
FLAIR: Accelerating Reads with Consistency-Aware Network Routing
Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, Samer Al-Kiswany

University of Waterloo, Canada

Abstract
We present FLAIR, a novel approach for accelerating read
operations in leader-based consensus protocols. FLAIR
leverages the capabilities of the new generation of
programmable switches to serve reads from follower
replicas without compromising consistency. The core of the
new approach is a packet-processing pipeline that can track
client requests and system replies, identify consistent
replicas, and at line speed, forward read requests to replicas
that can serve the read without sacrificing linearizability. An
additional benefit of FLAIR is that it facilitates devising
novel consistency-aware load balancing techniques.

Following the new approach, we designed FlairKV, a
key-value store atop Raft. FlairKV implements the
processing pipeline using the P4 programming language. We
evaluate the benefits of the proposed approach and compare
it to previous approaches using a cluster with a Barefoot
Tofino switch. Our evaluation indicates that, compared to
state-of-the-art alternatives, the proposed approach can bring
significant performance gains: up to 42% higher throughput
and 35-97% lower latency for most workloads.

1. Introduction
Replication is the main reliability technique for many mod-
ern cloud services [1, 2, 3] that process billions of requests
each day [3, 4, 5]. Unfortunately, modern strongly-con-
sistent replication protocols [6] – such as multi-Paxos [7],
Raft [8], Zab [9], and Viewstamped replication (VR) [10] –
deliver poor read performance. This is because these proto-
cols are leader-based: a single leader replica (or leader, for
short) processes every read and write request, while follower
replicas (followers for short) are used for reliability only.

Optimizing read performance is clearly important; for in-
stance, the read-to-write ratio is 380:1 in Google’s F1 adver-
tising system [11], 500:1 in Facebook’s TAO [5], and 30:1
in Facebook memcached deployments [12]. Previous efforts
have attempted to accelerate reads by giving read leases [13]
to some [14] or all followers [1, 15, 16], While holding a
lease, a follower can serve read requests without consulting
the leader; each lease has an expiration period. Unfortu-
nately, this approach complicates the system’s design, as it
requires careful management of leases, affects the write op-
eration – as all granted leases need to be revoked before an
object can be modified – and imposes long delays when a
follower holding a lease fails [1, 14].

Alternatively, many systems support a relaxed con-
sistency model (e.g., eventual [2, 17, 18, 19, 20, 21] or read-
your-write [5, 21, 22]), in exchange for the ability to read
from followers, albeit the possibility of reading stale data.

In this paper, we present the fast, linearizable, network-
accelerated client reads (FLAIR), a novel protocol to serve
reads from follower replicas with minimal changes to cur-
rent leader-based consensus protocols without using leases,
all while preserving linearizability. In addition to improving
read performance, FLAIR improves write performance by
reducing the number of requests that must be handled by the
leader and employing consistency-aware load-balancing.

FLAIR is positioned as a shim layer on top of a leader-
based protocol (§3). FLAIR assumes a few properties of the
underlying consensus protocol: the operations are stored in
a replicated log; at any time, there is at most one leader in
the system that can commit new entries in the log; reads
served by the leader are linearizable; and after committing
an entry in the log, the leader knows which followers have a
log consistent with its log up to that entry. These properties
hold for all major leader-based protocols (Raft [8], VR [10],
DARE [23], Zookeeper [2], and multi-Paxos [24, 25, 26]).

FLAIR leverages the power and flexibility of the new
generation of programmable switches. The core of FLAIR is
a packet-processing pipeline (§4) that maintains compact
information about all objects stored in the system. FLAIR
tracks every write request and the corresponding system re-
ply to identify which objects are stable (i.e., not being mod-
ified) and which followers hold a consistent value for each
object, then uses this information to forward reads of stable
objects to consistent followers. Followers optimistically
serve reads and the FLAIR switch validates read replies to
detect stale values. If the switch suspects that a reply from a
follower is stale, it will drop the reply and resubmit the read
request to the leader.

An additional benefit of FLAIR is that it facilitates the
building of novel consistency-aware load balancing tech-
niques. In systems that grant a lease to
followers [1, 14, 15, 16], clients send read requests to a ran-
domly selected follower. If the follower does not hold a
lease, it blocks the request until it obtains a lease, or it for-
wards the request to the leader; either way, this approach
adds additional delay. FLAIR does not incur this ineffi-
ciency as FLAIR load balances read requests only among
followers that hold a consistent value for the requested ob-
ject. In this paper we design three consistency-aware load
balancing techniques (§6): random, leader avoidance, and
load awareness.

Unlike other systems that use switch’s new
capabilities [27, 28, 29], FLAIR does not rely on the control-
ler to update the switch information after every write opera-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 723

tion, as this approach would add unacceptable delays. In-
stead, FLAIR piggybacks control messages on system re-
plies, and the switch extracts and processes them.

Despite its simplicity, implementing this approach is
complicated by the limitations of programmable switches
(§2) and the complexity of handling switch failures, network
partitioning, and packet loss and reordering (§4).

To demonstrate the powerful capabilities of the proposed
approach, we prototyped FlairKV (§6), a key-value store
built atop Raft [8]. We made only minor changes to Raft’s
implementation [30] to enable followers to serve reads,
make the leader order write requests following the sequence
numbers assigned by the switch, and expose leader’s log in-
formation to the FLAIR layer. The packet-processing pipe-
line was implemented using the P4 programming
language [31]. We implemented the three aforementioned
load-balancing techniques (§6).

Our evaluation of FlairKV (§7) on a cluster with a Bare-
foot Tofino switch shows that FLAIR can bring sizable per-
formance gains without increasing the complexity of the
leader-based protocols or the write operation overhead. Our
evaluation with different read-to-write ratios and workload
skewness shows that FlairKV brings up to 2.8 times higher
throughput than an optimized Raft implementation, at least
4 times higher throughput compared to Viewstamped repli-
cation, Raft, and FastPaxos, and up to 42% higher through-
put and up to 35-97% lower latency for most workloads
compared to state-of-the-art leases-based design [1, 16].

The performance and programmability of the new gener-
ation of switches opens the door for the switches to be used
beyond traditional network functionalities. We hope our ex-
perience will inform a new generation of distributed systems
that co-design network protocols with systems operations.

2. Background
In this section, we present an overview of leader-based con-
sensus protocols, followed by a look at the new programma-
ble switches and their limitations.

2.1. Leader-based Consensus

Leader-based consensus (LC) protocols [8, 9, 10, 23, 24, 25]
are widely adopted in modern systems [2, 3, 4, 16]. The idea
of having a leader that can commit an operation in a single
round trip dates back to the early consensus protocols [7, 32].
Having a leader reduces contention and the number of mes-
sages, which greatly improves performance [7, 24].

LC protocols divide time into terms (a.k.a. views or
epochs). Each term has a single leader; if the leader fails, a
new term starts and a new leader is elected.

Clients send write requests to the leader (1 in Figure 1).
The leader appends the request to its local log (2) and then
sends the request to all follower replicas (3). A follower ap-
pends the request to its log (4) before sending an acknowl-

edgment to the leader (5). If the leader receives an acknowl-
edgment from a majority of its followers, the operation is
considered committed. The leader applies the operation to its
local state machine (e.g., in memory key-value store in
Figure 1) in (6), then acknowledges the operation to the
client (7). The leader will asynchronously inform the follow-
ers that it committed the operation. Followers maintain a
commit_index, a log index pointing to the last committed op-
eration in the log; when a follower receives the commit no-
tification, it advances its commit_index and applies the write
to its local store.

The replicated log has two properties that make it easy to
reason about: it is guaranteed that if an operation at index i
is committed, then every operation with an index smaller
than i is committed as well; and if a follower accepts a new
entry to its log, it is guaranteed that its log is identical to the
leader’s log up to that entry.

Client read requests are also sent to the leader. In Raft,
the leader sends a heartbeat to all followers to make sure it
is still the leader. If a majority of followers reply, the leader
serves the read form its local store: it will check that all com-
mitted operations related to the requested object are applied
to the local store before serving the request.

A common optimization is the leader lease optimization.
Instead of collecting a majority of heartbeats for every read
request, a majority of the followers can give the leader a
lease [8, 24]. While holding a lease, the leader serves reads
locally without contacting followers. Unfortunately, even
with this optimization, the performance of the leader-based
protocols is limited to a single-node performance.

2.2. Programmable Switches

Programmable switches allow the implementation of an ap-
plication-specific packet-processing pipeline that is de-
ployed on network devices and executed at line speed. A
number of vendors produce network-programmable ASICs,
including Barefoot’s Tofino [33], Cavium’s XPliant [34],
and Broadcom Trident 3 [35].

Figure 4(a) illustrates the basic data plane architecture of
modern programmable switches. The data plane contains
three main components: ingress pipelines, a traffic manager,

Figure 1. The path for a write operation.

724 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

and egress pipelines. A packet is first processed by an ingress
pipeline before it is forwarded by the traffic manager to the
egress pipeline that will finally emit the packet.

Each pipeline is composed of multiple stages. At each
stage, one or more tables match fields in the packet header
or metadata; if a packet matches, the corresponding action is
executed. Programmers can define custom headers and
metadata as well as custom actions. Each stage has its own
dedicated resources, including tables and register arrays (a
memory buffer). Figure 4(b) shows a simple example of a
pipeline that routes a request to a key-value store based on
the key, and Figure 4(c) shows the details of the KV routing
stage. The stage forwards the request based on the key in the
packet’s custom L4 header. The programmer implements a
forward() action that accesses the register array holding
nodes’ IP addresses. An external controller can modify the
register array and the table entries.

Stages can share data through the packet header and
small per-packet metadata (a few hundred bytes in size) that
is propagated between the stages as the packet is processed
throughout the pipeline (Figure 4(b)). The processing of
packets can be viewed as a graph of match-action stages.

Programmers use domain-specific languages like P4 [36]
to define their own packet headers, define tables, implement
custom actions, and configure the processing graphs.

Challenges. While programmable ASICs and their domain-
specific languages significantly increase the flexibility of
network switches, the need to execute custom actions at line
speed restricts what can be done. To process packets at line
speed, P4 and modern programmable ASICs have to meet
strict resource and timing requirements. Consequently, mod-
ern ASICs limit (1) the number of stages per pipeline, (2) the
number of tables and registers per stage, (3) the number of
times any register can be accessed per packet, (4) the amount
of data that can be read/written per-packet per register, (5)

the size of per-packet metadata that is passed between stages.
Finally, modern ASIC’s lack support of loops or recursion.

3. FLAIR Overview
FLAIR is a novel protocol that targets deployments in a sin-
gle data center. Figure 2 shows the system architecture,
which consists of a programmable switch, a central control-
ler, and storage nodes. Typically, multiple FLAIR instances
are deployed with each serving a disjoint set of objects. For
simplicity, we present a FLAIR deployment with one replica
set (i.e., one leader and its followers).

FLAIR is based on the following assumptions; the net-
work is unreliable and asynchronous, as there are no guaran-
tees that packets will be received in a timely manner or even
delivered at all, and there is no limit on the time a node or
switch takes to process a packet. Finally, FLAIR assumes a
non-byzantine failure model in which nodes and switches
may stop working but will never send erroneous messages.

FLAIR divides time into sessions (Figure 3). During a
session the leader is bonded to a single switch that runs the
FLAIR pipeline. Each session has a unique id that is assigned
in a strictly increasing order. A session ends when a leader
fails or the leader suspects that the switch has failed. An LC
term may have one or more sessions, but a session does not
span multiple terms.

A session starts with the FLAIR module at the leader
(dubbed the lflair module) incrementing the session id, com-
mitting it to the LC log, updating the switch information
about the objects in the system, then activating the session at
the switch. lflair module keeps the switch’s information up
to date while in an active session. If the switch does not have
an active session it drops all FLAIR packets.

Figure 2. System architecture. The solid arrow shows a client
request, while the dashed arrow show control messages.

Figure 3. FLAIR sessions. Time is divided into terms. Each
term starts with a leader election. Each term has one or more
sessions that start with updating the switch data.

(a) Switch data plane.

(b) Pipeline for routing based on
a hash-based key

(c) Simple match-action stage for routing based on a hash-based
key for the KV routing table in subfigure (b)

Figure 4. Switch data plane.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 725

Clients. FLAIR is accessed through a client library with a
simple read/write/delete interface. Read (get) and write (put)
read or write entire objects. The library adds a special FLAIR
packet header to every request, that contains an operation
code (e.g., read) and a key (a hash-based object identifier).

Controller. Our design targets data centers that use a SDN
network following a variant of the multi-rooted tree
topology [37, 38]. A central controller uses OpenFlow [39]
to manage the network by installing per-flow forwarding, fil-
tering, and rewriting rules in switches.

As with previous projects that leverage SDN
capabilities [27, 29, 40, 41], the controller assigns a distinct
address for each replica set. The controller installs forward-
ing rules to guarantee that every client request for a range of
keys served by a single replica set is passed through a spe-
cific switch (dubbed FLAIR switch); that switch will run the
FLAIR logic for that range of keys. The controller typically
selects a common ancestor switch of all replicas and installs
rules to forward system replies through the same switch.
Only client request/replies are routed through the FLAIR
switch, leader-follower messages do not have the FLAIR
header nor are necessarily routed through the FLAIR switch.

While this approach may create a longer path than tradi-
tional forwarding, the effect of this change is minimal.
Li et al. [40] reported that for 88% of cases, there is no addi-
tional latency, and the 99th percentile had less than 5 µs of
added latency. This minimal added latency is due to the fact
that the selected switch is the common ancestor of target rep-
licas and client packets have to traverse that switch anyway.

On a switch failure, the controller selects a new switch
and updates all the forwarding rules accordingly. The con-
troller load balances the work across switches by assigning
different replica sets to different switches.

Storage Nodes. The storage nodes run the FLAIR and LC
protocols. For read requests, before serving a read, followers
verify that all committed writes to the requested object have
been applied to the follower’s local storage.

Write requests are processed by the leader. After a suc-
cessful write operation, the leader passes to the lflair module
the log index at which the write was committed and the list
of followers that accepted the write operation and have a
consistent log up to that log index. The lflair encodes this list
into a compact bitmap and uploads it and the log index to the
switch (piggybacked on the write reply).

Programmable Switch. The switch is a core component of
FLAIR: it tracks every write request and the corresponding
reply to identify which objects are stable (not being modi-
fied) and which replicas have a consistent value of each ob-
ject (encoded in the bitmap provided by the lfair module). If
a read is issued while there are outstanding writes for the tar-
get object (i.e., writes without corresponding replies), the
read is forwarded to the leader. If a read request is processed

by the switch when there are no outstanding writes to the
requested object, the switch forwards the request to one of
the followers included in the last bitmap for the object sent
by the lflair module. Followers optimistically serve read re-
quests. The switch inspects every read reply; if it suspects
that a follower returned stale data (Section 4.4), it will con-
servatively drop the reply and forward the request to the
leader. FLAIR forwards all writes to the leader.

FLAIR also includes techniques to handle multiple con-
current writes to the same object (Section 4.3), packets reor-
dering (Section 4.6), and tolerating switch, node, and net-
work failures (Section 4.6).

4. System Design
4.1. Network Protocol

Packet format. FLAIR introduces an application-layer pro-
tocol embedded in the L4 payload of packets. Similar to
many other storage systems [27, 29, 40], FLAIR uses UDP
to issue client requests in order to achieve low latency and
simplify request routing. Communication between replicas
uses TCP for its reliability. A special UDP port is reserved
to distinguish FLAIR packets; for UDP packets with this
port, the switch invokes the FLAIR custom processing pipe-
line. Other switches do not need to understand the FLAIR
header and will treat FLAIR packets as normal packets. In
this way, FLAIR can coexist with other network protocols.

Figure 5 shows the main fields in the FLAIR header. We
briefly discuss the fields here (a detailed discussion of the
protocol is presented next):
 OP: the request type. Clients populate this field in the

request packet (e.g., read, or write); replicas populate this
field in the reply packets (e.g., read_reply, write_reply).

 KEY: hash-based object identifier.
 SEQ: a sequence number added by the switch. The switch

increments the sequence number on every write operation.
 SID: a unique session id. The <SID, SEQ> combination

represents a unique identifier for every write request.
 LOG_IDX: a log index. In a write_reply, the log index

indicates the index at which the write was committed. For
reads, the switch populates LOG_IDX to make sure the
followers’ logs are committed and applied up to that index.

 CFLWRS: In write_reply, the CFLWRS is a map of the
followers that have a consistent log up to LOG_IDX.

Following the FLAIR header is the original LC protocol pay-
load, which includes the value for read/write operations.

4.2. Switch Data Structures

To process a read request, the switch performs two specific
tasks (Section 4.4). First, it forwards read requests to con-
sistent followers while balancing the load among them. Sec-
ond, it verifies the read replies to preserve safety. To perform
these tasks, the switch maintains two data structures: a ses-
sion array and a key group array.

726 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Session array. A single switch typically supports multiple
replica sets (i.e., FLAIR+LC instances) with each set storing
a disjoint set of keys. Each entry in the session array main-
tains the session status for a single replica set. An entry con-
tains an is_active flag, session id, leader IP address, current
session sequence number, and the timestamp of the last
heartbeat received from the lflair module (Listing 1). When
is_active is true, we say the session is active, which indicates
that the session entry and kgroup array are consistent with
the leader’s information. The switch processes packets using
the FLAIR custom pipeline only if the session is active; oth-
erwise, it will drop all FLAIR packets, rendering the system
unavailable to clients until the switch can reach the lflair
module and sync its session entry and key group array.

Key group (KGroup) array. To decide if followers can
serve a certain read request, the switch needs to maintain in-
formation about which followers have the latest committed
value of every object. Maintaining such information in the
switch ASIC’s memory is not feasible; instead, FLAIR
groups objects based on their key and maintains aggregate
information per group. We use the most significant k bits of
the key to map an object to a key group (kgroup).

Every FLAIR+LC instance has a dedicated kgroup array.
Each entry in the array (Listing 1) contains the status of a
single kgroup, including an is_stable flag that indicates if all
objects in the kgroup are stable. If a kgroup is not stable
(is_stable is false), this indicates that at least one object in
the kgroup is being modified (i.e., has an outstanding write
in the system). The array entry also includes the sequence
number (seq_num) of the last write request processed by the
switch for any object in the kgroup, the log index (log_idx)
of the last successful write to any object in the kgroup, and
the consistent_followers bitmap pointing to all followers
that have a consistent log up to log_idx.

4.3. Handling Write Requests

To issue a write request, a client populates the OP and KEY
fields of the FLAIR packet header and puts the value in the

payload, then sends the request.
When the switch receives the request, it will mark the

corresponding kgroup entry as unstable. The switch will in-
crement the session_seq_num in the session array and use it
to populate the sequence number (seq_num) in the kgroup
entry and the sequence number (SEQ) in the request header.
Finally, the switch populates the session id (SID) field in the
header and forwards the request to the leader.

The lflair module will verify that the session id is valid,
and will pass the write request to the leader. The leader ver-
ifies that the <SID, SEQ> combination is larger than the
<SID, SEQ> number of any previous write request it ever re-
ceived, else it will drop the packet. The LC leader will pro-
cess the write request following the LC protocol (Sec-
tion 2.1): it will replicate the request to all followers, and
when a majority of followers acknowledge the operation, the
write operation is considered committed. A follower will
acknowledge a write operation only if its log is identical to
the leader’s log up to that entry.

For the write reply, the leader will pass the following to
the lflair module: the LC protocol payload for the write_re-
ply, the log index at which the write was committed, and the
list of followers that acknowledged the write. The lflair mod-
ule will create the write reply packet with the leader provided
payload, and will populate the LOG_IDX and the bitmap of
the consistent followers (CFLWRS) using the information
provided by the leader. lflair module populates the sequence
number (SEQ) in the write_reply header using the SEQ of the
corresponding write request. The lflair module then sends
the write_reply packet.

The switch will process the write_reply header and verify
its session id. The switch will compare the sequence number
(SEQ) of the reply to the sequence number (seq_num) in the
kgroup entry; if they are equal, this signifies that no other
write is concurrently being processed in the system for any
object in the kgroup. Consequently, it will update the log_idx
and the consistent_followers fields in the kgroup entry using
the values in the write reply. Then it will mark the kgroup
stable and forward the reply to the client.

If the sequence number in the reply is smaller than the
sequence number in the kgroup entry, this indicates that a
later write to an object in the same kgroup has been pro-
cessed by the switch. In this case, the switch forwards the
write reply to the client without modifying the kgroup entry.
The kgroup entry remains unstable until the last write to the
kgroup (with a SEQ number in the write_reply equal to the
seq_num in the kgroup entry) is acknowledged by the leader.

In a nutshell, the switch acts as a look-through metadata
cache. Write requests invalidate the switch metadata related
to the accessed kgroup, and write replies update the kgroup
metadata at the switch. As we see next, the kgroup metadata
is used to consistently load balance reads.

Figure 5. FLAIR packet format.
SessionArrayEntry {
bit<1> is_active;
bit<32> session_id;
bit<32> leader_ip;
bit<64> session_seq_num;
bit<48> heartbeat_tstamp; }

KGroupArrayEntry {
bit<1> is_stable;
bit<64> seq_num;
bit<64> log_idx;
bit<8> consistent_followers;

}

Listing 1. Session and kgroup entries. The numbers indicate the
field size in bits.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 727

4.4. Handling Read Requests

Clients fill the OP and KEY fields of the FLAIR header and
send the request. When the switch receives the request, it
will check the kgroup entry. If the entry is stable, the switch
will fill the sequence number (SEQ) and log index (LOG_IDX)
header fields using the values in the kgroup entry. Then it
will forward the request to one of the followers indicated in
the consistent_followers bitmap. Section 6.2 details our load
balancing techniques.

If the kgroup entry is not stable, the switch forwards the
read request to the leader. We note that there is a chance for
false positives in this design, as a single write will render all
the objects in the same kgroup unstable. This is a drawback
of maintaining information per group of keys. This ineffi-
ciency is incurred by leases-based protocols as well, as they
maintain a lease per group of objects.

When a follower receives a read request, the follower’s
FLAIR module validates the request, then calls
advance_then_read(LOG_IDX, key) routine, which compares
the follower’s commit_index to LOG_IDX. If the commit_in-
dex is smaller, the follower advances its commit_index to
equal LOG_IDX, apply all the log entries to the local store,
then serve the read request. The FLAIR module will popu-
late the read_reply header; for the SEQ and SID fields, it will
use the values found in the read request header.

We note that it is safe to advance the follower’s com-
mit_index to match the LOG_IDX in the read request, as the
switch forwards read requests to a follower only if the leader
indicates that all entries in the log up to that log index are
committed, and that this specific follower is one of the rep-
licas that have a log consistent to the leader’s log up to that
index. We discuss FLAIR correctness in Section 5.

When the switch receives a read_reply from a follower,
it validates the session id, then verifies that the SEQ number
of the read_reply equals the seq_num of the kgroup entry. If
the sequence numbers are not equal, this signifies that a later
write request was processed by the switch and there is a
chance the follower has returned stale value. In this case, the
switch drops the read_reply, generates a new read request
using the KEY field from read_reply packet, and submits the
read request to the leader. If the sequence number of the
read_reply equals the sequance number in the kgroup entry,
the switch forwards the reply to the client.

If a read request is forwarded to the leader, the lflair
module verifies the session id, then calls
advance_then_read(LOG_IDX, key). The switch verifies that
the leader reply is valid (i.e., has the correct session id) be-
fore forwarding it to the client, without checking the
seq_num in the kgroup entry.

4.5. Session Start Process

On the start of a new session, the lflair module reads the last
session id from the LC log, increments it, and commits the
new session id to the LC log. Then the lflair module asks the

central controller for a new switch. The central controller
neutralizes the old switch (making it drop all FLAIR pack-
ets) and reroutes FLAIR packets to a new switch, then con-
firms the switch change to the lflair module. This step guar-
antees that at any time at most one FLAIR switch is active.
The lflair module updates the session entry (Listing 1) at the
switch with the current leader IP and session id. For each
new session, session_seq_num is reset to zero.

Populating the kgroup array. The lflair module maintains
a copy of the kgroup array similar to the one maintained by
the switch. If the leader did not change between sessions
(e.g., the session change is due to switch failure), the kgroup
array at the lflair module is up to date. The lflair module will
set the seq_num entry in all kgroup entries to zero (equal to
the session_seq_num in the session entry)., and upload it to
the switch.

If the kgroup array at the lflair module is empty – for
instance, after electing a new leader – the lflair module will
query the leader for three pieces of information: its com-
mit_index, the list of followers with the same commit_index,
and a list of all uncommitted operations in the log (i.e., the
operations after the commit_index in the log). The list of un-
committed operations is typically small, as it only includes
operations that were received before the end of the last term
but were not committed yet. The lflair module will traverse
the list of uncommitted writes and mark their target kgroup
entries unstable. For all other kgroup entries, the lflair mod-
ule will mark them stable and set their seq_num to zero,
log_idx to the leader’s commit_index, and consistent_follow‐
ers to include all the followers that have the same com-
mit_index as the leader’s. After updating the session entry
and the kgroup array at the switch, the lflair module activates
the switch session (sets is_active to true).

4.6. Fault Tolerance

Follower Failure. We rely on the LC protocol to handle fol-
lower failures. To avoid sending read requests to a failing
follower, the leader notifies the lflair module when it detects
the failure of a follower. The lflair module removes the fol-
lower from the switch-forwarding table (Section 3).

Leader Failure. On leader failure, a new leader is elected
and a new term starts. The new leader informs the lflair mod-
ule of the term change; and the lflair module starts a new
session (Section 3).

The lflair module sends periodic heartbeats to the switch.
Upon receiving a heartbeat, the switch determines whether it
is from the current session. If the heartbeat is valid, the
switch updates the heartbeat_timestamp in the session array
and replies to the lflair module.

Switch Failure. If the lflair module misses the switch heart-
beats for a switch_stepdown period of time (3 heartbeats in
our prototype), the lflair module will suspect that the switch

728 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

has failed and will start a new session. For efficiency (i.e.
does not affect safety), if the switch misses three heartbeats
from the leader, it will deactivate the session.

Network Partitioning. If a network partition isolates the
switch from the leader, the leader treats it as a failed switch,
as detailed above. If a network partition isolates the switch
from a follower, read requests forwarded to the follower will
time out and the client will resubmit the request. This failure
affects performance, but not correctness. Upon determining
that a follower is not reachable, the leader removes it from
the forwarding table, as in the case of the failed follower de-
scribed above.
Packet Loss. If a read or write request is lost, the client times
out and resubmits the request. If a write reply is lost before
reaching the switch, the kgroup entry will remain unstable
until a new write operation to any key in the kgroup suc-
ceeds. While the kgroup entry is not stable, all read requests
are forwarded to the leader.
Packet Reordering. It is critical for FLAIR correctness that
the leader processes write requests in the same order that
they are processed by the switch. Every write operation gets
a unique <SID, SEQ> number. The switch marks a kgroup
entry unstable until the leader replies to the last write issued
for a key in the kgroup. Consequently, if the leader processes
the requests out of order, the switch will incorrectly mark a
kgroup stable while the out-of-order writes are modifying its
objects. To prevent this scenario, the leader keeps track of
the largest <SID, SEQ> it has ever processed and drops any
write request with a smaller number. While session numbers
(SIDs) are maintained in the log, the largest processed se-
quence number is retained in memory. If the leader fails, the
new leader starts a new session, increments the session id
(SID), and sets the session sequence number (SEQ) to zero.

5. Correctness
FLAIR guarantees linearizability, which means that concur-
rent operations must appear to be executed by a single
machine. FLAIR relies on the LC protocol for any operation
that updates the log and for reads from the leader.

FLAIR only adds the ability to serve reads from follow-
ers. In this section, we sketch out the proof of FLAIR cor-
rectness when the read is served by a follower. A full and
detailed proof is available in the technical report [42]. Fur-
ther, we used the TLA+ model checking tool [43] to verify
the FLAIR correctness. We started from Raft’s TLA+ spec-
ification [44] and extended it with a formal specification for
our protocol and new invariants to validate the linearizability
of reads. The TLA+ specification is in our technical report
[42].

Safety. FLAIR guarantees that all read replies are lineariza-
ble. FLAIR trusts that the leader’s read replies are lineariza-
ble and forwards them to the client. For reads served by fol-
lowers, FLAIR guarantees that the read reply returns an

identical value, as if the read was served by the leader. This
is guaranteed using the following two steps:

First, when the switch receives a read request, the switch
forwards that request to followers only when the switch has
an active session and the kgroup entry is stable. This signi-
fies that the switch information is up-to-date with the lflair
module’s information. Identifying a kgroup entry as stable
signifies that there are no current writes to any object in the
kgroup and that the last leader-provided consistent_follow‐
ers bitmap points to followers that have the last committed
value for every object in the kgroup. Consequently, any of
the consistent followers will return a value identical to the
leader’s value.

Second, after forwarding a read request to a follower
(say, flwrA), the switch may receive a write request that
modifies the object. The leader may replicate the write re-
quest to a majority of nodes that does not include flwrA. If
the leader processes the write request before flwrA serves
the read request, flwrA will return stale data. To avoid this
case, the switch performs a safety check on every read reply
coming from followers: it verifies that the kgroup is still sta-
ble, and that the sequence number in the read_reply is equal
to the sequence number in the kgroup entry. If the sequence
numbers do not match (which indicates that there are later
writes to objects in the kgroup), the switch conservatively
drops the read reply and forwards the request to the leader.
At all times, reads are linearizable in FLAIR.

6. Implementation
To demonstrate the benefits of the new approach, we proto-
typed FlairKV, a FLAIR-based key-value store built atop
Raft [30]. We chose Raft due to its adoption in production
systems [45, 46, 47, 48, 49], and the availability of
standalone production-quality implementations [50].

6.1. Storage System Implementation

We have implemented FlairKV, including all switch data
plane features, the FLAIR module, leaders’ and followers’
modifications, and the client library. We extended the Raft’s
follower code to implement an advance_then_read() func-
tion. We extended the leader to notify the lflair module as
soon as it gets elected, and to extract its commit_index, the
list of followers with a commit_index equal to the leader’s
commit_index, and the list of uncommitted writes. We ex-
tended the write reply with the list of followers which
acknowledged the write. We implemented the leader lease
optimization [8, 24] and modified Raft’s client library to add
the FLAIR header to client requests.

6.2. Switch Data Plane Implementation

The switch data plane is written in P4 v14 [31] and is com-
piled for Barefoot’s Tofino ASIC [33], with Barefoot’s
P4Studio software suite [51]. Our P4 code defines 30 tables
and 12 registers: six for the session array and six for the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 729

kgroup array. The kgroup array has 4K entries. Larger num-
ber of kgroups had negligible effect on performance. In total,
our implementation uses less than 5% of the on-chip
memory available in the Tofino ASIC, leaving ample re-
sources to support other switch functionalities or more
FlairKV instances. The rest of this section discusses optimi-
zations implemented in FlairKV to cope with the strict tim-
ing and memory constraints of P4 and switch ASIC.

Heartbeats implementation. The leader and the switch ex-
change periodic heartbeats. If the switch_stepdown period
passes without receiving a leader heartbeat, the switch deac-
tivates the session. Instead of running a process in the con-
troller to continuously track heartbeats, the switch monitors
missed heartbeats as part of the validation step in the pro-
cessing pipeline. The switch keeps track of the timestamp of
the last heartbeat received in the session array (Listing 1).
When processing any FLAIR packet, the switch computes
the difference between the current time and the last heartbeat
timestamp; if the difference is larger than switch_stepdown,
the switch deactivates the session, making the system una-
vailable until the leader starts a new session.

Forwarding logic translates the consistent followers’
bitmap to follower IP addresses. Storing the IP addresses of
consistent followers for every entry in the kgroup array
significantly increases the memory footprint. Moreover,
randomly selecting a follower from the list while avoiding
inconsistent ones is tricky given the P4 and current ASIC
challenges (Section 2.2). Instead, the FlairKV leader
encodes the follower status in a one-byte
consistent_followers bitmap (Listing 1). Replicas are
ordered in a list. If the least significant bit in the
consistent_follower bitmap is set, this indicates that the first
replica in the list is consistent, and so forth.

When forwarding a read request, the switch translates the
encoded bitmap of consistent followers to select one fol-
lower; Figure 6 shows the translation process. The con‐
sistent_followers bitmap is used as an index to the transla-
tion table. Each entry in the table has an action that randomly
selects a number that is then used as an index to the IP ad-
dresses table.

This design has two benefits: it significantly reduces the
memory footprint of the kgroup array, and it can be acceler-
ated using P4 “action profiles” [52].

Load balancing. In addition to the aforementioned random
load-balancing technique (Figure 6), we implemented two
load-aware techniques:

 Leader avoidance. Our benchmarking revealed that the
write operation takes 35 times longer than a read
operation; most of this overhead is borne by the leader.
Consequently, this load-balancing technique avoids
sending read requests to the leader for stable kgroups if
there are any writes in the system. The aim is to reduce the
leader load, as it is already busy serving writes and serving
reads for unstable kgroups.
To implement this technique, we compare the sequence
number of a write_reply with the session_seq_num. If
they are not equal, then there are pending writes in the sys-
tem and the leader should not be burdened with any reads
to stable kgroups.

 Follower load awareness. This technique distributes the
load across followers proportionally to their load in the
last n seconds. This technique is especially useful for
deployments that use heterogeneous hardware, experience
workload variations, or deploy more than one replica (i.e.,
replicas for different ranges of keys) on the same machine.
In our design, followers report the length of the request
queue in every heartbeat. Every second, the leader calcu-
lates the average queue length for each follower and as-
signs proportional weights to each follower. The leader
updates the translation table to reflect these weights. For
instance, if follower 1 should receive double the load of
any other replica, the action for a bitmap 00111 will be
rand(1, 1, 2, 3), doubling the chance replica 1 is selected.

Register access logic. Each stage has its own dedicated reg-
isters, and a register can be accessed only once in a stage.
This restriction complicates FlairKV’s logic, as different
packet types (e.g., read and write_reply) must access the
same registers at different stages in the pipeline. To cope
with this restriction, FlairKV adds a dedicated table to access
each register. Figure 7 shows an example of an action table
for accessing register r1. Our code aggregates the infor-
mation about all possible modes of accessing r1 in the
packet’s metadata, including the access type (read or write),
the index, and which data should be written or where the
value should be read to. We then use a dedicated match-ac-
tion table (Figure 7) to perform the actual read or write op-
eration to/from the register in a single stage with a single in-
vocation of the table. This approach has the additional ben-
efit of reducing the number of stages.

Processing concurrent requests. The switch processes
packets sequentially in a pipeline. Each pipeline stage pro-
cesses one packet at a time. The switch may have multiple

Figure 6. Logical view of the forwarding logic. The stability
bitmap matches an entry in the translation table and executes the
corresponding action, generating an index of the selected
destination’s IP address. Using the index, the IP address table
sets the destination’s IP address in the metadata.

730 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

pipelines, each serving a subset of switch ports. FLAIR uses
a single ingress pipeline and all egress pipelines. If a FLAIR
packet is received on a different ingress pipeline, the packet
is recirculated [52] to the FLAIR pipeline.

6.3. Putting the Switch Pipeline Together
Figure 8 shows the pipeline layout in the switch data plane
and the flow for a FlairKV packet. The pipeline starts by
reading the session information (1 in Figure 8) and adding it
to the packet metadata. Then the it extracts the operation type
(2) and validates the request (3) by verifying the session id.
If the packet has an older session id the packet is dropped.
Further, in the validation stage the switch confirms that it did
not miss leader heartbeats in the last switch_stepdown period
(Section 4.6), else it deactivates the session.

Read requests access the kgroup array (6), and if the
group is stable, the request is forwarded to a load-balancing
logic (10) that implements the forwarding logic (Sec-
tion 6.2); otherwise, it is sent to the leader.

If a read reply is from the leader, it is forwarded to the
client (12). If it is from a follower, the pipeline performs the
safety check (9) and, if it suspects the reply is stale, drops
the reply, then resubmits the read request to the leader (11).

Write requests update the session_seq_num (4) and the
kgroup entry (6), then are sent to the leader (11).

Write replies compare the sequence number of the reply
to the one in the kgroup entry (5); if they match, the kgroup

entry is updated (6) and the pipeline forwards the reply to the
client (12).

The egress pipeline (13) has one logical stage that popu-
lates the header fields (e.g., SEQ number, SID, etc.) using the
data available in the packet’s metadata.

7. Evaluation
We compare our prototype with previous approaches in
terms of throughput and latency (§7.1) with different work-
load skewness (§7.2) and read/write ratios (§7.3).

Testbed. We conducted our experiments using a 13-node
cluster. Each node has an Intel Xeon Silver 10-core CPU,
48GB of RAM, and 100Gbps Mellanox NIC. The nodes are
connected to an Edgecore Wedge 100 ×32BF switch with 32
100Gbps ports. The switch has Barefoot’s Tofino ASIC,
which is P4 programmable. Unless otherwise specified,
three machines ran the server code, while the other 10 ma-
chines generated the workload.

Alternatives. We compare the throughput and latency of the
following designs and optimizations:
 Leader-based. We used two leader-based protocol

implementations: LogCabin, the original implementation
of Raft (Raft), and an implementation of Viewstamped
replication (VR) [26]. Raft and VR implement a batching
optimization which batches and replicates multiple log
entries in a single round trip.

 Optimized Leader-based (Opt. Raft). Our
benchmarking revealed that the original Raft
implementation could not utilize the resources of our
cluster. We implemented two main optimizations: first, we
changed the request-processing logic from an event-
driven to a thread-pool design, as our benchmarking
indicated a thread-pool performs better; second, we
implemented the leader-lease optimization. These changes
significantly improved Raft’s performance.

 Quorum-based reads (Fast Paxos). An alternative to the
leader-based design is the quorum design [40, 41, 53].
Typically, client read requests are sent to all followers, and
each follower responds directly to the client. The client
waits for a reply from a supermajority [53] before

Figure 7. Register access table. P4 code aggregates access in-
formation that is used by a dedicated register access table.

Figure 8. Logical view of the FlairKV switch data plane.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 731

completing a read. We used a Fast Paxos implementation
that implements only the normal case [26].

 Follower-lease optimization (FLeases). Similar to
MegaStore [1], the leader grants read leases to all
followers. Before serving a write, the leader revokes all
leases, processes the write operation, and then grants a
new lease to followers. The lease’s grant/revoke messages
are piggybacked on the consensus protocol messages.
However, writes should be processed by all followers
before replying to the client. In our experiments, if a
follower receives a read request for an object for which it
does not have an active lease, it forwards the request to the
leader. MegaStore applications typically partition the keys
into thousands of groups, each group contains logically-
related keys [1] (e.g., a key group per blog [1]). We
partitioned the keys into 4K groups (the same number of
kgroups in FlairKV), and followers get a lease per group.
Clients randomly select a follower for each read request
and send the request directly to it.

 Unreplicated/NOPaxos (Unrep.). As a baseline, the
unreplicated configuration deploys Optimized-Raft
(discussed above) on a single node. The single node stores
the data set and serves all operations without replication.

This configuration also represents the best possible
performance of the network-optimized NOPaxos [40]
protocol. NOPaxos uses a network switch to order and
multicast read and write operations to all replicas. An
operation is successful if the majority accepts a write or
returns the same value for a read. Consequently, NOPaxos
read performance is limited by the slowest node in the
majority of nodes. NOPaxos evaluation shows that the
best throughput and latency the protocol can achieve are
within 4% that of an unreplicated system [40].

 FlairKV. Unless otherwise specified, we used FlairKV
with the leader-avoidance load-balancing technique.

We benchmarked every system and selected a configuration
that maximized its performance. We stored all data in
memory. In all experiments, all systems’ performance (with
the exception of FastPaxos) was stable with a standard devi-
ation less than 1%.

Workload. We used synthetic benchmarks and the YCSB
benchmark [54] to evaluate the performance of all systems.
In our evaluation, we considered both uniform and skewed
workloads. The skewed workload follows the Zipf distribu-
tion with a skewness parameter of 0.99. We also used the
YCSB benchmark. We experimented with 100,000 and 1
million keys. We present the results with 100,000 keys as, in
skewed workloads, the fewer number of hot keys increased
the chance of having concurrent requests accessing the same
key (i.e. is less favorable for FlairKV). FlairKV brings
slightly higher performance benefit when using 1 million
keys than 100,000 keys. The key size is 24 bytes and the hash
of the key string is used as the key in the FLAIR protocol.
The value size is 1KB.

7.1. Performance Evaluation
We compared the seven systems using YCSB workload B
(95:5 read:write ratio) while varying the number of clients,
with uniform and skewed workload distribution. Figure 9
shows the throughput and average latency with a uniform
and skewed distributions. With the uniform distribution
(Figure 9 (a) and (c)), FlairKV achieves up to 42% higher
throughput and 23.7% lower average latency than FLeases,
and 1.3 to 2.1 times higher throughput and 1.5 to 2.4 times
lower latency compared to optimized Raft and unreplicated
setup. Fast Paxos, Raft, and VR, achieve the lowest through-
put and highest latency as these systems contact the majority
of nodes for every read.

FlairKV achieved better performance than FLeases for
three reasons. First, FlairKV uses the leader-avoidance load-
balancing technique, which reduces the load on the leader
when there are writes, thereby accelerating writes and short-
ening the time period in which kgroups are marked unstable.
This approach is effective as writes take almost 35 times
longer than reads in Opt.Raft, and 30 times longer in the un-
replicated setup. We recorded the number of read requests
served by the leader. For instance, with 300 clients
(Figure 9.a) the leader served 2% of the reads in FlairKV
(those are reads to unstable kgroups), while it served 34% of
the reads in FLeases. We note that the leader-avoidance tech-
nique cannot be applied to FLeases which tasks the clients

(a) Throughput - Uniform (b) Throughput -Zipf (c) Latency-Uniform (d) Latency-Zipf
Figure 9. Throuhgput and Latency while varying the number of clients. The figures show the throughput and the average latency for
different number of clients for workload B for the uniform distribution (a, c), and for the Zipf distribution (b, d).

732 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

with selecting a follower to send the read request to. This
technique requires accurate information about the current
load of the leader and which followers are stable which are
not available to clients.

Second, in FLeases, when an object is not stable, if a
client sends a request to a follower, the follower will redirect
the request to the leader, increasing overhead and incurring
extra latency. Unlike FLeases, FlairKV switch knows if an
object is not stable and forwards read requests for that object
directly to the leader. The third reason which had a minor
impact when using 3 replicas is that the write operation in
FLeases need to reach all followers, while FlairKV writes
only need a majority.

Optimized-Raft’s performance is better than that of Raft,
VR, and FastPaxos. The unreplicated deployment slightly
improves throughput and latency over Optimized-Raft by
avoiding the replication overhead for write operations. These
two systems still lag behind FlairKV as they only utilize a
single node (the leader) for serving all reads and writes.

Figure 9 (b) and (d) show the throughput and average
latency with a skewed workload (Zifpian constant of 0.99).
The skewed workload results in higher contention and an in-
creased frequency at which a read request finds a kgroup un-
stable. This contention reduces the chances of reading from
followers. FlairKV leader served 21% of reads of which 1%
are redirected from followers, while FLeases leader served

37% of reads. Even under the skewed workload, FlairKV
still achieves the highest performance, up to 26% higher
throughput and 18.1% lower latency than FLeases, and 1.5
to 1.8 times higher throughput and 2 to 2.4 times lower la-
tency than optimized Raft and the unreplicated setup.

Latency evaluation. Figure 13.a shows the latency CDF of
FlairKV, FLeases, OptRaft, and Raft. Under the uniform
workload B with 300 clients (other workloads had similar
results). FlairKV lowered the latency for the slowest 40%
requests by at least 38% relative to FLeases. Under the Zipf
workload (Figure 13.b), FlairKV lowered the slowest 50%
of request by up to 35% relative to FLeases.

FLeases has higher latency as it incurs extra delay due to
the load imbalance between nodes (e.g., the leader serves
41% of requests for workload B with Zipf distribution) and
due to followers redirecting 4% of requests to the leader.

Under all workloads, FlairKV significantly improved op-
eration’s latency relative to OptRaft and Raft. The median
latency of FlairKV is 2% of Raft’s latency and 2-8% of
OptRaft’s latency.

7.2. Workload Skewness
We measured the impact of the workload skewness on
throughput (Figure 10.a) and average latency (Figure 10.b)
by varying the Zipfian constant from 0.5 to 0.99. FlairKV
consistently achieves better performance: 1.26 to 2.25 times
higher throughput and 1.13 to 2.48 times lower average la-
tency compared to all other systems. We notice that as the
skewness increases FlairKV and FLeases performance de-
creases as higher skewness increases contention on the few
popular kgroups, making them unstable for longer time, and
increases the number of requests the leaders have to process.
Other systems performance is not noticeably affected by
skewness.

We noticed high workload skewness affects FlairKV’s
performance more than FLeases. This is due to a subtle side
effect of FlairKV. When there are concurrent writes to the
same kgroup, FlairKV will mark a group unstable from the
moment the first request is processed by the switch until the

Figure 12. Subtle effect of
FLAIR. FLeases may grant leases
for up to 25% more time compared
to FlairKV. Bars mark the time (a) Throughput (b) Read latency

Figure 10. Throughput and Latency while varying skewness. The
figures show the throughput (a) and the average latency (b) for differ-
ent zifpian constants for a uniform workload B with 300 clients.

Figure 11. Throughput while
varying the read ratio. Using
uniform workload B.

from the moment a switch receives
a write request (w1 or w2) until it
receives a corresponding reply.12

(a) B-Uniform (b) B-Zipf
Figure 13. Latency CDF. The figures show the latency CDF for
reads under workload B using 300 clients with a uniform distribu-
tion (a), and a Zipf distribution with skewness of 0.99 (b). The lines
for Opt. Raft and Unrep. almost overlap.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 733

last request to the kgroup is replied to ([t1, t2] in Figure 12).
In FLeases, the lease revocation is piggybacked on the write
replication step (black diamonds in Figure 12). Once the
leader commits a write, it sends a commit notification and
grants a new lease to the followers (white diamonds). Hence,
FLeases may grant a lease between concurrent writes, creat-
ing more opportunity for serving reads from followers.

To further understand this effect, we tracked leases and
the stability of kgroups under the skewed (factor of 0.99)
write heavy YCSB workload A (1:1 read:write ratio). We
noticed that while 29% of reads found the kgroup unstable
in FlairKV, only 4% of reads in FLeases reached a follower
that did not have a lease. We further profiled the write oper-
ation path and found that FLeases revokes leases for 75% of
the write operation time (Figure 12), 25% shorter than the
period FlairKV marks a kgroup unstable. Despite this subtle
effect FlairKV leader still has lighter load, it served 29% of
reads compared to 37% served by the FLeases leader. Not-
withstanding this effect FlairKV still brings 17% to 26% per-
formance improvement even under skewed workloads.

7.3. Read/Write Ratio

Figure 11 shows the effect of the ratio of reads to writes on
systems’ performance with a uniform workload B. Com-
pared to FLeases, FlairKV has up to 1.5 times higher
throughput for all read to write ratios, with the exception of
the read-only workload in which their performance is com-
parable. FlairKV has 1.25 to 2.8 times higher throughput
compared to the Opt. Raft. Compared to the unreplicated
setup, FlairKV has up to 2.8 times higher throughput for
workloads with 70% reads or more and a comparable perfor-
mance under write heavy workloads (read ratio 50-70%).

8. Related Work
Network-accelerated systems. Recent projects have utilized
SDN capabilities to provide load balancing [55, 56, 57], ac-
cess control [58], seamless virtual machine migration [59],
and improving system security, virtualization, and network ef-
ficiency [60]. SwitchKV [29] uses SDN capabilities to route
client requests to the caching node serving the key. A central
controller populates the forwarding rules to invalidate routes
for objects that are being modified and installs routes for
newly cached objects. NetCache [28] proposes using the
limited switch memory as a look-through cache for key-
value stores.

Network-accelerated consensus. A number of recent efforts
leverage SDN’s capabilities to optimize consensus protocols.
Speculative Paxos [41] builds a mostly ordered multicast
primitive and uses it to optimize the multi-Paxos consensus
protocol. Network-ordered Paxos (NOPaxos) [40] leverages
modern network capabilities to order multicast messages and
add a unique sequence number to every client request.
NOPaxos uses these sequence number to serialize operations
and to detect packet loss. Speculative Paxos and NOPaxos

are optimized for operations that update the log but not for
read operations. NetChain [61] and NetPaxos [62] imple-
ment replication protocols on a group of switches. These
protocols are suitable for systems that store only a few meg-
abytes of data (e.g., 8MB in the NetChain prototype). Unlike
FLAIR, these efforts do not optimize for read operations.
Reads are still served by the leader or a quorum of replicas.

Consensus protocols optimized for the WAN. A number
of consensus protocols are optimized for WAN deploy-
ments. Quorum leases [14] proposes giving a read lease to
some of the followers; Unlike Megastore leases, when an ob-
ject is modified, only the followers that have the lease are
contacted. Quorum leases has a better performance than
Megastore leases in WAN setups, but do not bring benefits
when deployed in a single cluster [14]. Mencius [63] is a
multi-leader protocol in which each leader controls part of
the log. EPaxos [64] is a leaderless protocol where clients
can submit request to any replica. Non-conflicting write can
commit in one round trip, while conflicting writes will be
resolved using Paxos.

CURP [65] optimizes the write operation through ex-
ploiting commutativity between concurrent writes. In data
center deployments, CURP reads are served by the leader
and hence are limited to a single node performance, in WAN
deployment CURP applies a technique similar to FLeases.

9. Conclusion
We present FLAIR, a novel protocol that leverages the capa-
bilities of the new generation of programmable switches to
accelerate read operations without affecting writes or using
leases. FLAIR identifies, at line rate, which replicas can
serve a read request consistently, and implements a set of
load-balancing techniques to distribute the load across con-
sistent replicas. We detailed our experience building
FlairKV and presented a number of techniques to cope with
the restrictions of the current programmable switches. We
hope our experience informs a new generation of systems
that co-design network protocols with system operations.

Acknowledgment

We thank the anonymous reviewers and our shepherd, Amin
Vahdat, for their insightful feedback. We thank Ali
Mashtizadeh, Bernard Wong, and Ken Salem for their in-
sightful feedback on early versions of this paper. We thank
Lori Paniak for his help in running the experiments. This re-
search was supported by an NSERC Discovery grant, Can-
ada Foundation for Innovation (CFI) grant, and a grant from
Waterloo-Huawei Joint Innovation Lab.

References

[1] J. Baker, C. Bond, J. C. Corbett et al., "Megastore:
Providing scalable, highly available storage for

734 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

interactive services," in Proceedings of the Conference
on Innovative Data system Research (CIDR), 2011.

[2] P. Hunt, M. Konar, F. P. Junqueira et al., "ZooKeeper:
wait-free coordination for internet-scale systems," in
Proceedings of the USENIX annual technical
conference, Boston, MA, 2010.

[3] B. Calder, J. Wang, A. Ogus et al., "Windows Azure
Storage: a highly available cloud storage service with
strong consistency," in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems
Principles (SOSP), Cascais, Portugal, 2011, doi:
10.1145/2043556.2043571.

[4] J. C. Corbett, J. Dean, M. Epstein et al., "Spanner:
Google's globally-distributed database," in
Proceedings of the USENIX conference on Operating
Systems Design and Implementation (OSDI),
Hollywood, CA, USA, 2012: USENIX Association.

[5] N. Bronson, Z. Amsden, G. Cabrera et al., "TAO:
Facebook's distributed data store for the social graph,"
in Proceedings of the USENIX Technical Conference,
San Jose, CA, 2013: USENIX Association.

[6] H. Attiya and J. Welch, Distributed Computing:
Fundamentals, Simulations and Advanced Topics.
John Wiley & Sons, Inc., 2004.

[7] L. Lamport, "Paxos made simple," ACM Sigact News,
vol. 32, no. 4, pp. 18-25, 2001.

[8] D. Ongaro and J. Ousterhout, "In search of an
understandable consensus algorithm," in Proceedings
of the USENIX Annual Technical Conference,
Philadelphia, PA, 2014: USENIX Association.

[9] F. P. Junqueira, B. C. Reed, and M. Serafini, "Zab:
High-performance broadcast for primary-backup
systems," in Proceedings of IEEE/IFIP International
Conference on Dependable Systems&Networks, 2011:
IEEE Computer Society, doi:
10.1109/dsn.2011.5958223.

[10] B. Liskov and J. Cowling, "Viewstamped replication
revisited," Technical Report MIT-CSAIL-TR-2012-
021, MIT, 2012.

[11] J. Shute, R. Vingralek, B. Samwel et al., "F1: a
distributed SQL database that scales," Proc. VLDB
Endow., vol. 6, no. 11, pp. 1068-1079, 2013, doi:
10.14778/2536222.2536232.

[12] B. Atikoglu, Y. Xu, E. Frachtenberg et al., "Workload
analysis of a large-scale key-value store," presented at
the Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of
Computer Systems, London, England, UK, 2012.

[13] C. Gray and D. Cheriton, "Leases: an efficient fault-
tolerant mechanism for distributed file cache
consistency," in Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 1989: ACM,
doi: 10.1145/74850.74870.

[14] I. Moraru, D. G. Andersen, and M. Kaminsky, "Paxos
Quorum Leases: Fast Reads Without Sacrificing
Writes," in Proceedings of the ACM Symposium on
Cloud Computing, Seattle, WA, USA, 2014: ACM,
doi: 10.1145/2670979.2671001.

[15] J. Terrace and M. J. Freedman, "Object storage on
CRAQ: high-throughput chain replication for read-
mostly workloads," presented at the Proceedings of the
2009 conference on USENIX Annual technical
conference, San Diego, California, 2009.

[16] M. Burrows, "The Chubby lock service for loosely-
coupled distributed systems," in Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, Washington, 2006:
USENIX Association.

[17] "Swift’s documentation."
https://docs.openstack.org/swift/stein/index.html
(accessed April 14, 2019.

[18] "Redis." https://redis.io (accessed April 14, 2019.
[19] "Apache Cassandra." https://cassandra.apache.org

(accessed April 14, 2019.
[20] G. DeCandia, D. Hastorun, M. Jampani et al.,

"Dynamo: amazon's highly available key-value store,"
in Proceedings of the ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), Stevenson,
Washington, USA, 2007: ACM, doi:
10.1145/1294261.1294281.

[21] D. B. Terry, V. Prabhakaran, R. Kotla et al.,
"Consistency-based service level agreements for cloud
storage," in Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), Farminton,
Pennsylvania, 2013: ACM, doi:
10.1145/2517349.2522731.

[22] B. F. Cooper, R. Ramakrishnan, U. Srivastava et al.,
"PNUTS: Yahoo!'s hosted data serving platform,"
Proc. VLDB Endow., vol. 1, no. 2, pp. 1277-1288,
2008, doi: 10.14778/1454159.1454167.

[23] M. Poke and T. Hoefler, "DARE: High-Performance
State Machine Replication on RDMA Networks," in
Proceedings of the International Symposium on High-
Performance Parallel and Distributed Computing,
Portland, Oregon, USA, 2015, 2749267: ACM, pp.
107-118, doi: 10.1145/2749246.2749267.

[24] T. D. Chandra, R. Griesemer, and J. Redstone, "Paxos
made live: an engineering perspective," in Proceedings
of the annual ACM symposium on Principles of
distributed computing, Portland, Oregon, USA, 2007:
ACM, doi: 10.1145/1281100.1281103.

[25] D. Mazieres, "Paxos made practical," ed, 2007.
[26] "NOPaxos consensus protocol."

https://github.com/UWSysLab/NOPaxos (accessed
April 14, 2019.

[27] S. Al-Kiswany, S. Yang, A. C. Arpaci-Dusseau et al.,
"NICE: Network-Integrated Cluster-Efficient

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 735

Storage," in Proceedings of the International
Symposium on High-Performance Parallel and
Distributed Computing, Washington, DC, USA, 2017:
ACM, doi: 10.1145/3078597.3078612.

[28] X. Jin, X. Li, H. Zhang et al., "NetCache: Balancing
Key-Value Stores with Fast In-Network Caching," in
Proceedings of the Symposium on Operating Systems
Principles (SOSP), Shanghai, China, 2017: ACM, doi:
10.1145/3132747.3132764.

[29] X. Li, R. Sethi, M. Kaminsky et al., "Be fast, cheap
and in control with SwitchKV," in Proceedings of the
Usenix Conference on Networked Systems Design and
Implementation (NSDI), Santa Clara, CA, 2016:
USENIX Association.

[30] "LogCabin storage system." https://logcabin.github.io
(accessed April 14, 2019.

[31] "P4." https://p4.org (accessed April 14, 2019.
[32] L. Lamport, "The part-time parliament," ACM Trans.

Comput. Syst., vol. 16, no. 2, pp. 133-169, 1998, doi:
10.1145/279227.279229.

[33] "Barefoot Tofino."
https://www.barefootnetworks.com/products/brief-
tofino/ (accessed April 14, 2019.

[34] "Cavium / XPliant." https://origin-
www.marvell.com/documents/netpxrx94dcdhk8sksbp
/ (accessed April 14, 2019.

[35] "High-Capacity StrataXGS® Trident 3 Ethernet
Switch Series."
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56870-series
(accessed September 9, 2019.

[36] P. Bosshart, D. Daly, G. Gibb et al., "P4: programming
protocol-independent packet processors," SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95,
2014, doi: 10.1145/2656877.2656890.

[37] "Data Center: Load Balancing Data Center."
https://learningnetwork.cisco.com/docs/DOC-3438
(accessed April 14, 2019.

[38] L. A. Barroso and U. Hoelzle, The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-Scale Machines. Morgan and Claypool
Publishers, 2009, p. 120.

[39] N. McKeown, T. Anderson, H. Balakrishnan et al.,
"OpenFlow: enabling innovation in campus networks,"
SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp.
69-74, 2008, doi: 10.1145/1355734.1355746.

[40] J. Li, E. Michael, N. K. Sharma et al., "Just say no to
paxos overhead: replacing consensus with network
ordering," in Proceedings of the USENIX conference
on Operating Systems Design and Implementation
(OSDI), Savannah, GA, USA, 2016: USENIX
Association.

[41] D. R. K. Ports, J. Li, V. Liu et al., "Designing
distributed systems using approximate synchrony in

data center networks," in Proceedings of the USENIX
Conference on Networked Systems Design and
Implementation (NSDI), Oakland, CA, 2015: USENIX
Association.

[42] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan,
Samer Al-Kiswany, "Accelerating Reads with In-
Network Consistency-Aware Load Balancing,"
Technical Report, Waterloo Advanced Systems Lab,
2020.

[43] "TLA+ Language."
https://lamport.azurewebsites.net/tla/tla.html
(accessed April 14, 2019.

[44] D. Ongaro. "Raft TLA+ Specification."
https://github.com/ongardie/raft.tla (accessed 2019).

[45] "etcd: Distributed reliable key-value store for the most
critical data of a distributed system."
https://github.com/etcd-io/etcd (accessed April 14,
2019.

[46] "RethinkDB: the open-source database for the realtime
web." https://www.rethinkdb.com/ (accessed April 14,
2019.

[47] "Open Network Operating System (ONOS) - Cluster
Coordination."
https://wiki.onosproject.org/display/ONOS/Cluster+C
oordination (accessed.

[48] "Apache Kudu - Fast Analytics on Fast Data."
https://kudu.apache.org/ (accessed April 14, 2019.

[49] "Hashicorp Raft implementation."
https://github.com/hashicorp/raft (accessed April 14,
2019.

[50] "The Raft Consensus Algorithm."
https://raft.github.io/ (accessed April 14, 2019.

[51] "Barefoot P4 Studio."
https://www.barefootnetworks.com/products/brief-p4-
studio/ (accessed April 14, 2019.

[52] "P4 v16 Portable Switch Architecture (PSA)."
https://p4.org/p4-spec/docs/PSA-v1.0.0.html
(accessed April 14, 2019.

[53] L. Lamport, "Fast paxos," Distributed Computing, vol.
19, no. 2, pp. 79-103, 2006.

[54] "Yahoo! Cloud Serving Benchmark in C++, a C++
version of YCSB."
https://github.com/basicthinker/YCSB-C (accessed
April 14, 2019.

[55] B. Cully, J. Wires, D. Meyer et al., "Strata: High-
performance scalable storage on virtualized non-
volatile memory," in Proceedings of the USENIX
Conference on File and Storage Technologies (FAST),
2014, pp. 17-31.

[56] N. Handigol, M. Flajslik, S. Seetharaman et al.,
"Aster* x: Load-balancing as a network primitive," in
GENI Engineering Conference (Plenary), 2010, pp. 1-
2.

736 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[57] R. Wang, D. Butnariu, and J. Rexford, "OpenFlow-
based server load balancing gone wild," in
Proceedings of the USENIX conference on Hot topics
in management of internet, cloud, and enterprise
networks and services, Boston, MA, 2011: USENIX
Association.

[58] A. K. Nayak, A. Reimers, N. Feamster et al.,
"Resonance: dynamic access control for enterprise
networks," in Proceedings of the ACM workshop on
Research on enterprise networking, Barcelona, Spain,
2009: ACM, doi: 10.1145/1592681.1592684.

[59] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin et al.,
"XvMotion: unified virtual machine migration over
long distance," in Proceedings of the USENIX Annual
Technical Conference, Philadelphia, PA, 2014:
USENIX Association.

[60] A. Lara, A. Kolasani, and B. Ramamurthy, "Network
innovation using openflow: A survey," IEEE
communications surveys & tutorials, vol. 16, no. 1, pp.
493-512, 2014.

[61] X. Jin, X. Li, H. Zhang et al., "Netchain: scale-free
sub-RTT coordination," in Proceedings of the USENIX

Conference on Networked Systems Design and
Implementation (NSDI), Renton, WA, USA, 2018:
USENIX Association.

[62] H. T. Dang, D. Sciascia, M. Canini et al., "NetPaxos:
consensus at network speed," in Proceedings of the
ACM SIGCOMM Symposium on Software Defined
Networking Research, Santa Clara, California, 2015:
ACM, doi: 10.1145/2774993.2774999.

[63] Y. Mao, F. P. Junqueira, and K. Marzullo, "Mencius:
building efficient replicated state machines for
WANs," presented at the Proceedings of the 8th
USENIX conference on Operating systems design and
implementation, San Diego, California, 2008.

[64] I. Moraru, D. G. Andersen, and M. Kaminsky, "There
is more consensus in Egalitarian parliaments,"
presented at the Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
Farminton, Pennsylvania, 2013.

[65] S. J. Park and J. Ousterhout, "Exploiting
commutativity for practical fast replication," in 16th
{USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 19), 2019, pp. 47-64.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 737

