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Abstract 
We present FLAIR, a novel approach for accelerating read 
operations in leader-based consensus protocols. FLAIR 
leverages the capabilities of the new generation of 
programmable switches to serve reads from follower 
replicas without compromising consistency. The core of the 
new approach is a packet-processing pipeline that can track 
client requests and system replies, identify consistent 
replicas, and at line speed, forward read requests to replicas 
that can serve the read without sacrificing linearizability. An 
additional benefit of FLAIR is that it facilitates devising 
novel consistency-aware load balancing techniques. 

Following the new approach, we designed FlairKV, a 
key-value store atop Raft. FlairKV implements the 
processing pipeline using the P4 programming language. We 
evaluate the benefits of the proposed approach and compare 
it to previous approaches using a cluster with a Barefoot 
Tofino switch. Our evaluation indicates that, compared to 
state-of-the-art alternatives, the proposed approach can bring 
significant performance gains: up to 42% higher throughput 
and 35-97% lower latency for most workloads. 

1. Introduction
Replication is the main reliability technique for many mod-
ern cloud services [1, 2, 3] that process billions of requests 
each day [3, 4, 5]. Unfortunately, modern strongly-con-
sistent replication protocols [6] – such as multi-Paxos [7], 
Raft [8], Zab [9], and Viewstamped replication (VR) [10] – 
deliver poor read performance. This is because these proto-
cols are leader-based: a single leader replica (or leader, for 
short) processes every read and write request, while follower 
replicas (followers for short) are used for reliability only. 

Optimizing read performance is clearly important; for in-
stance, the read-to-write ratio is 380:1 in Google’s F1 adver-
tising system [11], 500:1 in Facebook’s TAO [5], and 30:1 
in Facebook memcached deployments [12]. Previous efforts 
have attempted to accelerate reads by giving read leases [13] 
to some [14] or all followers [1, 15, 16], While holding a 
lease, a follower can serve read requests without consulting 
the leader; each lease has an expiration period. Unfortu-
nately, this approach complicates the system’s design, as it 
requires careful management of leases, affects the write op-
eration – as all granted leases need to be revoked before an 
object can be modified – and imposes long delays when a 
follower holding a lease fails [1, 14].  

Alternatively, many systems support a relaxed con-
sistency model (e.g., eventual [2, 17, 18, 19, 20, 21] or read-
your-write [5, 21, 22]), in exchange for the ability to read 
from followers, albeit the possibility of reading stale data. 

In this paper, we present the fast, linearizable, network-
accelerated client reads (FLAIR), a novel protocol to serve 
reads from follower replicas with minimal changes to cur-
rent leader-based consensus protocols without using leases, 
all while preserving linearizability. In addition to improving 
read performance, FLAIR improves write performance by 
reducing the number of requests that must be handled by the 
leader and employing consistency-aware load-balancing. 

FLAIR is positioned as a shim layer on top of a leader-
based protocol (§3). FLAIR assumes a few properties of the 
underlying consensus protocol: the operations are stored in 
a replicated log; at any time, there is at most one leader in 
the system that can commit new entries in the log; reads 
served by the leader are linearizable; and after committing 
an entry in the log, the leader knows which followers have a 
log consistent with its log up to that entry. These properties 
hold for all major leader-based protocols (Raft [8], VR [10], 
DARE [23], Zookeeper [2], and multi-Paxos [24, 25, 26]). 

FLAIR leverages the power and flexibility of the new 
generation of programmable switches. The core of FLAIR is 
a packet-processing pipeline (§4) that maintains compact 
information about all objects stored in the system. FLAIR 
tracks every write request and the corresponding system re-
ply to identify which objects are stable (i.e., not being mod-
ified) and which followers hold a consistent value for each 
object, then uses this information to forward reads of stable 
objects to consistent followers. Followers optimistically 
serve reads and the FLAIR switch validates read replies to 
detect stale values. If the switch suspects that a reply from a 
follower is stale, it will drop the reply and resubmit the read 
request to the leader. 

An additional benefit of FLAIR is that it facilitates the 
building of novel consistency-aware load balancing tech-
niques. In systems that grant a lease to 
followers [1, 14, 15, 16], clients send read requests to a ran-
domly selected follower. If the follower does not hold a 
lease, it blocks the request until it obtains a lease, or it for-
wards the request to the leader; either way, this approach 
adds additional delay. FLAIR does not incur this ineffi-
ciency as FLAIR load balances read requests only among 
followers that hold a consistent value for the requested ob-
ject. In this paper we design three consistency-aware load 
balancing techniques (§6): random, leader avoidance, and 
load awareness. 

Unlike other systems that use switch’s new
capabilities [27, 28, 29], FLAIR does not rely on the control-
ler to update the switch information after every write opera-
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tion, as this approach would add unacceptable delays. In-
stead, FLAIR piggybacks control messages on system re-
plies, and the switch extracts and processes them.  

Despite its simplicity, implementing this approach is 
complicated by the limitations of programmable switches 
(§2) and the complexity of handling switch failures, network 
partitioning, and packet loss and reordering (§4). 

To demonstrate the powerful capabilities of the proposed 
approach, we prototyped FlairKV (§6), a key-value store 
built atop Raft [8]. We made only minor changes to Raft’s 
implementation [30] to enable followers to serve reads, 
make the leader order write requests following the sequence 
numbers assigned by the switch, and expose leader’s log in-
formation to the FLAIR layer. The packet-processing pipe-
line was implemented using the P4 programming           
language [31]. We implemented the three aforementioned 
load-balancing techniques (§6). 

Our evaluation of FlairKV (§7) on a cluster with a Bare-
foot Tofino switch shows that FLAIR can bring sizable per-
formance gains without increasing the complexity of the 
leader-based protocols or the write operation overhead. Our 
evaluation with different read-to-write ratios and workload 
skewness shows that FlairKV brings up to 2.8 times higher 
throughput than an optimized Raft implementation, at least 
4 times higher throughput compared to Viewstamped repli-
cation, Raft, and FastPaxos, and up to 42% higher through-
put and up to 35-97% lower latency for most workloads 
compared to state-of-the-art leases-based design [1, 16]. 

The performance and programmability of the new gener-
ation of switches opens the door for the switches to be used 
beyond traditional network functionalities. We hope our ex-
perience will inform a new generation of distributed systems 
that co-design network protocols with systems operations. 

2. Background
In this section, we present an overview of leader-based con-
sensus protocols, followed by a look at the new programma-
ble switches and their limitations. 

2.1. Leader-based Consensus 

Leader-based consensus (LC) protocols [8, 9, 10, 23, 24, 25] 
are widely adopted in modern systems [2, 3, 4, 16]. The idea 
of having a leader that can commit an operation in a single 
round trip dates back to the early consensus protocols [7, 32]. 
Having a leader reduces contention and the number of mes-
sages, which greatly improves performance [7, 24]. 

LC protocols divide time into terms (a.k.a. views or 
epochs). Each term has a single leader; if the leader fails, a 
new term starts and a new leader is elected. 

Clients send write requests to the leader (1 in Figure 1). 
The leader appends the request to its local log (2) and then 
sends the request to all follower replicas (3). A follower ap-
pends the request to its log (4) before sending an acknowl-

edgment to the leader (5). If the leader receives an acknowl-
edgment from a majority of its followers, the operation is 
considered committed. The leader applies the operation to its 
local state machine (e.g., in memory key-value store in    
Figure 1)  in  (6), then acknowledges the operation to the 
client (7). The leader will asynchronously inform the follow-
ers that it committed the operation. Followers maintain a 
commit_index, a log index pointing to the last committed op-
eration in the log; when a follower receives the commit no-
tification, it advances its commit_index and applies the write 
to its local store.  

The replicated log has two properties that make it easy to 
reason about: it is guaranteed that if an operation at index i 
is committed, then every operation with an index smaller 
than i is committed as well; and if a follower accepts a new 
entry to its log, it is guaranteed that its log is identical to the 
leader’s log up to that entry.  

Client read requests are also sent to the leader. In Raft, 
the leader sends a heartbeat to all followers to make sure it 
is still the leader. If a majority of followers reply, the leader 
serves the read form its local store: it will check that all com-
mitted operations related to the requested object are applied 
to the local store before serving the request. 

A common optimization is the leader lease optimization. 
Instead of collecting a majority of heartbeats for every read 
request, a majority of the followers can give the leader a 
lease [8, 24]. While holding a lease, the leader serves reads 
locally without contacting followers. Unfortunately, even 
with this optimization, the performance of the leader-based 
protocols is limited to a single-node performance. 

2.2. Programmable Switches 

Programmable switches allow the implementation of an ap-
plication-specific packet-processing pipeline that is de-
ployed on network devices and executed at line speed. A 
number of vendors produce network-programmable ASICs, 
including Barefoot’s Tofino [33], Cavium’s XPliant [34], 
and Broadcom Trident 3 [35]. 

Figure 4(a) illustrates the basic data plane architecture of 
modern programmable switches. The data plane contains 
three main components: ingress pipelines, a traffic manager, 

Figure 1. The path for a write operation. 
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and egress pipelines. A packet is first processed by an ingress 
pipeline before it is forwarded by the traffic manager to the 
egress pipeline that will finally emit the packet. 

Each pipeline is composed of multiple stages. At each 
stage, one or more tables match fields in the packet header 
or metadata; if a packet matches, the corresponding action is 
executed. Programmers can define custom headers and 
metadata as well as custom actions. Each stage has its own 
dedicated resources, including tables and register arrays (a 
memory buffer). Figure 4(b) shows a simple example of a 
pipeline that routes a request to a key-value store based on 
the key, and Figure 4(c) shows the details of the KV routing 
stage. The stage forwards the request based on the key in the 
packet’s custom L4 header. The programmer implements a 
forward() action that accesses the register array holding 
nodes’ IP addresses. An external controller can modify the 
register array and the table entries. 

Stages can share data through the packet header and 
small per-packet metadata (a few hundred bytes in size) that 
is propagated between the stages as the packet is processed 
throughout the pipeline (Figure 4(b)). The processing of 
packets can be viewed as a graph of match-action stages. 

Programmers use domain-specific languages like P4 [36] 
to define their own packet headers, define tables, implement 
custom actions, and configure the processing graphs.  

Challenges. While programmable ASICs and their domain-
specific languages significantly increase the flexibility of 
network switches, the need to execute custom actions at line 
speed restricts what can be done. To process packets at line 
speed, P4 and modern programmable ASICs have to meet 
strict resource and timing requirements. Consequently, mod-
ern ASICs limit (1) the number of stages per pipeline, (2) the 
number of tables and registers per stage, (3) the number of 
times any register can be accessed per packet, (4) the amount 
of data that can be read/written per-packet per register, (5) 

the size of per-packet metadata that is passed between stages. 
Finally, modern ASIC’s lack support of loops or recursion. 

3. FLAIR Overview 
FLAIR is a novel protocol that targets deployments in a sin-
gle data center. Figure 2 shows the system architecture, 
which consists of a programmable switch, a central control-
ler, and storage nodes. Typically, multiple FLAIR instances 
are deployed with each serving a disjoint set of objects. For 
simplicity, we present a FLAIR deployment with one replica 
set (i.e., one leader and its followers).  

FLAIR is based on the following assumptions; the net-
work is unreliable and asynchronous, as there are no guaran-
tees that packets will be received in a timely manner or even 
delivered at all, and there is no limit on the time a node or 
switch takes to process a packet. Finally, FLAIR assumes a 
non-byzantine failure model in which nodes and switches 
may stop working but will never send erroneous messages.  

FLAIR divides time into sessions (Figure 3). During a 
session the leader is bonded to a single switch that runs the 
FLAIR pipeline. Each session has a unique id that is assigned 
in a strictly increasing order. A session ends when a leader 
fails or the leader suspects that the switch has failed. An LC 
term may have one or more sessions, but a session does not 
span multiple terms. 

A session starts with the FLAIR module at the leader 
(dubbed the lflair module) incrementing the session id, com-
mitting it to the LC log, updating the switch information 
about the objects in the system, then activating the session at 
the switch. lflair module keeps the switch’s information up 
to date while in an active session. If the switch does not have 
an active session it drops all FLAIR packets. 

 
Figure 2. System architecture. The solid arrow shows a client 
request, while the dashed arrow show control messages. 

 
Figure 3. FLAIR sessions. Time is divided into terms. Each 
term starts with a leader election. Each term has one or more 
sessions that start with updating the switch data. 

(a) Switch data plane. 

(b) Pipeline for routing based on 
a hash-based key 

(c) Simple match-action stage for routing based on a hash-based 
key for the KV routing table in subfigure (b) 

Figure 4. Switch data plane. 
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Clients. FLAIR is accessed through a client library with a 
simple read/write/delete interface. Read (get) and write (put) 
read or write entire objects. The library adds a special FLAIR 
packet header to every request, that contains an operation 
code (e.g., read) and a key (a hash-based object identifier).  

Controller. Our design targets data centers that use a SDN 
network following a variant of the multi-rooted tree               
topology [37, 38]. A central controller uses OpenFlow [39] 
to manage the network by installing per-flow forwarding, fil-
tering, and rewriting rules in switches.  

As with previous projects that leverage SDN                     
capabilities [27, 29, 40, 41], the controller assigns a distinct 
address for each replica set. The controller installs forward-
ing rules to guarantee that every client request for a range of 
keys served by a single replica set is passed through a spe-
cific switch (dubbed FLAIR switch); that switch will run the 
FLAIR logic for that range of keys. The controller typically 
selects a common ancestor switch of all replicas and installs 
rules to forward system replies through the same switch. 
Only client request/replies are routed through the FLAIR 
switch, leader-follower messages do not have the FLAIR 
header nor are necessarily routed through the FLAIR switch. 

While this approach may create a longer path than tradi-
tional forwarding, the effect of this change is minimal.          
Li et al. [40] reported that for 88% of cases, there is no addi-
tional latency, and the 99th percentile had less than 5 µs of 
added latency. This minimal added latency is due to the fact 
that the selected switch is the common ancestor of target rep-
licas and client packets have to traverse that switch anyway. 

On a switch failure, the controller selects a new switch 
and updates all the forwarding rules accordingly. The con-
troller load balances the work across switches by assigning 
different replica sets to different switches. 

Storage Nodes. The storage nodes run the FLAIR and LC 
protocols. For read requests, before serving a read, followers 
verify that all committed writes to the requested object have 
been applied to the follower’s local storage. 

Write requests are processed by the leader. After a suc-
cessful write operation, the leader passes to the lflair module 
the log index at which the write was committed and the list 
of followers that accepted the write operation and have a 
consistent log up to that log index. The lflair encodes this list 
into a compact bitmap and uploads it and the log index to the 
switch (piggybacked on the write reply).  

Programmable Switch. The switch is a core component of 
FLAIR: it tracks every write request and the corresponding 
reply to identify which objects are stable (not being modi-
fied) and which replicas have a consistent value of each ob-
ject (encoded in the bitmap provided by the lfair module). If 
a read is issued while there are outstanding writes for the tar-
get object (i.e., writes without corresponding replies), the 
read is forwarded to the leader. If a read request is processed 

by the switch when there are no outstanding writes to the 
requested object, the switch forwards the request to one of 
the followers included in the last bitmap for the object sent 
by the lflair module. Followers optimistically serve read re-
quests. The switch inspects every read reply; if it suspects 
that a follower returned stale data (Section 4.4), it will con-
servatively drop the reply and forward the request to the 
leader. FLAIR forwards all writes to the leader. 

FLAIR also includes techniques to handle multiple con-
current writes to the same object (Section 4.3), packets reor-
dering (Section 4.6), and tolerating switch, node, and net-
work failures (Section 4.6). 

4. System Design 
4.1. Network Protocol 

Packet format. FLAIR introduces an application-layer pro-
tocol embedded in the L4 payload of packets. Similar to 
many other storage systems [27, 29, 40], FLAIR uses UDP 
to issue client requests in order to achieve low latency and 
simplify request routing. Communication between replicas 
uses TCP for its reliability. A special UDP port is reserved 
to distinguish FLAIR packets; for UDP packets with this 
port, the switch invokes the FLAIR custom processing pipe-
line. Other switches do not need to understand the FLAIR 
header and will treat FLAIR packets as normal packets. In 
this way, FLAIR can coexist with other network protocols. 

Figure 5 shows the main fields in the FLAIR header. We 
briefly discuss the fields here (a detailed discussion of the 
protocol is presented next):  
 OP: the request type. Clients populate this field in the 

request packet (e.g., read, or write); replicas populate this 
field in the reply packets (e.g., read_reply, write_reply).  

 KEY: hash-based object identifier.  
 SEQ: a sequence number added by the switch. The switch 

increments the sequence number on every write operation. 
 SID: a unique session id. The <SID, SEQ> combination 

represents a unique identifier for every write request. 
 LOG_IDX: a log index. In a write_reply, the log index 

indicates the index at which the write was committed. For 
reads, the switch populates LOG_IDX  to make sure the 
followers’ logs are committed and applied up to that index. 

 CFLWRS: In write_reply, the CFLWRS is a map of the 
followers that have a consistent log up to LOG_IDX. 

Following the FLAIR header is the original LC protocol pay-
load, which includes the value for read/write operations. 

4.2. Switch Data Structures 

To process a read request, the switch performs two specific 
tasks (Section 4.4). First, it forwards read requests to con-
sistent followers while balancing the load among them. Sec-
ond, it verifies the read replies to preserve safety. To perform 
these tasks, the switch maintains two data structures: a ses-
sion array and a key group array. 
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Session array. A single switch typically supports multiple 
replica sets (i.e., FLAIR+LC instances) with each set storing 
a disjoint set of keys. Each entry in the session array main-
tains the session status for a single replica set. An entry con-
tains an is_active flag, session id, leader IP address, current 
session sequence number, and the timestamp of the last 
heartbeat received from the lflair module (Listing 1). When 
is_active is true, we say the session is active, which indicates 
that the session entry and kgroup array are consistent with 
the leader’s information. The switch processes packets using 
the FLAIR custom pipeline only if the session is active; oth-
erwise, it will drop all FLAIR packets, rendering the system 
unavailable to clients until the switch can reach the lflair 
module and sync its session entry and key group array. 

Key group (KGroup) array. To decide if followers can 
serve a certain read request, the switch needs to maintain in-
formation about which followers have the latest committed 
value of every object. Maintaining such information in the 
switch ASIC’s memory is not feasible; instead, FLAIR 
groups objects based on their key and maintains aggregate 
information per group. We use the most significant k bits of 
the key to map an object to a key group (kgroup).  

Every FLAIR+LC instance has a dedicated kgroup array. 
Each entry in the array (Listing 1) contains the status of a 
single kgroup, including an is_stable flag that indicates if all 
objects in the kgroup are stable. If a kgroup is not stable 
(is_stable is false), this indicates that at least one object in 
the kgroup is being modified (i.e., has an outstanding write 
in the system). The array entry also includes the sequence 
number (seq_num) of the last write request processed by the 
switch for any object in the kgroup, the log index (log_idx) 
of the last successful write to any object in the kgroup, and 
the consistent_followers bitmap pointing to all followers 
that have a consistent log up to log_idx. 

4.3. Handling Write Requests 

To issue a write request, a client populates the OP and KEY 
fields of the FLAIR packet header and puts the value in the 

payload, then sends the request.  
When the switch receives the request, it will mark the 

corresponding kgroup entry as unstable. The switch will in-
crement the session_seq_num in the session array and use it 
to populate the sequence number (seq_num) in the kgroup 
entry and the sequence number (SEQ) in the request header. 
Finally, the switch populates the session id (SID) field in the 
header and forwards the request to the leader. 

The lflair module will verify that the session id is valid, 
and will pass the write request to the leader. The leader ver-
ifies that the <SID, SEQ> combination is larger than the   
<SID, SEQ> number of any previous write request it ever re-
ceived, else it will drop the packet. The LC leader will pro-
cess the write request following the LC protocol          (Sec-
tion 2.1): it will replicate the request to all followers, and 
when a majority of followers acknowledge the operation, the 
write operation is considered committed. A follower will 
acknowledge a write operation only if its log is identical to 
the leader’s log up to that entry. 

For the write reply, the leader will pass the following to 
the lflair module: the LC protocol payload for the write_re-
ply, the log index at which the write was committed, and the 
list of followers that acknowledged the write. The lflair mod-
ule will create the write reply packet with the leader provided 
payload, and will populate the LOG_IDX and the bitmap of 
the consistent followers (CFLWRS) using the information 
provided by the leader. lflair module populates the sequence 
number (SEQ) in the write_reply header using the SEQ of the 
corresponding write request. The lflair module then sends 
the write_reply packet. 

The switch will process the write_reply header and verify 
its session id. The switch will compare the sequence number 
(SEQ) of the reply to the sequence number (seq_num) in the 
kgroup entry; if they are equal, this signifies that no other 
write is concurrently being processed in the system for any 
object in the kgroup. Consequently, it will update the log_idx 
and the consistent_followers fields in the kgroup entry using 
the values in the write reply. Then it will mark the kgroup 
stable and forward the reply to the client.  

If the sequence number in the reply is smaller than the 
sequence number in the kgroup entry, this indicates that a 
later write to an object in the same kgroup has been pro-
cessed by the switch. In this case, the switch forwards the 
write reply to the client without modifying the kgroup entry. 
The kgroup entry remains unstable until the last write to the 
kgroup (with a SEQ number in the write_reply equal to the 
seq_num in the kgroup entry) is acknowledged by the leader. 

In a nutshell, the switch acts as a look-through metadata 
cache. Write requests invalidate the switch metadata related 
to the accessed kgroup, and write replies update the kgroup 
metadata at the switch. As we see next, the kgroup metadata 
is used to consistently load balance reads. 

 

Figure 5. FLAIR packet format. 
SessionArrayEntry { 
bit<1>   is_active; 
bit<32> session_id; 
bit<32> leader_ip; 
bit<64> session_seq_num; 
bit<48> heartbeat_tstamp;  } 

KGroupArrayEntry { 
bit<1>   is_stable; 
bit<64> seq_num; 
bit<64> log_idx; 
bit<8>   consistent_followers;   

} 

Listing 1. Session and kgroup entries. The numbers indicate the 
field size in bits. 
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4.4. Handling Read Requests 

Clients fill the OP and KEY fields of the FLAIR header and 
send the request. When the switch receives the request, it 
will check the kgroup entry. If the entry is stable, the switch 
will fill the sequence number (SEQ) and log index (LOG_IDX) 
header fields using the values in the kgroup entry. Then it 
will forward the request to one of the followers indicated in 
the consistent_followers bitmap. Section 6.2 details our load 
balancing techniques.  

If the kgroup entry is not stable, the switch forwards the 
read request to the leader. We note that there is a chance for 
false positives in this design, as a single write will render all 
the objects in the same kgroup unstable. This is a drawback 
of maintaining information per group of keys. This ineffi-
ciency is incurred by leases-based protocols as well, as they 
maintain a lease per group of objects. 

When a follower receives a read request, the follower’s 
FLAIR module validates the request, then calls                    
advance_then_read(LOG_IDX, key) routine, which compares 
the follower’s commit_index to LOG_IDX. If the commit_in-
dex is smaller, the follower advances its commit_index to 
equal LOG_IDX, apply all the log entries to the local store, 
then serve the read request. The FLAIR module will popu-
late the read_reply header; for the SEQ and SID fields, it will 
use the values found in the read request header.  

We note that it is safe to advance the follower’s com-
mit_index to match the LOG_IDX in the read request, as the 
switch forwards read requests to a follower only if the leader 
indicates that all entries in the log up to that log index are 
committed, and that this specific follower is one of the rep-
licas that have a log consistent to the leader’s log up to that 
index. We discuss FLAIR correctness in Section 5. 

When the switch receives a read_reply from a follower, 
it validates the session id, then verifies that the SEQ number 
of the read_reply equals the seq_num of the kgroup entry. If 
the sequence numbers are not equal, this signifies that a later 
write request was processed by the switch and there is a 
chance the follower has returned stale value. In this case, the 
switch drops the read_reply, generates a new read request 
using the KEY field from read_reply packet, and submits the 
read request to the leader. If the sequence number of the 
read_reply equals the sequance number in the kgroup entry, 
the switch forwards the reply to the client. 

If a read request is forwarded to the leader, the lflair 
module verifies the session id, then calls                                  
advance_then_read(LOG_IDX, key). The switch verifies that 
the leader reply is valid (i.e., has the correct session id) be-
fore forwarding it to the client, without checking the 
seq_num in the kgroup entry. 

4.5. Session Start Process 

On the start of a new session, the lflair module reads the last 
session id from the LC log, increments it, and commits the 
new session id to the LC log. Then the lflair module asks the 

central controller for a new switch. The central controller 
neutralizes the old switch (making it drop all FLAIR pack-
ets) and reroutes FLAIR packets to a new switch, then con-
firms the switch change to the lflair module. This step guar-
antees that at any time at most one FLAIR switch is active. 
The lflair module updates the session entry (Listing 1) at the 
switch with the current leader IP and session id. For each 
new session, session_seq_num is reset to zero.  

Populating the kgroup array. The lflair module maintains 
a copy of the kgroup array similar to the one maintained by 
the switch. If the leader did not change between sessions 
(e.g., the session change is due to switch failure), the kgroup 
array at the lflair module is up to date. The lflair module will 
set the seq_num entry in all kgroup entries to zero (equal to 
the session_seq_num in the session entry)., and upload it to 
the switch. 

If the kgroup array at the lflair module is empty – for 
instance, after electing a new leader – the lflair module will 
query the leader for three pieces of information: its com-
mit_index, the list of followers with the same commit_index, 
and a list of all uncommitted operations in the log (i.e., the 
operations after the commit_index in the log). The list of un-
committed operations is typically small, as it only includes 
operations that were received before the end of the last term 
but were not committed yet. The lflair module will traverse 
the list of uncommitted writes and mark their target kgroup 
entries unstable. For all other kgroup entries, the lflair mod-
ule will mark them stable and set their seq_num  to zero, 
log_idx to the leader’s commit_index, and consistent_follow‐
ers  to include all the followers that have the same com-
mit_index as the leader’s. After updating the session entry 
and the kgroup array at the switch, the lflair module activates 
the switch session (sets is_active to true). 

4.6. Fault Tolerance 

Follower Failure. We rely on the LC protocol to handle fol-
lower failures. To avoid sending read requests to a failing 
follower, the leader notifies the lflair module when it detects 
the failure of a follower. The lflair module removes the fol-
lower from the switch-forwarding table (Section 3). 

Leader Failure. On leader failure, a new leader is elected 
and a new term starts. The new leader informs the lflair mod-
ule of the term change; and the lflair module starts a new 
session (Section 3). 

The lflair module sends periodic heartbeats to the switch. 
Upon receiving a heartbeat, the switch determines whether it 
is from the current session. If the heartbeat is valid, the 
switch updates the heartbeat_timestamp in the session array 
and replies to the lflair module.  

Switch Failure. If the lflair module misses the switch heart-
beats for a switch_stepdown period of time (3 heartbeats in 
our prototype), the lflair module will suspect that the switch 
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has failed and will start a new session. For efficiency (i.e. 
does not affect safety), if the switch misses three heartbeats 
from the leader, it will deactivate the session. 

Network Partitioning. If a network partition isolates the 
switch from the leader, the leader treats it as a failed switch, 
as detailed above. If a network partition isolates the switch 
from a follower, read requests forwarded to the follower will 
time out and the client will resubmit the request. This failure 
affects performance, but not correctness. Upon determining 
that a follower is not reachable, the leader removes it from 
the forwarding table, as in the case of the failed follower de-
scribed above. 
Packet Loss. If a read or write request is lost, the client times 
out and resubmits the request. If a write reply is lost before 
reaching the switch, the kgroup entry will remain unstable 
until a new write operation to any key in the kgroup suc-
ceeds. While the kgroup entry is not stable, all read requests 
are forwarded to the leader. 
Packet Reordering. It is critical for FLAIR correctness that 
the leader processes write requests in the same order that 
they are processed by the switch. Every write operation gets 
a unique <SID, SEQ> number. The switch marks a kgroup 
entry unstable until the leader replies to the last write issued 
for a key in the kgroup. Consequently, if the leader processes 
the requests out of order, the switch will incorrectly mark a 
kgroup stable while the out-of-order writes are modifying its 
objects. To prevent this scenario, the leader keeps track of 
the largest <SID, SEQ> it has ever processed and drops any 
write request with a smaller number. While session numbers 
(SIDs) are maintained in the log, the largest processed se-
quence number is retained in memory. If the leader fails, the 
new leader starts a new session, increments the session id 
(SID), and sets the session sequence number (SEQ) to zero. 

5. Correctness 
FLAIR guarantees linearizability, which means that concur-
rent operations must appear to be executed by a single         
machine. FLAIR relies on the LC protocol for any operation 
that updates the log and for reads from the leader. 

FLAIR only adds the ability to serve reads from follow-
ers. In this section, we sketch out the proof of FLAIR cor-
rectness when the read is served by a follower. A full and 
detailed proof is available in the technical report [42]. Fur-
ther, we used the TLA+ model checking tool [43] to verify 
the FLAIR correctness. We started from Raft’s TLA+ spec-
ification [44] and extended it with a formal specification for 
our protocol and new invariants to validate the linearizability 
of reads. The TLA+ specification is in our technical report 
[42].  

Safety. FLAIR guarantees that all read replies are lineariza-
ble. FLAIR trusts that the leader’s read replies are lineariza-
ble and forwards them to the client. For reads served by fol-
lowers, FLAIR guarantees that the read reply returns an 

identical value, as if the read was served by the leader. This 
is guaranteed using the following two steps: 

First, when the switch receives a read request, the switch 
forwards that request to followers only when the switch has 
an active session and the kgroup entry is stable. This signi-
fies that the switch information is up-to-date with the lflair 
module’s information. Identifying a kgroup entry as stable 
signifies that there are no current writes to any object in the 
kgroup and that the last leader-provided consistent_follow‐
ers bitmap points to followers that have the last committed 
value for every object in the kgroup. Consequently, any of 
the consistent followers will return a value identical to the 
leader’s value. 

Second, after forwarding a read request to a follower 
(say, flwrA), the switch may receive a write request that 
modifies the object. The leader may replicate the write re-
quest to a majority of nodes that does not include flwrA. If 
the leader processes the write request before flwrA serves 
the read request, flwrA will return stale data. To avoid this 
case, the switch performs a safety check on every read reply 
coming from followers: it verifies that the kgroup is still sta-
ble, and that the sequence number in the read_reply is equal 
to the sequence number in the kgroup entry. If the sequence 
numbers do not match (which indicates that there are later 
writes to objects in the kgroup), the switch conservatively 
drops the read reply and forwards the request to the leader. 
At all times, reads are linearizable in FLAIR. 

6. Implementation 
To demonstrate the benefits of the new approach, we proto-
typed FlairKV, a FLAIR-based key-value store built atop 
Raft [30]. We chose Raft due to its adoption in production 
systems [45, 46, 47, 48, 49], and the availability of 
standalone production-quality implementations [50]. 

6.1. Storage System Implementation 

We have implemented FlairKV, including all switch data 
plane features, the FLAIR module, leaders’ and followers’ 
modifications, and the client library. We extended the Raft’s 
follower code to implement an advance_then_read() func-
tion. We extended the leader to notify the lflair module as 
soon as it gets elected, and to extract its commit_index, the 
list of followers with a commit_index equal to the leader’s 
commit_index, and the list of uncommitted writes. We ex-
tended the write reply with the list of followers which 
acknowledged the write. We implemented the leader lease 
optimization [8, 24] and modified Raft’s client library to add 
the FLAIR header to client requests. 

6.2. Switch Data Plane Implementation 

The switch data plane is written in P4 v14 [31] and is com-
piled for Barefoot’s Tofino ASIC [33], with Barefoot’s 
P4Studio software suite [51]. Our P4 code defines 30 tables 
and 12 registers: six for the session array and six for the 
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kgroup array. The kgroup array has 4K entries. Larger num-
ber of kgroups had negligible effect on performance. In total, 
our implementation uses less than 5% of the on-chip 
memory available in the Tofino ASIC, leaving ample re-
sources to support other switch functionalities or more 
FlairKV instances. The rest of this section discusses optimi-
zations implemented in FlairKV to cope with the strict tim-
ing and memory constraints of P4 and switch ASIC. 

Heartbeats implementation. The leader and the switch ex-
change periodic heartbeats. If the switch_stepdown period 
passes without receiving a leader heartbeat, the switch deac-
tivates the session. Instead of running a process in the con-
troller to continuously track heartbeats, the switch monitors 
missed heartbeats as part of the validation step in the pro-
cessing pipeline. The switch keeps track of the timestamp of 
the last heartbeat received in the session array (Listing 1). 
When processing any FLAIR packet, the switch computes 
the difference between the current time and the last heartbeat 
timestamp; if the difference is larger than switch_stepdown, 
the switch deactivates the session, making the system una-
vailable until the leader starts a new session. 

Forwarding logic translates the consistent followers’ 
bitmap to follower IP addresses. Storing the IP addresses of 
consistent followers for every entry in the kgroup array 
significantly increases the memory footprint. Moreover, 
randomly selecting a follower from the list while avoiding 
inconsistent ones is tricky given the P4 and current ASIC 
challenges (Section 2.2). Instead, the FlairKV leader 
encodes the follower status in a one-byte 
consistent_followers bitmap (Listing 1). Replicas are 
ordered in a list. If the least significant bit in the 
consistent_follower bitmap is set, this indicates that the first 
replica in the list is consistent, and so forth. 

When forwarding a read request, the switch translates the 
encoded bitmap of consistent followers to select one fol-
lower; Figure 6 shows the translation process. The con‐
sistent_followers bitmap is used as an index to the transla-
tion table. Each entry in the table has an action that randomly 
selects a number that is then used as an index to the IP ad-
dresses table. 

This design has two benefits: it significantly reduces the 
memory footprint of the kgroup array, and it can be acceler-
ated using P4 “action profiles” [52]. 

Load balancing. In addition to the aforementioned random 
load-balancing technique (Figure 6), we implemented two 
load-aware techniques: 

 Leader avoidance. Our benchmarking revealed that the 
write operation takes 35 times longer than a read 
operation; most of this overhead is borne by the leader. 
Consequently, this load-balancing technique avoids 
sending read requests to the leader for stable kgroups if 
there are any writes in the system. The aim is to reduce the 
leader load, as it is already busy serving writes and serving 
reads for unstable kgroups. 
To implement this technique, we compare the sequence 
number of a write_reply with the session_seq_num. If 
they are not equal, then there are pending writes in the sys-
tem and the leader should not be burdened with any reads 
to stable kgroups. 

 Follower load awareness. This technique distributes the 
load across followers proportionally to their load in the 
last n seconds. This technique is especially useful for 
deployments that use heterogeneous hardware, experience 
workload variations, or deploy more than one replica (i.e., 
replicas for different ranges of keys) on the same machine. 
In our design, followers report the length of the request 
queue in every heartbeat. Every second, the leader calcu-
lates the average queue length for each follower and as-
signs proportional weights to each follower. The leader 
updates the translation table to reflect these weights. For 
instance, if follower 1 should receive double the load of 
any other replica, the action for a bitmap 00111 will be 
rand(1, 1, 2, 3), doubling the chance replica 1 is selected.  

Register access logic. Each stage has its own dedicated reg-
isters, and a register can be accessed only once in a stage. 
This restriction complicates FlairKV’s logic, as different 
packet types (e.g., read and write_reply) must access the 
same registers at different stages in the pipeline. To cope 
with this restriction, FlairKV adds a dedicated table to access 
each register. Figure 7 shows an example of an action table 
for accessing register r1. Our code aggregates the infor-
mation about all possible modes of accessing r1 in the 
packet’s metadata, including the access type (read or write), 
the index, and which data should be written or where the 
value should be read to. We then use a dedicated match-ac-
tion table (Figure 7) to perform the actual read or write op-
eration to/from the register in a single stage with a single in-
vocation of the table. This approach has the additional ben-
efit of reducing the number of stages. 

Processing concurrent requests. The switch processes 
packets sequentially in a pipeline. Each pipeline stage pro-
cesses one packet at a time. The switch may have multiple 

Figure 6. Logical view of the forwarding logic. The stability 
bitmap matches an entry in the translation table and executes the 
corresponding action, generating an index of the selected 
destination’s IP address. Using the index, the IP address table 
sets the destination’s IP address in the metadata. 
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pipelines, each serving a subset of switch ports. FLAIR uses 
a single ingress pipeline and all egress pipelines. If a FLAIR 
packet is received on a different ingress pipeline, the packet 
is recirculated [52] to the FLAIR pipeline. 

6.3. Putting the Switch Pipeline Together 
Figure 8 shows the pipeline layout in the switch data plane 
and the flow for a FlairKV packet. The pipeline starts by 
reading the session information (1 in Figure 8) and adding it 
to the packet metadata. Then the it extracts the operation type 
(2) and validates the request (3) by verifying the session id. 
If the packet has an older session id the packet is dropped. 
Further, in the validation stage the switch confirms that it did 
not miss leader heartbeats in the last switch_stepdown period 
(Section 4.6), else it deactivates the session.  

Read requests access the kgroup array (6), and if the 
group is stable, the request is forwarded to a load-balancing 
logic (10) that implements the forwarding logic            (Sec-
tion 6.2); otherwise, it is sent to the leader. 

If a read reply is from the leader, it is forwarded to the 
client (12). If it is from a follower, the pipeline performs the 
safety check (9) and, if it suspects the reply is stale, drops 
the reply, then resubmits the read request to the leader (11).  

Write requests update the session_seq_num (4) and the 
kgroup entry (6), then are sent to the leader (11). 

Write replies compare the sequence number of the reply 
to the one in the kgroup entry (5); if they match, the kgroup 

entry is updated (6) and the pipeline forwards the reply to the 
client (12). 

The egress pipeline (13) has one logical stage that popu-
lates the header fields (e.g., SEQ number, SID, etc.) using the 
data available in the packet’s metadata. 

7. Evaluation 
We compare our prototype with previous approaches in 
terms of throughput and latency (§7.1) with different work-
load skewness (§7.2) and read/write ratios (§7.3).  

Testbed. We conducted our experiments using a 13-node 
cluster. Each node has an Intel Xeon Silver 10-core CPU, 
48GB of RAM, and 100Gbps Mellanox NIC. The nodes are 
connected to an Edgecore Wedge 100 ×32BF switch with 32 
100Gbps ports. The switch has Barefoot’s Tofino ASIC, 
which is P4 programmable. Unless otherwise specified, 
three machines ran the server code, while the other 10 ma-
chines generated the workload.  

Alternatives. We compare the throughput and latency of the 
following designs and optimizations: 
 Leader-based. We used two leader-based protocol 

implementations: LogCabin, the original implementation 
of Raft (Raft), and an implementation of Viewstamped 
replication (VR) [26]. Raft and VR implement a batching 
optimization which batches and replicates multiple log 
entries in a single round trip.  

 Optimized Leader-based (Opt. Raft). Our 
benchmarking revealed that the original Raft 
implementation could not utilize the resources of our 
cluster. We implemented two main optimizations: first, we 
changed the request-processing logic from an event-
driven to a thread-pool design, as our benchmarking 
indicated a thread-pool performs better; second, we 
implemented the leader-lease optimization. These changes 
significantly improved Raft’s performance.  

 Quorum-based reads (Fast Paxos). An alternative to the 
leader-based design is the quorum design [40, 41, 53]. 
Typically, client read requests are sent to all followers, and 
each follower responds directly to the client. The client 
waits for a reply from a supermajority [53] before 

 
Figure 7. Register access table. P4 code aggregates access in-
formation that is used by a dedicated register access table. 

Figure 8. Logical view of the FlairKV switch data plane. 
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completing a read. We used a Fast Paxos implementation 
that implements only the normal case [26]. 

 Follower-lease optimization (FLeases). Similar to 
MegaStore [1], the leader grants read leases to all 
followers. Before serving a write, the leader revokes all 
leases, processes the write operation, and then grants a 
new lease to followers. The lease’s grant/revoke messages 
are piggybacked on the consensus protocol messages. 
However, writes should be processed by all followers 
before replying to the client. In our experiments, if a 
follower receives a read request for an object for which it 
does not have an active lease, it forwards the request to the 
leader. MegaStore applications typically partition the keys 
into thousands of groups, each group contains logically-
related keys [1] (e.g., a key group per blog [1]). We 
partitioned the keys into 4K groups (the same number of 
kgroups in FlairKV), and followers get a lease per group. 
Clients randomly select a follower for each read request 
and send the request directly to it. 

 Unreplicated/NOPaxos (Unrep.). As a baseline, the 
unreplicated configuration deploys Optimized-Raft 
(discussed above) on a single node. The single node stores 
the data set and serves all operations without replication.  

This configuration also represents the best possible 
performance of the network-optimized NOPaxos [40] 
protocol. NOPaxos uses a network switch to order and 
multicast read and write operations to all replicas. An 
operation is successful if the majority accepts a write or 
returns the same value for a read. Consequently, NOPaxos 
read performance is limited by the slowest node in the 
majority of nodes. NOPaxos evaluation shows that the 
best throughput and latency the protocol can achieve are 
within 4% that of an unreplicated system [40]. 

 FlairKV. Unless otherwise specified, we used FlairKV 
with the leader-avoidance load-balancing technique. 

We benchmarked every system and selected a configuration 
that maximized its performance. We stored all data in 
memory. In all experiments, all systems’ performance (with 
the exception of FastPaxos) was stable with a standard devi-
ation less than 1%. 

Workload. We used synthetic benchmarks and the YCSB 
benchmark [54] to evaluate the performance of all systems. 
In our evaluation, we considered both uniform and skewed 
workloads. The skewed workload follows the Zipf distribu-
tion with a skewness parameter of 0.99. We also used the 
YCSB benchmark. We experimented with 100,000 and 1 
million keys. We present the results with 100,000 keys as, in 
skewed workloads, the fewer number of hot keys increased 
the chance of having concurrent requests accessing the same 
key (i.e. is less favorable for FlairKV). FlairKV brings 
slightly higher performance benefit when  using 1 million 
keys than 100,000 keys. The key size is 24 bytes and the hash 
of the key string is used as the key in the FLAIR protocol. 
The value size is 1KB. 

7.1. Performance Evaluation 
We compared the seven systems using YCSB workload B 
(95:5 read:write ratio) while varying the number of clients, 
with uniform and skewed workload distribution. Figure 9 
shows the throughput and average latency with a uniform 
and skewed distributions. With the uniform distribution 
(Figure 9 (a) and (c)), FlairKV achieves up to 42% higher 
throughput and 23.7% lower average latency than FLeases, 
and 1.3 to 2.1 times higher throughput and 1.5 to 2.4 times 
lower latency compared to optimized Raft and unreplicated 
setup. Fast Paxos, Raft, and VR, achieve the lowest through-
put and highest latency as these systems contact the majority 
of nodes for every read.  

FlairKV achieved better performance than FLeases for 
three reasons. First, FlairKV uses the leader-avoidance load-
balancing technique, which reduces the load on the leader 
when there are writes, thereby accelerating writes and short-
ening the time period in which kgroups are marked unstable. 
This approach is effective as writes take almost 35 times 
longer than reads in Opt.Raft, and 30 times longer in the un-
replicated setup. We recorded the number of read requests 
served by the leader. For instance, with 300 clients              
(Figure 9.a) the leader served 2% of the reads in FlairKV 
(those are reads to unstable kgroups), while it served 34% of 
the reads in FLeases. We note that the leader-avoidance tech-
nique cannot be applied to FLeases which tasks the clients 

(a) Throughput - Uniform    (b) Throughput -Zipf             (c) Latency-Uniform        (d)   Latency-Zipf 
Figure 9. Throuhgput and Latency while varying the number of clients. The figures show the throughput and the average latency for 
different number of clients for workload B for the uniform distribution (a, c), and for the Zipf distribution (b, d).   
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with selecting a follower to send the read request to. This 
technique requires accurate information about the current 
load of the leader and which followers are stable which are 
not available to clients. 

Second, in FLeases, when an object is not stable, if a    
client sends a request to a follower, the follower will redirect 
the request to the leader, increasing overhead and incurring 
extra latency. Unlike FLeases, FlairKV switch knows if an 
object is not stable and forwards read requests for that object 
directly to the leader. The third reason which had a minor 
impact when using 3 replicas is that the write operation in 
FLeases need to reach all followers, while FlairKV writes 
only need a majority.  

Optimized-Raft’s performance is better than that of Raft, 
VR, and FastPaxos. The unreplicated deployment slightly 
improves throughput and latency over Optimized-Raft by 
avoiding the replication overhead for write operations. These 
two systems still lag behind FlairKV as they only utilize a 
single node (the leader) for serving all reads and writes. 

Figure 9 (b) and (d) show the throughput and average   
latency with a skewed workload (Zifpian constant of 0.99). 
The skewed workload results in higher contention and an in-
creased frequency at which a read request finds a kgroup un-
stable. This contention reduces the chances of reading from 
followers. FlairKV leader served 21% of reads of which 1% 
are redirected from followers, while FLeases leader served 

37% of reads. Even under the skewed workload, FlairKV 
still achieves the highest performance, up to 26% higher 
throughput and 18.1% lower latency than FLeases, and 1.5 
to 1.8 times higher throughput and 2 to 2.4 times lower la-
tency than optimized Raft and the unreplicated setup.   

Latency evaluation. Figure 13.a shows the latency CDF of 
FlairKV, FLeases, OptRaft, and Raft. Under the uniform 
workload B with 300 clients (other workloads had similar 
results). FlairKV lowered the latency for the slowest 40% 
requests by at least 38% relative to FLeases. Under the Zipf 
workload (Figure 13.b), FlairKV lowered the slowest 50% 
of request by up to 35% relative to FLeases.  

FLeases has higher latency as it incurs extra delay due to 
the load imbalance between nodes (e.g., the leader serves 
41% of requests for workload B with Zipf distribution) and 
due to followers redirecting 4% of requests to the leader. 

Under all workloads, FlairKV significantly improved op-
eration’s latency relative to OptRaft and Raft. The median 
latency of FlairKV is 2% of Raft’s latency and 2-8% of 
OptRaft’s latency. 

7.2. Workload Skewness 
We measured the impact of the workload skewness on 
throughput (Figure 10.a) and average latency (Figure 10.b) 
by varying the Zipfian constant from 0.5 to 0.99. FlairKV 
consistently achieves better performance: 1.26 to 2.25 times 
higher throughput and 1.13 to 2.48 times lower average la-
tency compared to all other systems. We notice that as the 
skewness increases FlairKV and FLeases performance de-
creases as higher skewness increases contention on the few 
popular kgroups, making them unstable for longer time, and 
increases the number of requests the leaders have to process. 
Other systems performance is not noticeably affected by 
skewness. 

We noticed high workload skewness affects FlairKV’s 
performance more than FLeases. This is due to a subtle side 
effect of FlairKV. When there are concurrent writes to the 
same kgroup, FlairKV will mark a group unstable from the 
moment the first request is processed by the switch until the 

 

Figure 12.  Subtle effect of 
FLAIR. FLeases may grant leases 
for up to 25% more time compared
to FlairKV.    Bars mark the time       (a) Throughput          (b) Read latency

Figure 10. Throughput and Latency while varying skewness. The 
figures show the throughput (a) and the average latency (b) for differ-
ent zifpian constants for a uniform workload B with 300 clients.  

Figure 11. Throughput while 
varying the read ratio. Using 
uniform workload B. 

from the moment a switch receives 
a write request (w1 or w2) until it 
receives a corresponding reply.12

(a) B-Uniform (b) B-Zipf 
Figure 13. Latency CDF. The figures show the latency CDF for
reads under workload B using 300 clients with a uniform distribu-
tion (a), and a Zipf distribution with skewness of 0.99 (b). The lines 
for Opt. Raft and Unrep. almost overlap. 
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last request to the kgroup is replied to ([t1, t2] in Figure 12). 
In FLeases, the lease revocation is piggybacked on the write 
replication step (black diamonds in Figure 12). Once the 
leader commits a write, it sends a commit notification and 
grants a new lease to the followers (white diamonds). Hence, 
FLeases may grant a lease between concurrent writes, creat-
ing more opportunity for serving reads from followers.  

To further understand this effect, we tracked leases and 
the stability of kgroups under the skewed (factor of 0.99) 
write heavy YCSB workload A (1:1 read:write ratio). We 
noticed that while 29% of reads found the kgroup unstable 
in FlairKV, only 4% of reads in FLeases reached a follower 
that did not have a lease. We further profiled the write oper-
ation path and found that FLeases revokes leases for 75% of 
the write operation time (Figure 12), 25% shorter than the 
period FlairKV marks a kgroup unstable. Despite this subtle 
effect FlairKV leader still has lighter load, it served 29% of 
reads compared to 37% served by the FLeases leader. Not-
withstanding this effect FlairKV still brings 17% to 26% per-
formance improvement even under skewed workloads. 

7.3. Read/Write Ratio 

Figure 11 shows the effect of the ratio of reads to writes on 
systems’ performance with a uniform workload B. Com-
pared to FLeases, FlairKV has up to 1.5 times higher 
throughput for all read to write ratios, with the exception of 
the read-only workload in which their performance is com-
parable. FlairKV has 1.25 to 2.8 times higher throughput 
compared to the Opt. Raft. Compared to the unreplicated 
setup, FlairKV has up to 2.8 times higher throughput for 
workloads with 70% reads or more and a comparable perfor-
mance under write heavy workloads (read ratio 50-70%). 

8. Related Work
Network-accelerated systems. Recent projects have utilized 
SDN capabilities to provide load balancing [55, 56, 57], ac-
cess control [58], seamless virtual machine migration [59], 
and improving system security, virtualization, and network ef-
ficiency [60]. SwitchKV [29] uses SDN capabilities to route 
client requests to the caching node serving the key. A central 
controller populates the forwarding rules to invalidate routes 
for objects that are being modified and installs routes for 
newly cached objects. NetCache [28] proposes using the 
limited switch memory as a look-through cache for key-
value stores.   

Network-accelerated consensus. A number of recent efforts 
leverage SDN’s capabilities to optimize consensus protocols. 
Speculative Paxos [41] builds a mostly ordered multicast 
primitive and uses it to optimize the multi-Paxos consensus 
protocol. Network-ordered Paxos (NOPaxos) [40] leverages 
modern network capabilities to order multicast messages and 
add a unique sequence number to every client request. 
NOPaxos uses these sequence number to serialize operations 
and to detect packet loss. Speculative Paxos and NOPaxos 

are optimized for operations that update the log but not for 
read operations. NetChain [61] and NetPaxos [62] imple-
ment replication protocols on a group of switches.  These 
protocols are suitable for systems that store only a few meg-
abytes of data (e.g., 8MB in the NetChain prototype). Unlike 
FLAIR, these efforts do not optimize for read operations. 
Reads are still served by the leader or a quorum of replicas. 

Consensus protocols optimized for the WAN. A number 
of consensus protocols are optimized for WAN deploy-
ments. Quorum leases [14] proposes giving a read lease to 
some of the followers; Unlike Megastore leases, when an ob-
ject is modified, only the followers that have the lease are 
contacted. Quorum leases has a better performance than 
Megastore leases in WAN setups, but do not bring benefits 
when deployed in a single cluster [14]. Mencius [63] is a 
multi-leader protocol in which each leader controls part of 
the log. EPaxos [64] is a leaderless protocol where clients 
can submit request to any replica. Non-conflicting write can 
commit in one round trip, while conflicting writes will be 
resolved using Paxos. 

CURP [65] optimizes the write operation through ex-
ploiting commutativity between concurrent writes. In data 
center deployments, CURP reads are served by the leader 
and hence are limited to a single node performance, in WAN 
deployment CURP applies a technique similar to FLeases. 

9. Conclusion
We present FLAIR, a novel protocol that leverages the capa-
bilities of the new generation of programmable switches to 
accelerate read operations without affecting writes or using 
leases. FLAIR identifies, at line rate, which replicas can 
serve a read request consistently, and implements a set of 
load-balancing techniques to distribute the load across con-
sistent replicas. We detailed our experience building 
FlairKV and presented a number of techniques to cope with 
the restrictions of the current programmable switches. We 
hope our experience informs a new generation of systems 
that co-design network protocols with system operations. 
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