FlairKV’s logic, as dif-
ferent packet types (e.g., read and write_reply) must access 
the same registers at different stages in the pipeline. To 
cope with this restriction, FlairKV adds a dedicated table 
to access each register. Fig. 7 shows an example of an action 
table for accessing register r1. Our code aggregates the in-
formation about all possible modes of accessing r1 in the 
packet’s metadata, including the access type (read or 
write), the index, and which data should be written or 
where the value should be read to. We then use a dedicated 
match-action table (Fig. 7) to perform the actual read or 
write operation to/from the register in a single stage with 
a single invocation of the table. This approach has the ad-
ditional benefit of reducing the number of stages. 
Processing concurrent requests. The switch processes 
packets sequentially in a pipeline. Each pipeline stage pro-
cesses one packet at a time. The switch may have multiple 
pipelines, each serving a subset of switch ports. FLAIR 
uses a single ingress pipeline and all egress pipelines. If a 
FLAIR packet is received on a different ingress pipeline, 
the packet is recirculated [39] to the FLAIR pipeline. 

7  EVALUATION 
We compare our prototype with previous approaches in 
terms of throughput and latency (7.1) with different work-
load skewness and read/write ratios (7.2). Then, we eval-
uate FLAIR’s performance under different failure scenar-
ios (7.3), scalability (7.4), load-balancing performance (7.5), 
and performance with larger data sets (7.6). 
Testbed. We conducted our experiments using a 13-node 
cluster. Each node has an Intel Xeon Silver 10-core CPU, 48 
GB of RAM, and 100 Gbps Mellanox NIC. The nodes are 
connected to an Edgecore Wedge 100 ×32BF switch with 32 
100 Gbps ports. The switch has Barefoot’s Tofino ASIC, 
which is P4 programmable. Unless otherwise specified, 
three machines ran the server code, while the other 10 ma-
chines generated the workload.  
Alternatives. We compare the throughput and latency of 
the following designs and optimizations: 
 Leader-based. We used two leader-based protocol im-

plementations: LogCabin [23] and Viewstamped Repli-
cation (VR) [40].  

 Optimized Leader-based (Opt. Raft). Our benchmarking 
revealed that the original Raft implementation could not 

utilize the resources of our cluster. We implemented two 
main optimizations: first, we changed the request-pro-
cessing logic from an event-driven to a thread-pool de-
sign, as our benchmarking indicated a thread-pool per-
forms better; second, we implemented the leader-lease 
optimization. These changes significantly improved 
Raft’s performance. 

 Fast Paxos. An alternative to the leader-based design is 
the quorum design. Client read requests are sent to all 
followers, and each follower responds directly to the cli-
ent. The client waits for a reply from a supermajority [41] 
before completing a read. We used a Fast Paxos imple-
mentation that implements only the normal case [40]. 

 Follower-lease optimization (FLeases). Similar to Meg-
aStore [11], the leader grants read leases to all followers. 
Before serving a write, the leader revokes all leases, pro-
cesses the write operation, and then grants a new lease 
to followers. The lease’s grant/revoke messages are pig-
gybacked on the consensus protocol messages. How-
ever, writes should be processed by all followers before 
replying to the client. In our experiments, if a follower 
receives a read request for an object for which it does not 
have an active lease, it forwards the request to the leader. 
MegaStore applications typically partition the keys into 
groups, each group contains logically-related keys [11] 
(e.g., a key group per blog [11]). We partitioned the keys 
into 4K groups (the same number of kgroups in 
FlairKV), and followers get a lease per group. Clients 
randomly select a follower for each read request and 
send the request directly to it. 

 Unreplicated/NOPaxos (Unrep.). We use an unrepli-
cated Optimized-Raft on a single node as a baseline. The 
single node stores the data set and serves all operations 
without replication. This configuration also represents 
the best possible performance of the network-optimized 
NOPaxos [32] protocol. NOPaxos uses a network switch 
to order and multicast operations to all replicas. An op-
eration is successful if the majority accepts a write or re-
turns the same value for a read. Consequently, NOPaxos 
read performance is limited by the slowest node in the 
majority of nodes. NOPaxos evaluation shows that the 
best throughput and latency the protocol can achieve are 
within 4% of an unreplicated system [32]. 

 FlairKV. Unless otherwise specified, we used FlairKV 
with the leader-avoidance load-balancing technique. 

We benchmarked every system and selected a configura-
tion that maximized its performance. We stored all data in 
memory. In all experiments, all systems’ performance 
(with the exception of FastPaxos) was stable with a stand-
ard deviation less than 1%. 

 
Fig. 7. Register access table. P4 code aggregates access infor-
mation that is used by a dedicated register access table. 



10 IEEE/ACM TRANSACTIONS ON NETWORKING,  MANUSCRIPT ID 

Workload. We used synthetic benchmarks and the YCSB 
benchmark [42] to evaluate the performance of all systems. 
In our evaluation, we considered both uniform and 
skewed workloads. The skewed workload follows the Zipf 
distribution with a skewness parameter of 0.99. We present 
our results with a data set of 100,000 keys. We present our 
results with two additional data sets, 1 million and 4 mil-
lion keys, in 7.6. The key size is 24 bytes, and the hash of 
the key string is used as the key in the FLAIR protocol. The 
value size is 1 KB. 

7.1 Performance Evaluation 

We compared the seven systems using YCSB workload B 
(95:5 read:write ratio) while varying the number of clients, 
with uniform and skewed workload distribution. Fig. 8 
shows the throughput and average latency with a uniform 
distribution. FlairKV achieves up to 42% higher through-
put and 23.7% lower average latency than FLeases, and 1.3 
to 2.1 times higher throughput and 1.5 to 2.4 times lower 
latency compared to optimized Raft and unreplicated 
setup. Fast Paxos, Raft, and VR, achieve the lowest 
throughput and highest latency as these systems contact 
the majority of nodes for every read. FlairKV performance 
has a similar pattern under skewed workloads [25]. 

FlairKV achieves better performance than FLeases for 
three reasons. First, FlairKV uses the leader-avoidance 
load-balancing technique, which reduces the load on the 
leader when there are writes, thereby accelerating writes 
and shortening the time period in which kgroups are 
marked unstable. This approach is effective as writes take 
almost 35 times longer than reads in Opt.Raft, and 30 times 

longer in the unreplicated setup. We recorded the number 
of read requests served by the leader. For instance, with 
300 clients (Fig. 8.a) the leader served 2% of the reads in 
FlairKV (those are reads to unstable kgroups), while it 
served 34% of the reads in FLeases. We note that the 
leader-avoidance technique cannot be applied to FLeases 
which tasks the clients with selecting a follower to send the 
read request to. This technique requires accurate infor-
mation about the current load of the leader and which fol-
lowers are stable which are not available to clients. 

Second, in FLeases, when an object is not stable, if a cli-
ent sends a request to a follower, the follower will redirect 
the request to the leader, increasing overhead and incur-
ring extra latency. Unlike FLeases, FlairKV switch knows 
if an object is not stable and forwards read requests for that 
object directly to the leader. The third reason which had a 
minor impact when using three replicas is that the write 
operation in FLeases needs to reach all followers, while 
FlairKV writes only need a majority. 

Optimized-Raft’s performance is better than that of 
Raft, VR, and FastPaxos. The unreplicated deployment 
slightly improves throughput and latency over Optimized-
Raft by avoiding the replication overhead for write opera-
tions. These two systems still lag behind FlairKV as they 
only utilize a single node (the leader) for serving all reads 
and writes. 

We note that all systems have a dip in the throughput 
curve at high number of clients. This is a side effect of using 
a thread-per-request server design which has a high over-
head with large number of clients. Using a thread-pool de-
sign should eliminate this performance dip. 
Latency evaluation. Fig. 9.a shows the latency CDF of 
FlairKV, FLeases, OptRaft, and Raft. Under the uniform 
workload B with 300 clients (other workloads had similar 
results). FlairKV lowered the latency for the slowest 40% 
requests by at least 38% relative to FLeases. Under the Zip-
fian workload (Fig. 9.b), FlairKV lowered the slowest 50% 
of request by up to 35% relative to FLeases.  

FLeases has higher latency as it incurs extra delay due 
to the load imbalance between nodes (e.g., the leader 
serves 41% of requests for workload B with Zipf distribu-
tion) and due to followers redirecting 4% of requests to the 
leader. 

Under all workloads, FlairKV significantly improved 
operation’s latency relative to Opt.Raft and Raft. The me-
dian latency of FlairKV is 2% of Raft’s latency and 2-8% of 
OptRaft’s latency. 

7.2 Workload Variations 

We measured the impact of two workload variations: 
skewness (Fig. 10) and read/write ratios (Fig. 11). We vary 
the Zipfian constant from 0.5 to 0.99. FlairKV consistently 
achieves better performance: 1.26 to 2.25 times higher 
throughput and 1.13 to 2.48 times lower average latency 
compared to all other systems. 

Our evaluation with different read to write ratios (Fig. 
11) shows that FlairKV has up to 1.5 times higher through-
put for all read to write ratios, with the exception of the 
read-only workload in which their performance is compa-

        (a) Throughput - Uniform          (b) Latency-Uniform 
Fig. 8. Throughput and Latency while varying the number of clients 
for workload B for the uniform distribution  
 

(a)  B-Uniform (b)  B-Zipf 

Fig. 9. Latency CDF. The figures show the latency CDF for reads 
under workload B using 300 clients with a uniform distribution (a), and 
a Zipf distribution with skewness of 0.99 (b). The lines for Opt. Raft 
and Unrep. almost overlap. 
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rable. FlairKV has 1.25 to 2.8 times higher throughput com-
pared to the Opt. Raft. Compared to the unreplicated 
setup, FlairKV has up to 2.8 times higher throughput for 
workloads with 70% reads or more and a comparable per-
formance under write heavy workloads (read ratio 50-
70%). 
 

7.3 Fault Tolerance 

To demonstrate FlairKV fault tolerance techniques, we 
measured the system throughput using workload C under 
three failure scenarios: switch, leader, and follower failure. 
Switch Failure. We ran FlairKV at peak throughput for 35 
seconds (Fig. 12). At the 10s mark, the controller emulated 
a switch failure by wiping out the switch registers and in-
stalling rules to drop switch heartbeats. After missing 3 
heartbeats, the leader suspects that the switch has failed 
and starts a new session. During this process, the switch is 
inactive, which causes the throughput to drop to zero for 
750ms. Afterwards, the switch resumes normal operations. 
Leader Failure. Fig. 13 shows FlairKV throughput during 
the leader failure. We ran FlairKV at peak throughput for 
35 seconds. At the 10s mark, we kill the leader process. 
Write requests fail, but the switch continues to forward 
read requests to followers. After missing 3 heartbeats the 
switch deactivates the session, and the throughput drops 
to zero. After 6 heartbeats, the followers elect a new leader 
that starts a new session. The system resumes its operation 
with one leader and one follower. 
Follower Failure. We ran FlairKV at peak throughput for 
35 seconds (Fig. 14). At the 10s mark, we kill a follower 
process. This causes a drop in throughput as fewer replicas 

are available to serve read requests. The switch keeps for-
warding client requests to the failed follower until the 
leader updates the switch. The dip in throughput at the 
second 10 is because we use closed-loop clients and some 
of the clients block waiting for the failed replica before tim-
ing out and retrying. Afterwards, the system throughput 
drops by 33% due to the loss of one follower. 

7.4 Scalability 

To demonstrate FlairKV scalability, we measured the sys-
tem throughput using a read-only YSCB workload C while 
varying the number of replicas (Fig. 15). The figure shows 
that FlairKV throughput scales linearly with the number of 
replicas, reaching 5.4 million request per second with 6 fol-
lowers. We notice that the system achieves much higher 
performance under the read-only workload mainly due to 
the lower operation overhead (as writes take 35 times 
longer than reads even without accounting for the replica-
tion overhead). FlairKV is almost perfectly scalable, it only 
deviates by 1.1% from perfect linearly scalable perfor-
mance.  
 

 

(a) Throughput (b) Read latency  
Fig. 10. Throughput and Latency while varying skewness. The figures show the throughput (a) and the 
average latency (b) for different zifpian constants for a uniform workload B with 300 clients. 

Fig. 11. Throughput while varying read 
ratio. Using uniform workload B 

   
Fig. 12.   Throughput during a switch failover. Fig. 13.   Throughput during leader failover. Fig. 14.   Throughput during a follower failure. 

Fig. 15. FlairKV scalability with different number of replicas 
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7.5 Load-balancing Performance Evaluation 

We measured the system throughput using the following 
three configurations of FlairKV (detailed in 6.2) 
 FlairKV-Rand selects a follower or the leader at random. 

Consequently, read requests for stable kgroups are uni-
formly spread across the followers and the leader.  

 FlairKV-LA applies the leader-avoidance technique. 
 FlairKV-LA+FL uses both leader-avoidance and follower 

load-awareness techniques. 
The FlairKV-LA+FL awareness technique (6.2) helps in 

deployments with heterogeneous hardware and load vari-
ance between followers. To emulate a heterogeneous plat-
form, we manually reduced the CPU frequency for one fol-
lower by 10%.  

FlairKV-LA avoids the leader when it is busy serving 
write requests. To measure the efficiency of this approach 
we measure the system throughput with workload B that 
has 5% writes with uniform key popularity distribution. 
The results (Fig. 16.a) show that FlairKV-LA brings 40% 
higher throughput than FlairKV-Rand. This is due to 
avoiding the leader that becomes overloaded when receiv-
ing write requests. This reduces the load on the leader, con-
sequently it accelerates write operations and reduces the 
period in which kgroups are marked unstable. FlairKV-
LA+FL had comparable performance to FlairKV-LA as 
nodes are homogenous. 

We run the same experiment on the emulated hetero-
geneous setup. Fig. 16.b shows the throughput of the dif-
ferent load balancing techniques. FlairKV-LA and FlairKV-
LA+FL send majority of the reads to the two followers. 
Since one of the followers is slower the total system 
throughput is reduced. Nevertheless, FlairKV-LA+FL 

achieves 17% higher throughput than FlairKV-Rand and 
3% higher throughput than FlairKV-LA. The negligible im-
provement over FlairKV-LA is because the high overhead 
of the write operations. 

To eliminate the write operation overhead, we com-
pared the systems’ throughput with the read only work-
load C with a uniform distribution on the emulated heter-
ogeneous setup (Fig. 16.d). FlairKV-LA+FL brings 17% 
higher throughput compared with the other two tech-
niques, because it distributes the load proportionally to the 
node’s request queue length. Furthermore, we noticed that 
FlairKV-LA+FL reduces latency by 10%. FlairKV-LA and 
FlairKV-Rand are equivalent under the read-only work-
load, because they distributed the load equally across the 
nodes. Fig. 16.c shows that under a read-only workload 
with a homogenous hardware, all load-balancing tech-
niques achieve similar throughput. 

7.6 Different Number of Keys 

We compared the performance of FlairKV against FLeases 
using YCSB B workload (95:5 read:write ratio) while vary-
ing the number of keys in the system from 100K to 4M 
keys. Fig. 17 shows the throughput and the average latency 
with uniform and skewed workloads. For the uniform 
workload (Fig. 17.a and 17.c), FlairKV achieves up to 45% 
higher throughput and up to 51% lower latency compared 
to FLeases when using 4M keys. For the skewed workload  
 (Fig. 17.b and Fig. 17.d), FlairKV achieved up to 21% 
higher throughput and up to 23% lower latency compared 
to FLeases when using 4M keys. We note that the perfor-
mance of FlairKV and FLeases degrades slightly with 
larger data sets. For instance, FlairKV’s has 10% lower 
throughput when storing 4M objects compared with when 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 

                                 (a) (b)                     (c)                  (d) 

Fig. 16. Throughput using different load-balancing techniques. (a) Uses workload B without slowing any follower. (b)  Uses workload B and 
slows one follower. (c) uses workload C without slowing any follower. (d) Uses workload C and slows one of the followers. 

 
 

                  (a) Throughput - Uniform             (b) Throughput -Zipf                    (c) Latency-Uniform           (d) Latency-Zipf 
Fig. 17. Throughput and Latency while varying the number of clients. The figures show the throughput and the average latency for different 
number of keys for workload B for the uniform distribution (a, c), and for the Zipf distribution (b, d). 



IBRAHIM KETTANEH ET AL.:  ACCELERATING READS WITH IN-NETWORK CONSISTENCY-AWARE LOAD BALANCING 13 

storing 100K objects. This performance degradation is due 
to Raft’s implementation of the key value store and not due 
any changes in the level of contention on the object stability 
array. 

8  RELATED WORK 

Network-accelerated systems. SwitchKV [22] uses SDN 
capabilities to route client requests to the caching node 
serving the key. A central controller populates the for-
warding rules to invalidate routes for objects that are being 
modified and installs routes for newly cached objects. 
NetCache [21] proposes using the limited switch memory 
as a look-through cache. Due to the memory limitation 
NetCache prototype had 8 MB of cache in the switch. We 
note that the NetCache approach is orthogonal to FLAIR’s. 
FLAIR can be further optimized by caching the most pop-
ular values in the switch. 
Network-accelerated consensus. A number of recent ef-
forts leverage SDN’s capabilities to optimize consensus 
protocols. Speculative Paxos [33] builds a mostly ordered 
multicast primitive and uses it to optimize the multi-Paxos 
consensus protocol. Network-ordered Paxos (NOPaxos) 
[32] leverages modern network capabilities to order mul-
ticast messages and add a unique sequence number to 
every client request. NOPaxos uses these sequence number 
to serialize operations and to detect packet loss. Specula-
tive Paxos and NOPaxos are optimized for operations that 
update the log but not for read operations. NetChain [43] 
and NetPaxos [44] implement replication protocols on a 
group of switches. These protocols are suitable for systems 
that store only a few megabytes of data (e.g., 8MB in the 
NetChain prototype). Unlike FLAIR, these efforts do not 
optimize for read operations. Reads are still served by the 
leader or a quorum of replicas. HovercRaft [45] is Raft-
based protocol that offload the replication operation to a 
programmable switch. When the leader receives a read re-
quest, it can ask one of the followers to serve this read re-
quest. Hovercraft does not explore new consistency-aware 
load balancing techniques. 
Consensus protocols optimized for the WAN. A number 
of consensus protocols are optimized for WAN deploy-
ments. Quorum leases [10] proposes giving a read lease to 
some of the followers. Mencius [46] is a multi-leader pro-
tocol in which each leader controls part of the log. EPaxos 
[47] is a leaderless protocol where clients can submit a re-
quest to any replica. Non-conflicting write can commit in 
one round trip, while conflicting writes will be resolved 
using Paxos. CURP [48] optimizes the write operation 
through exploiting commutativity between concurrent 
writes. In data center deployments, CURP reads are served 
by the leader and hence are limited to a single node perfor-
mance, in WAN deployment CURP applies a technique 
similar to FLeases. Tempo [49] is a leaderless protocol that 
relies on timestamps to guarantee consistency. Each log en-
try is tagged with a timestamp and is considered commit-
ted only after all log entries with lower timestamps are 
committed. Delos [50] provides a virtual shared log with a 
convenient API. Applications are oblivious to the real im-
plementation of the shared log, which can consist of mul-
tiple consensus instances with different implementations.      

A number of recent protocols leverages RDMA to opti-
mize consensus protocols. DARE [15] implements RAFT 
protocol over RDMA, and committing a write operation re-
quires two RDMA write operations. APUS [51] is a Paxos-
based consensus library that requires one RDMA write op-
eration to commit an operations. Mu [52] is a microsecond 
scale consensus library. The three aforementioned proto-
cols are leader-based and aim to utilize RDMA to optimize 
the replication of the log. Hermes [53] is leaderless protocol 
that uses logical timestamps to resolve write conflicts lo-
cally at each replica. A write operation is committed if rep-
licated on all replicas. Hence, replicas can serve read oper-
ations locally. However, in a case of a replica or network 
failure, the system stalls until the failed replica is removed 
from the cluster. 

9  CONCLUSION 

We present FLAIR, a novel protocol that leverages the ca-
pabilities of the new generation of programmable switches 
to accelerate read operations without affecting writes or 
using leases. FLAIR identifies, at line rate, which replicas 
can serve a read request consistently, and implements a set 
of load-balancing techniques to distribute the load across 
consistent replicas. We detailed our experience building 
FlairKV and presented several techniques to cope with the 
restrictions of the current programmable switches. We 
hope our experience informs a new generation of systems 
that co-design network protocols with system operations. 
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