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Abstract
We present Draconis, a novel scheduler for workloads in

the range of tens to hundreds of microseconds. Draconis chal-
lenges the popular belief that programmable switches cannot
house the complex data structures, such as queues, needed
to support an in-network scheduler. Using programmable
switches, Draconis achieves the low scheduling tail latency
and high throughput needed to support these microsecond-
scale workloads on large clusters. Furthermore, Draconis
supports a wide range of complex scheduling policies, in-
cluding locality-aware scheduling, priority-based scheduling,
and resource-based scheduling.

Draconis reduces the 99th percentile scheduling latencies
by 3×–200× when compared to state-of-the-art software-
based and network-accelerated schedulers, on a range of syn-
thetic workloads. Our evaluation also demonstrates that Dra-
conis has 52× higher throughput than server-based schedul-
ing systems.
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1 Introduction
Online services such as real-time analytics [1], financial ser-
vices [2, 3], algorithmic trading [4, 5], and interactive appli-
cations have strict user-facing service level objectives (SLOs)
[6, 7]. The underlying systems supporting these services
must achieve high throughput and a low tail latency within
tens of microseconds [8]. Examples of such systems include
microsecond-scale key-value stores [9], multi-core sched-
ulers [10, 11], cluster schedulers [12, 13], web-services [14],
and databases [15].

At the heart of these services lie task schedulers. Design-
ing schedulers for large scale clusters that serve tasks in the
tens-of-microsecond range is challenging. First, the sched-
uler needs to achieve high scheduling throughput to effec-
tively use the cluster. Second, given the short task dura-
tion, the scheduler should have low tail scheduling latencies.
State-of-the-art schedulers struggle to support these large-
scale low-latency workloads. For instance, Chen et al. [16]
characterized the overheads in data-analytics frameworks
with microsecond-scale workloads and found that schedul-
ing overheads account for nearly 60% of the total execution
time. State-of-the-art schedulers fail to meet the stringent
requirements for these workloads due to numerous reasons
such as node-level blocking [12, 17], low scheduling through-
put [13, 18], and sub-optimal scheduling decisions [19–21].
Two recent systems, R2P2 [17] and RackSched, [12] ex-

plore using programmable switches [22] to accelerate sched-
uling decisions. Individual tasks are directly queued toworker
nodes. The switch is used to monitor the lengths of each
worker queue and forward an incoming request to theworker
with the shortest queue i.e. Join-Shortest-Queue (JSQ) sched-
uling. Both projects use variants of JSQ scheduling; R2P2
uses a Join-Bounded-Shortest-Queue (JBSQ) approach while
RackSched uses the power-of-two choices with a JSQ policy.
Both systems suffer from inefficient scheduling as a re-

sult of three fundamental shortcomings. First, using the
JSQ/JBSQ scheduling policy results in inferior scheduling
decisions compared to global single-queue scheduling ap-
proaches [12, 23, 24]. Second, using a push-based model to
push and queue tasks at worker nodes causes node-level
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blocking, i.e., a task may wait at an executor’s queue while
other executors are available in the cluster. Finally, state-of-
the-art systems use inefficient techniques such as excessive
packet recirculation or sampling because of perceived pro-
grammable switch limitations.
Previous studies have shown that centralized first come

first served (cFCFS) is the optimal scheduling policy for light-
tailed workloads [25] and that a single queue approach is
better than scheduling from multiple queues [24]. Thus, the
aforementioned inefficiencies can be resolved by eliminating
worker side queues and hosting a global cFCFS task queue
on a switch.
We present Draconis, a novel scheduler design for high

throughput and low-latency workloads. To support large
clusters and reduce tail latencies, Draconis accelerates the
scheduler using modern programmable switches [22, 26].
Draconis overcomes the shortcomings of the state-of-the-
art systems by making two fundamentally different design
choices. Draconis does not have distributed queues at the
worker nodes. Instead, we build a central FCFS queue and
host it at a programmable switch. Second, Draconis adopts a
pull-based scheduling model. Executors pull tasks from the
central queue. This approach eliminates node-level blocking
and precisely selects the next free executor for a task, leading
to superior scheduling decisions compared to other systems.

We use two novel techniques (§4) to realize this approach.
First, we present a novel P4-compatible circular queue design
built using delayed pointer correction. The design judiciously
uses packet recirculation to overcome the memory-access
limitations of programmable switches. Second, we present
task swapping and queue replication techniques that allow the
implementation of complex scheduling policies on the switch.
In addition to FCFS scheduling, we use these techniques
to implement two constraint-based policies: data-locality-
aware and resource-aware scheduling, and a class-of-service
based policy: priority-aware scheduling.
Draconis targets workloads with execution times in the

tens to hundreds of microseconds [4, 8, 27, 28], for whom
node-level blocking is the primary bottleneck (§2.2). To avoid
node-level blocking, Draconis executors pull tasks only when
they are free. The worker thread is idle while pulling a task.
This approach trades off a small amount of CPU efficiency
(§3) to eliminate node-level blocking worth tens to hundreds
of microseconds.
Limitations imposed by programmable switch hardware

are one of the common concerns associated with building
network-accelerated schedulers. Our analysis (§7) shows
that Draconis supports queues with up to one million tasks
on modern programmable switches [26]. In addition, Dra-
conis adopts existing mechanisms to handle tasks (§4.3) or
parameters (§4.4) that do not fit in a single packet.

Our evaluation of Draconis on a cluster with a Barefoot
Tofino switch [22] shows significant performance benefits
for both synthetic and real-world workloads (§8). Our evalu-
ation shows that the 99th percentile of Draconis’ scheduling
delay is lower by 3×, 120×, 200× and 20× when compared
to RackSched [12], R2P2 [17], Sparrow [19] and Draconis-
DPDK (a DPDK-based [29] Draconis implementation), when
running a workload with 500µs tasks. Draconis also achieves
52×–116× higher scheduling throughput over server-based
schedulers such as Draconis-DPDK and Sparrow [19]. Dra-
conis’s source code is available on GitHub [30].

2 Background and Motivation
2.1 Programmable Switches
Programmable switches facilitate the implementation of ap-
plication specific packet-processing workflows that execute
at line speed. They contain multiple hardware pipelines, each
of which is composed of multiple stages. Packets go through
the pipeline serially, stage by stage.

Stages use match-action tables. If a packet matches a rule
in a table, the corresponding action is executed. Each stage
has its own dedicated resources, including tables and regis-
ter arrays (memory buffers). Stages share data through the
packet headers and small per-packet metadata propagated
between stages as the packet proceeds through the pipeline.
Each stage processes a single packet and different stages
within the pipeline simultaneously process different packets.

2.1.1 Challenges. The need to execute custom actions at
line speed restricts what modern programmable switches
can do. Modern switches limit (1) the number of stages per
pipeline, (2) the number of tables and registers per stage,
(3) the number of times any register can be accessed per
packet, (4) the amount of data that can be read or written per
packet per register, and (5) the size of the per-packet meta-
data passed between stages. In addition, modern switches
lack support for loops or recursion.
The restrictive memory model constitutes a particular

challenge to building an in-network scheduler. As providing
access to registers from multiple stages (and thus packets)
can result in read-write hazards, a register can only be oper-
ated on once per packet within all modern switches [31]. The
operation can either be a simple read/write or an arithmetic
operation (e.g., read-and-increment).

Thus, implementing a task queue is complicated, because
queue operations access the queue size variable twice: once
to check whether the queue is empty or full and a second
time to increment or decrement it. This has led to the popular
belief that building dynamic data structures such as queues
is not possible on programmable switches [12].
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2.2 Network-Accelerated Scheduling
R2P2 [17] and RackSched [12] explored using programmable
switches to accelerate scheduling for a cluster of workers.
Each worker hosts multiple executors. These schedulers do
not maintain a queue of tasks on the switch. Instead, each
worker node (RackSched) or executor (R2P2) has its own
queue of tasks. Both schedulers use variants of the Join-
Shortest-Queue (JSQ) scheduling policy to schedule a task
on an executor with the shortest queue.
R2P2 [17] uses a Join-Bounded-Shortest-Queue (JBSQ)

policy with a bounded queue size 𝑘 (typically 3) on each
executor. To implement JBSQ, R2P2 maintains an array of
counters at the switch to track the queue size of each ex-
ecutor. When a new task is received, R2P2 tries to find an
executor whose queue size is zero. However, the challenging
switch programming model requires R2P2 to use up to 𝑂 (𝑛)
packet recirculations where 𝑛 is the number of executors. If
no executor with a queue size of zero is found, the switch
uses another 𝑂 (𝑛) recirculations to find an executor with
a queue size of one and so on. In total, R2P2 uses 𝑂 (𝑛 × 𝑘)
recirculations in the worst case. If all executor queues are
full, R2P2 keeps recirculating a task until a spot becomes free
at one of the executor queues. If a switch does not have the
capacity to recirculate a packet, it simply drops it. As shown
in §8.3, this can lead to dropping many tasks in bursty work-
loads, which drastically increases scheduling tail latency.

RackSched [12] approximates a Join-Shortest-Queue (JSQ)
policy by maintaining queues at each worker node. Each
worker node hosts multiple executors. RackSched uses JSQ at
the switch and an additional intra-node scheduler to schedule
tasks between executors within a worker node. RackSched
advises using an intra-node cFCFS policy without preemp-
tion for light-tailed workloads. For heavy-tailed workloads,
they use an intra-node Processor Sharing policy with pre-
emption [12] to avoid head-of-line blocking, i.e., shorter tasks
being blocked behind long running tasks
The queue lengths are tracked on the switch. To avoid

excessive recirculation while looking for the shortest queue,
RackSched uses the power-of-two choices and samples the
queue lengths of two nodes. The scheduler forwards the task
to the shorter queue. Sampling achieves sub-optimal sched-
uling decisions at high loads because it is not guaranteed
to select the shortest queue across the cluster. In addition,
the intra-node scheduler adds extra scheduling overhead,
worsening tail latency (§8).

2.2.1 Node-Level Blocking Problem. Scheduling sys-
tems adopting distributed queue designs suffer from node-
level blocking, i.e. a task may be stuck waiting in a worker
node’s queue even when executors on other worker nodes
are free. Preemption does not address the node-level block-
ing problem. RackSched and R2P2 do not implement work
stealing across nodes to address node-level blocking, as this

would incur additional coordination overhead and network
transfer latencies.

2.2.2 Draconis’ Approach. The design choices made by
R2P2 and RackSched are a consequence of being unable to
build a centralized task queue on programmable switches.
Previous studies show that centralized global task queues
are more efficient than the best JSQ policies [23]. Draconis
follows a fundamentally different design approach by propos-
ing a novel P4-compatible circular queue design to hold tasks
at the switch, eliminating the need for executor-side queues.

2.3 Server-based Scheduling
Existing server-based cluster schedulers adopt one of two
design paradigms: centralized or distributed.

2.3.1 Centralized Schedulers. Within the centralized
scheduling paradigm, a single scheduler is used to make
scheduling decisions for the entire cluster. Some examples
of centralized schedulers include Firmament [13] and the
Spark Native Scheduler [18]. Despite achieving optimal task
placement, server-based centralized schedulers are unable
to achieve high scheduling throughputs while maintaining
low tail latencies, because they are bottlenecked by the per-
formance of a single node.

For instance, Gog et al. [13] report that Firmament cannot
scale to more than 100 nodes with 6 physical cores each (1200
executors total), when running 5 ms tasks. Similarly, in our
experiments, the Spark Native Scheduler [18] could not han-
dle sub-second tasks, which confirms a similar observation
made by the authors of Sparrow [19]; The scheduling delay
at 50% cluster utilization was 3 seconds, when running 500
µs tasks. Above 50% utilization, the scheduler could not keep
up and experienced infinite queueing.

2.3.2 Distributed Schedulers. Distributed scheduling uti-
lizes multiple schedulers to make scheduling decisions for
the cluster, to address the scalability problem associated
with centralized server-based schedulers. However, this of-
ten results in sub-optimal scheduling decisions. For instance,
Sparrow [19] and Hopper [20] use the power-of-k-choices
approach to select executors for scheduling, which is inac-
curate at high cluster loads. Apollo [21] uses a centralized
metadata service that only periodically monitors the cluster
nodes and hence has stale data.

3 Draconis Overview
Draconis is an in-network centralized scheduler that pre-
cisely assigns tasks to free executors with minimal overhead.
An executor is a process running on a worker node which
pulls tasks from the scheduler to execute. Typically, worker
nodes run multiple executors, one on each available logical
core (i.e., hardware thread).
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Figure 1. Draconis’ Architecture

Figure 1 shows Draconis architecture with clients, worker
nodes, and a programmable switch. Clients submit a task or
a batch of independent tasks (1) which are queued on the
programmable switch (2). When an executor is free, it sends
a task request (3) to the switch, which then schedules a task
for it to execute (4).
State-of-the-art network-accelerated schedulers [12, 17]

follow a push-based approach and queue tasks at workers
leading to node-level blocking. Draconis avoids this by using
a single switch-based global queue and pull-based schedul-
ing. Draconis targets workloads with task execution times in
the tens to hundreds of microseconds [4, 8, 27, 28]. For these
workloads, Draconis presents a good trade off by eliminating
node-level blocking worth tens to hundreds of microseconds,
at the cost of a single RTT worth of CPU efficiency. Mod-
ern network advances promise sub-microsecond RTTs [32]
which will further reduce this overhead.

3.1 Draconis Executors and Clients
Draconis Client. Draconis adopts the client model sup-
ported by schedulers such as R2P2 [17], Sparrow [19] and
the Spark Native Scheduler [18]. The Draconis client within
our implementation can submit single or batches of inde-
pendent tasks. Draconis supports request batching to readily
integrate with data processing frameworks such as Spark.
These frameworks contain call-graph optimization modules,
which track data dependencies and submit batches of inde-
pendent tasks to a scheduler.
Executors. When an executor becomes free, it sends a

message to the switch to request a new task. The switch
retrieves a task from the switch task queue and sends it back
to the executor. This approach effectively eliminates node-
level blocking, as tasks are sent precisely to the next free
executor available to run them. The executor finishes the
task and sends a completion response back to the client via
the scheduler. The request for a new task is piggybacked
on this completion response. If the scheduler has no tasks
available, it sends a no-op task to the executor, which sends
another task request periodically.

Figure 2. Draconis’ scheduling timeline

The executor is idle for a single RTT (typically a few mi-
croseconds) while retrieving a task. This represents a small
loss of efficiency in executor usage (less than 3% when run-
ning 100 µs tasks). The benefits of eliminating node-level
blocking far outweigh this loss in efficiency.

3.2 Programmable Switch
Draconis hosts the centralized in-network scheduler on a
programmable switch [22, 26]. The scheduler holds tasks in
the switch memory until an executor is available. To do this,
the scheduler adds these tasks to a circular queue along with
the identifiers (IP address and port) of the submitting client.
When an executor asks for a task, the scheduler assigns a
task to it based on the scheduling policy.

Despite its simplicity, implementing this design onmodern
programmable switches is challenging due to their restrictive
programming and memory model.
Deployment. Draconis can be deployed within the top-

of-the-rack switch in rack-scale computing platforms. If Dra-
conis is deployed on multi-rack clusters, then similar to the
state-of-the-art projects that use programmable switches
[33–36], the network controller installs forwarding rules to
forward all job-submission requests through a single switch,
which runs the Draconis scheduler. The controller typically
selects a common ancestor switch of the cluster nodes. While
this approach may create a longer path than traditional for-
warding does, the effect of this change is minimal. Li et al.
[34] reports that for 88% of cases, this approach does not
increase the request latency.

3.3 Fault Tolerance
On switch failure, a new switch is selected to run the schedul-
ing pipeline. Clients will time out on all previously submitted
tasks and resubmit them.
Similar to the state-of-the-art schedulers such as R2P2

[17] and Sparrow [19], if a task fails (due to executor or
communication failures), this failure is exposed to the client.
This allows the client to handle the failure in an application-
specific fashion, for instance by resubmitting these tasks to
the scheduler.
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4 System Design
We first present the building blocks required to implement
an in-network scheduler including the network protocol
and the task queue. Following this section, we discuss how
these components are used to design schedulers for a wide
range of policies, including FCFS, priority-based, resource-
constrained, and data locality-aware scheduling.

4.1 Network Protocol
Draconis introduces an application-layer protocol embedded
in a packet’s L4 payload. Similar to existing schedulers [12,
17], our system uses UDP to reduce latency and simplify
the scheduler design. Draconis introduces two new packet
types: job_submission packets submit a batch of tasks to the
scheduler and task_assignment packets send a task to an
executor. A single job consists of one or more job_submission
packets. Figure 3 shows the main fields of the job_submission
packet:

• OP_CODE: The request type indicating this is a job sub-
mission.

• UID, JID: The user and job IDs.
• #TASKS: The number of tasks in a packet. The sched-
uler uses this field to parse the job-submission packet.

• A list of TASK_INFO metadata for the tasks in the job.
The task information (TASK_INFO) includes the following:

• TID: The task identifier within a job. The tuple <UID,
JID, TID> is a unique identifier for any task in the
system.

• FN_ID, FN_PAR: The identifier and arguments of the
pre-compiled function. This task information is similar
to that required by state-of-the-art systems [17–19].

• TPROPS: The policy-specific properties used for sched-
uling this task. This field can hold information related
to task priority or data locality.

To assign a task to an executor, the scheduler sends it a
task_assignment packet. The packet headers contain the task
information as well as the client’s information (IP address
and port number).
When other types of packets are encountered, Draconis

adopts the functionality of a regular switch and simply for-
wards them to their destination. This makes Draconis safe
for colocation with other protocols.

4.2 Circular Queue Design
Draconis stores tasks in a circular queue using switch regis-
ters. Each queue entry contains the task information (TASK-
_INFO) along with the associated client information. The cir-
cular queue has two 32-bit pointers: add_ptr and retrieve-
_ptr. The add_ptr points to the next empty queue entry
where a new task can be inserted, while the retrieve_ptr
points to the next task to be scheduled.

In traditional circular queue implementations, to enqueue
a new task, one typically checks whether the queue is full

Figure 3. Draconis’ job_submission packet.

by computing the difference between the pointers. If the
queue is not full, then the new task is added to the queue and
add_ptr is incremented. However, this design cannot be im-
plemented on current switches because it accesses add_ptr
twice; it first checks the pointer, then possibly increments
it. The dequeue operation faces a similar challenge. Another
plausible design is to check the queue size before adding
or retrieving a task. This approach accesses the queue size
twice as well and cannot be directly implemented on modern
switches.
To work around this limitation, Draconis uses an atomic

read_and_increment(add_ptr) operation to read and in-
crement add_ptr in one access, because it can access this
pointer only once per packet. It then checks whether the
queue is full by computing the difference between the retri-
eve_ptr and add_ptr. If the queue is not full, then Dra-
conis uses the add_ptr value to add a task to the queue.
However, this approach increments add_ptr even when the
queue is full. Similarly, to dequeue a task, Draconis calls
read_and_increment(retrieve_ptr) and increments re-
trieve_ptr even when the queue is empty. In these cases,
the pointers must be corrected, albeit in a future packet be-
cause the pointers can only be accessed once per packet. We
discuss how to detect and correct incorrect pointers later in
section (§4.5).

4.3 Job Submissions
The client submits a job by populating the headers of a job-
_submission packet (Figure 3) and sending the packet to the
scheduler. The scheduler then enqueues the job’s tasks. The
packet may contain one task or a set of tasks.

Two switch limitations complicate adding a set of tasks to
the queue: modern switches do not permit loops or recursion,
and the scheduler can access a register (the queue) only
once per packet. To work around these limitations, Draconis
checks the number of tasks field (#TASKS) within a packet. If
it is larger than zero, then it removes the first task from the
list of tasks in the packet, calls read_and_increment(add-
_ptr), and adds the task.

Adding Multiple Tasks. If the job_submission packet
(Figure 3) contains multiple tasks, Draconis uses packet re-
circulation (i.e., the ability to resubmit a packet from the
egress pipeline to the ingress pipeline and reprocess it as a
new packet). The scheduler removes the first task from the
packet, adds it to the queue, decrements the #TASKS field,
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and recirculates the packet. Draconis continues to recirculate
the packet until all tasks have been added to the queue.
Handling a Full Queue. When enqueuing a new task,

the scheduler calls read_and_increment(add_ptr), then
compares add_ptr and retrieve_ptr to determine whether
the queue is full. If the queue is not full, then the scheduler
adds the task to the queue. If the queue is full, the scheduler
sends an error_packet to the client, containing the list of
tasks that could not be added to the queue. The client will
retry the submission of these tasks after a short wait.

Handling Large Jobs. A few jobs within the application
may require the submission of thousands of parallel tasks,
which are larger than the size of one job_submission packet.
Such jobs can be split into multiple job_submission pack-
ets instead. As the tasks within a job are independent and
executed in parallel, this would not affect their execution
correctness. Thus, Draconis is not limited by MTU Size.

4.4 Handling Tasks with Large Parameters
Some tasks may have large parameters that do not fit in the
fixed-size parameter field (FN_PAR) in the packet. Similar to
state-of-the-art schedulers, Draconis supports two mecha-
nisms for handling tasks with large parameter sizes. The
first approach is similar to R2P2 [17], where the submitted
task does not contain the task information or parameters.
Instead, the client submits a special transmission function.
When this transmission task is scheduled on an executor,
the executor would contact the client directly to retrieve the
actual task and parameters. The second supported approach
is the typical approach used by data analytics engines: clients
first store the input data on an in-memory storage system
deployed on the same cluster with the executors, then they
add a pointer to the input data in the task parameter field.
Our locality-based scheduling policy further schedules tasks
on nodes that hold the data (§5.3).

4.5 Pointer Correction
When the scheduler receives a job_submission packet, it ex-
ecutes read_and_increment(add_ptr) first, then checks
whether the queue is full. If the queue is full, incrementing
add_ptrwas amistake. To correct thismistake, the scheduler
recirculates a repair packet to reset the pointer to its origi-
nal value. To avoid a case in which multiple job_submission
packets try to reset the pointer, we have repair flags on the
switch to ensure that the scheduler only recirculates one
repair packet.
Similarly, task retrieval operations call read_and_incr-

ement(retrieve_ptr), then check whether the retrieved
task is valid. If the retrieved task is invalid, indicating that the
queue is empty, then incrementing the pointer was a mistake.
We delay fixing this pointer until the next job_submission
packet is received.
When the next job_submission request is received, the

scheduler adds the first task in the job to the queue. The

Figure 4. Simplified Draconis pipeline showing the order of
operations that deal with queue pointers on the switch.

scheduler then checks whether retrieve_ptr needs adjust-
ing (i.e., whether retrieve_ptr is larger than add_ptr). If
retrieve_ptr needs adjusting, the scheduler recirculates a
packet and sets the pointer to equal the index of the newly
added task. To avoid concurrent repairs, repair flags are once
again used.We discuss howDraconis handles race conditions
related to pointer correction in §4.7.

4.6 Task Retrievals
To avoid node-level head-of-line blocking, executors retrieve
tasks only when they become free. To retrieve a task, an
executor sends a task_request packet to the scheduler. The
scheduler calls read_and_increment(retrieve_ptr) and
reads one task from the queue. If a task satisfying the sched-
uling policy is available in the queue, the task is sent to the
executor. Otherwise, if no valid task is found, then a no-op
task is sent to the executor. The executor then repeats the
request.

4.7 Handling Race Conditions
A pipeline in a programmable switch processes packets se-
rially. Figure 4 shows the logical order of Draconis’ opera-
tions that deal with queue pointers. Packets first read and
increment the add_ptr or retrieve_ptr ((1) in Figure 4).
Job_submission packets then check if any pointers need to
be fixed (2). If Draconis detects that the queue is full and that
the add_ptr has been incorrectly incremented, it sets a flag
in (3) and recirculates a repair packet to fix the add_ptr (4).
Similarly, if Draconis detects that the retrieve_ptr is ahead
of the add_ptr, it sets another flag in (3) and recirculates a
repair packet to fix the retrieve_ptr (4).
Queue access occurs in the egress pipeline. In (5), job-

_submission packets add tasks while task_retrieval packets
retrieve tasks from the queue. In (6), job_submission packets
send an acknowledgment to the client while task_retrieval
packets send a task or a no-op to the executor.
With the pipelined execution of these steps, there are no

race conditions between two job_submission packets that do
not fix a pointer, between two task_request packets, or be-
tween task_request and job_submission packets. These pack-
ets do not have a race condition because they access the
pointers in (1) serially, one at a time. Consequently, race
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conditions can only occur between repair packets and re-
trieval / submission packets because repair packets update
the pointers in (1) and update the repair flags in (3).

4.7.1 Race between repairs and a job_submission. If
two job_submission packets detect that one of the point-
ers need fixing, they may recirculate two repair packets to
correct it. To avoid this scenario, Draconis uses the flags
in (3). Because packets are processed serially, one of the
job_submission packets will reach (3) first, set the flag, and
recirculate a repair packet (4). The second job_submission
packet sees that the flag is already set and does not recir-
culate a repair packet. When the pipeline receives a repair
packet, it fixes one of the pointers in (1) and clears the flag
in (3).

4.7.2 Race between repairs and task_requests. If a task-
_request detects that the repair flag for the retrieve_ptr
is set (i.e. it entered the pipeline before a repair packet),
Draconis returns a no-op to the executor. There is no race
scenario if a task_request packet enters the pipeline right
after a repair packet for the retrieve_ptr. The repair packet
will fix the retrieve_ptr and clear the flag before the task-
_request reaches these stages.
Task request packets are not affected by a repair packet

that fixes the add_ptr, as this only occurs when the queue
is full and task retrieval can proceed as usual.

4.8 Putting it together: cFCFS Scheduling
With the building blocks outlined in §4, we can build a
first-come-first-served (FCFS) scheduler on programmable
switches. The client creates job_submission packets consist-
ing of a set of tasks and sends them to the switch. The
switch enqueues each task into the circular queue. Execu-
tors pull tasks from the switch when they are idle by send-
ing task_request packets. The switch retrieves the task at
the head of the circular queue and sends a task_assignment
packet back to the executor, with the TASK_INFO required to
execute the task.

5 Constraint-based Scheduling
While schedulers such as R2P2 [17] support only the FCFS
scheduling policy, modern workloads require the use of more
complex policies, such as constraint-based policies, where
individual tasks have special requirements. An example is
data locality-aware scheduling. In this policy, the scheduler
prefers to place a task on the node that contains the data
it accesses. Another policy is resource-aware scheduling
where tasks require specific resources for execution (e.g.,
GPU) and the scheduler assigns tasks only to nodes with
these resources.

5.1 Task Swapping
To meet the needs of constraint-based scheduling, we may
need to retrieve tasks other than the one at the head of
the queue. Draconis first retrieves the task at the head of
the queue and inspects it. If the task cannot be scheduled
on this executor because of the policy, we return the task
to the queue and fetch the next one. This requires a novel
task swapping technique in which we swap the task we just
popped from the queue with the task at the head of the queue
without changes to the queue’s add and retrieve pointers.

To swap tasks, the scheduler creates a special swap_task
packet. The packet has the task information; SWAP_INDX, the
index of the next entry to examine in the queue; EXEC_PROPS,
the executor’s properties; and pkt_retrieve_ptr contain-
ing the current retrieve pointer value. The scheduler popu-
lates and recirculates this swap_task packet.

When the scheduler receives the swap_task packet again,
it exchanges the task (TASK_INFO) in the packet with the task
at the SWAP_INDX position in the queue. The packet does not
increment the retrieve_ptr. If the new task satisfies the
scheduling policy, it is sent to the executor. Otherwise, the
scheduler repeats the swap logic by incrementing SWAP_IDX
within the packet and recirculating it.

To avoid complex concurrency conflicts, the swap_task
packet also contains the retrieve pointer value stored as
pkt_retrieve_ptr. If the scheduler receives a swap_task
packet with a pkt_retrieve_ptr value that is lower than
the current retrieve_ptr, then the scheduler will ignore
the packet’s SWAP_INDX value and swap its task with the
task at the head of the queue. This is done to avoid scenarios
where the task within the packet is swapped into a location
which has already been passed over by the retrieve_ptr
and is lost.
The scheduler recirculates the swap_task packet for a

bounded number of times (specified by the policy) or until it
reaches the end of the queue. If the SWAP_INDX in the packet
is larger than add_ptr, indicating that no task in the queue
can run on this executor, the scheduler treats the swap_task
packet as a job_submission packet, inserts the task following
the logic in §4, and sends a no-op task to the executor.
We note that the task swap operation maintains the rela-

tive order of tasks in a queue. That is because a task in the
swap_task packet is swapped with the next task within the
queue. Furthermore, to avoid starvation, a scheduling policy
can specify how many times a task can be swapped.
We will now discuss how task swapping can be used to

support two constraint-based scheduling policies: a resource-
constrained policy in which a client specifies a hard require-
ment of the resources needed to execute a task, and data
locality-aware scheduling in which a client indicates a pref-
erence to execute a task on nodes that have the input data
(i.e., soft requirement).
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5.2 Resource Constraint-Aware Scheduling
Tasks may require specific resources, such as a GPU or large
memory. In this section, we use task swapping to support
a policy which takes hard requirements into account. We
explore how to build a policy with soft constraints in the
following section. Similar to MapReduce [37] and Spark [18],
Draconis supports binary task constraints, i.e., the task either
needs a resource or not. Tasks may have multiple constraints.
Job Submission. To support resource constraints, the

task properties field (TPROPS) in the job_submission packets
will now be used to indicate the resources required by the
task. We use the field as a bitmap where each bit indicates if
a certain resource is required by the task. A client sets the
appropriate flags in the field to specify the resources required
by the task. The scheduler uses the same logic described in
§4.3 to process the job submission packet.

Task Retrieval. The scheduler aims to assign a task to the
first executor that has the requested resources. When an ex-
ecutor sends a task_request packet, it specifies the resources
that it has in a bitmap called EXEC_RSRC.
When the scheduler receives this task_request packet, it

retrieves a task from the queue following the process de-
scribed in §4.6, i.e., it increments retrieve_ptr and fetches
a task from the queue. If the queue is empty, a no-op task
is sent to the executor. However, if a valid task is retrieved,
the scheduler will compare the task requested resources in
the TPROPS field to the executor’s resources (EXEC_RSRC). If
the executor has the resources required to run the task, the
scheduler sends the task to the executor.
When the retrieved task cannot be executed by this ex-

ecutor, Draconis reinserts the task into the task queue and
retrieves another one, via task swapping. If the queue only
has tasks requiring resources that the executor does not
possess, a no-op is sent back to the executor.

5.3 Locality-Aware Scheduling
The data locality-aware scheduling policy gives preference
for scheduling a task on a node that has the input data. Simi-
lar to Spark [18], Draconis supports multiple levels of locality.
Each task is tagged with the IDs of nodes that hold the task’s
data. The scheduler tries to place the task on one of those
nodes. After a few attempts, if all the data-local nodes for
a task are not free, the scheduler tries to place the task on
a node in the same rack as one of it’s data-local nodes. If
none of the nodes in the same rack are available, after a few
attempts, the task is placed on any available node.

Similar to Spark’s [18] design, Draconis maintains a skip-
_counter that counts the number of times a task has been
examined and skipped over, when looking for a suitable task
for scheduling. This additional field is stored in the circu-
lar task queue (§4.1). This policy has two configuration pa-
rameters: rack_start_limit and global_start_limit. If
the skip_counter is larger than rack_start_limit, nodes

on the same rack as data-local nodes will be considered
for scheduling the task. If the skip_counter is larger than
global_start_limit, the task will be scheduled on the next
available executor regardless of data locality.
Job submission. Within this policy, the task property

field (TPROPS) in the job_submission packets is used to hold
the node ID of the nodes storing the input data for a task.

Task retrieval. When sending a task_request packet, ex-
ecutors include the ID of the node they are running on.When
processing this packet, the scheduler retrieves a task from the
queue. The scheduler then examines the task property field
(TPROPS). If the node the executor is running on is also the
task’s data-local node, the task is scheduled on the executor.

If the executor is not on a data-local node for the task, the
skip_counter is incremented and examined. Depending on
its value, the following scenarios may arise:

• If the value is less than the rack_start_limit, the
task is swapped with the next task in the queue.

• If the value lies between the rack_start_limit and
the global_start_limit, the task is scheduled if the
executor’s node is on the same rack as one of the task’s
data-local nodes. Otherwise, the task is swapped.

• Finally, if the value is greater than the global_start_-
limit, the task is scheduled on this executor regardless
of data-locality.

We note that the number of times a task is recirculated
is bounded by the global_start_limit. Using the config-
urable rack_start_limit and global_start_limit, the
scheduling of certain tasks can be selectively delayed in
hope that a data-local node will be available to execute it.

6 Classes-of-Service Scheduling
In classes-of-service scheduling, tasks are placed in cate-
gories, with each category having different scheduling re-
quirements. To support such policies, we deploy multiple
queues on a switch. The circular queue described within §4
consumes a nominal amount of switch resources. As a result,
multiple queues can be housed within a single switch and
can operate independently. We demonstrate how we use this
technique to build task-priority aware scheduling policy.

6.1 Priority-Based Scheduling
Priority-based scheduling is a common scheduling approach
in modern schedulers [13, 18, 19, 21]. Unlike schedulers
within current frameworks (Hadoop [37] and Spark [18])
that support priority-based scheduling at the job level, Dra-
conis offers priority-based scheduling at the task level, mean-
ing tasks in the same job may have different priorities. Tasks
within the same priority level are executed in FCFS order.
Higher priority levels have lower priority numbers i.e prior-
ity level 1 is the highest priority.
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Job Submission. We deploy a separate queue for each
priority level. We use the task properties field (TPROPS) in
a job_submission packets to hold the task’s priority level.
When the scheduler receives a job_submission packet, we
insert each task into the queue matching its priority level.

Task Retrieval.When a scheduler receives a task_request
packet from an executor, it returns the first available task of
the highest priority level. To do so, each task_request packet
has a retrieve priority field (RTRV_PRIO). When an executor
submits a task_request packet, it sets RTRV_PRIO to 1, the
highest priority level supported in the system.

The scheduler will retrieve a task from the FCFS queue cor-
responding to the priority level specified in the RTRV_PRIO
field. If the retrieved task is a valid task, the scheduler for-
wards the task to the executor. If the retrieved task is an
invalid task, indicating that the selected queue is empty, the
scheduler will increment the RTRV_PRIO field and recirculate
the packet. Incrementing RTRV_PRIO makes the scheduler
retrieve a task from a lower priority queue. If RTRV_PRIO
becomes larger than the number of priority levels in the sys-
tem, indicating that there are no tasks at any priority level,
the scheduler sends a no-op packet to the executor.
In the worst case, Draconis recirculates a task_request

packet up to the number of priority levels, often just a few
levels. In §8.7, we show that this adds negligible overhead.We
also note that in newer switches with enough match-action
stages, recirculation can be completely avoided by hosting
the queues for each priority level on separate stages.

7 Implementation
Our implementation of Draconis supports all the scheduling
policies discussed in §4.8, §5 and §6. We have implemented
the scheduling logic on a Barefoot Tofino [22] switch using
the P4-14 [38, 39] programming language in ~1500 lines of
code per policy.

The system uses DPDK-based executors and clients which
are implemented in ~1000 lines of code. The clients are de-
signed to submit jobs with configurable sizes, task durations,
and interarrival times.

Our switch is one of the earlier P4 programmable switch
models (§8) and has limited resources. For instance, our task
queue size is 164K and we support up to 4 priority levels
with the priority-aware scheduling policy. However, newer
Barefoot Tofino switches have a significantly larger mem-
ory and number of stages [26] which will enable Draconis
to overcome these limitations. We estimate that Draconis
supports a queue size of 1 million tasks and up to 12 pri-
ority levels on Tofino 2 switches [26]. We anticipate newer
switches will increase these capabilities further.

(a) Throughput vs 99th Per-
centile latency with 500 𝜇𝑠 tasks.
Y-axis is in log scale.

(b) Scheduling throughput
when running a no-op workload

Figure 5. Comparison of all scheduling alternatives

8 Evaluation
We compare the performance of Draconis against state-of-
the-art centralized, decentralized, and network-accelerated
schedulers using synthetic and real-world workloads.
Testbed. We perform all our experiments on a 13-node

cluster. Each node has 48 GB of RAM, an Intel Xeon Silver 10-
core CPUwith hyperthreading, and a 100 GbpsMellanoxNIC.
We use 10 nodes as worker nodes running 16 executors each
(for a total of 160 executors) unless mentioned otherwise. The
remaining nodes are used as schedulers for software-based
scheduling systems.
The nodes are connected by an Edgecore Wedge-100BF-

32X switch with a Barefoot Tofino ASIC [22].
Schedulers. We compare the following server-based and

network-accelerated scheduling systems:
• Draconis.We use our Draconis implementations on
P4. Unless otherwise specified, we use Draconis with
a FCFS scheduling policy.

• Draconis-Socket-Server. An optimized centralized
scheduler following the Draconis scheduling protocol
implemented using C++ and Linux sockets.

• Draconis-DPDK-Server. An optimized centralized
scheduler following the Draconis scheduling protocol,
implemented using DPDK [29].

• R2P2. We use R2P2’s P4 implementation [17]. Unless
otherwise specified, we use the configuration used by
the R2P2 authors and set the executor queue size to
3 tasks per executor (one task is processed while up
to 2 tasks can be queued). We evaluate the impact of
varying the executor queue size in §8.3.

• RackSched. RackSched [12] is a two-layer scheduler
consisting of a P4-based inter-node scheduling com-
ponent and an intra-node scheduling component.
Racksched’s dependencies, Shinjuku [10] and Dune
[40] , do not run on newer Linux kernels [41] and only
support specific Intel NICs. We use RackSched’s P4
scheduler and ported it’s intra-node scheduler onto
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DPDK [29] instead of using Shinjuku over Dune. We
use the JSQ + cFCFS scheduling policy as recommended
by the RackSched authors [12] for light-tailed work-
loads.

• Sparrow. Sparrow is the state-of-the-art distributed
scheduler. Our evaluation of the open-source Spar-
row implementation [42] showed that it is inefficient
as it uses Java and Thrift RPCs. We re-implemented
Sparrow in C++ using sockets, achieving 25× higher
throughput and 2× lower latency than the original
Java implementation. In our evaluation, we use our
C++ implementation of Sparrow.

Other Schedulers.We have experimented with the Spark
native scheduler, but it could not run sub-second tasks. We
have also experimented with Firmament [13], whose open-
source implementation could not handle microsecond-scale
workloads as well.

Workloads. We use a synthetic workload suite as well as
the Google cluster traces [43] to compare Draconis to the
alternatives. Our synthetic suite includes workloads with
fixed execution time of 100 µs, 250 µs, 500 µs; bimodal (50%
100 µs and 50% 500 µs) and trimodal (33.3% 100 µs, 33.3% 250
µs, and 33.3% 500 µs) workloads. It also contains a synthetic
workloadwith an exponential distribution of execution times,
with a mean of 250 µs.

In order to assess performance with a real workload, we
use the Google cluster traces [43] in our evaluation. The
traces have been accelerated to create two separate versions
with mean task execution times of 500 µs and 5 ms. The
traces contain task priority information, which are used to
evaluate our priority-aware policy. In all our experiments,
we report the average of 10 runs. The standard deviation in
all our experiments was under 5%.

8.1 Scheduling Latency
Figure 5a plots the 99th percentile of the scheduling delay
against increasing system load for Draconis and the alterna-
tives, when running a synthetic workload with 500 µs tasks.
We have deployed both a single (1 Sparrow) and two Sparrow
schedulers (2 Sparrow) on our cluster for this experiment.

Figure 5a shows that Draconis has significantly lower tail
latencies compared to other systems at 4.7 µs, 3×, 20×, 120×
and 200× lower than that of RackSched, Draconis-DPDK-
Server, R2P2 and Sparrow respectively. The tail latency in-
creases when the load is above 250k tasks per second (tps),
as the cluster utilization is over 90% and tasks experience
queuing delays. Nevertheless, even at high cluster utiliza-
tion Draconis achieves 30× lower latency than the closest
alternative.

The figure also demonstrates that systems that use POSIX
sockets cannot support more than 160k tps and experience
200× higher tail latency compared to Draconis. Sparrow is
outperformed even byDraconis-Socket-Serverwhich achieves

1.7× lower latency than a single Sparrow scheduler and com-
parable performance to the dual Sparrow scheduler deploy-
ment. This is because Sparrow experiences higher latencies
due to its additional probing overheads. Sparrow also does
not achieve ideal task placement as it probes only a fraction
of the cluster for each task. Sparrow and Draconis-Socket-
Server could not run workloads with lower execution times
and thus, we omit their results in the following sections.

Figure 6 shows the 99th percentile of the scheduling delay
plotted against increasing system load, with the entire suite
of synthetic benchmarks. Draconis consistently achieves tail
latencies of 4.7–20 µs, significantly lower than RackSched,
R2P2 and Draconis-DPDK-Server.

R2P2 always selects the node with the shortest queue. As
demonstrated by the authors of RackSched [12], this leads to
herding i.e. batches of tasks are sent to the executor with the
shortest queue before the queue length is updated. While
R2P2 keeps pace with Draconis at low loads, as the load
increases R2P2 suffers from node-level blocking at the execu-
tors. For instance, with uniform workloads, its tail latency is
always equal to the task service time. This begins to occur
at 30%–40% cluster utilization.
RackSched avoids the problems associated with herding

as it uses sampling and the power-of-two choices to select
the server with the shortest queue. However, as the load
on the cluster increases, sampling is ineffective and leads
to node-level blocking. This increases its tail latency under
high loads. In addition, RackSched’s intra-node scheduling
component incurs a small additional overhead (3–4 µs) which
impacts its latency even under low cluster utilization.

8.2 Scheduling Throughput
Microsecond-scale workloads on large clusters require the
processing of thousands of status reports and making mil-
lions of scheduling decisions per second. State-of-the-art
sever-based schedulers cannot scale to support these work-
loads on large clusters, while maintaining low tail latencies.
For instance, Firmament, a state-of-the-art centralized sched-
uler, can only support a cluster of up to 100 nodes when
running millisecond-scale workloads [13].

To demonstrate the viability of network-accelerated sched-
uling for microsecond-scale workloads, we compare the
throughput of Draconis against all the server-based schedul-
ing alternatives. To measure the throughput of each schedul-
ing system, we use a synthetic workload composed of no-op
tasks, i.e., an executor retrieves the task, immediately drops
it, and requests a new task. We vary the number of executors
to increase the load on the scheduling system.
Figure 5b shows scheduling throughput with increasing

number of no-op executors. Draconis’ performance improves
linearly with additional executors, achieving a throughput
of 58 million scheduling decisions per second with 208 ex-
ecutors, 52× higher than Draconis-DPDK-Server, the closest
alternative. Unfortunately, we could not deploy more than
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(a) 100 µs service time. (b) 250 µs service time. (c) 500 µs service time.

(d) Bimodal workload. (e) Trimodal workload. (f) Exponential workload.
Figure 6. Throughput vs 99th percentile of the scheduling delay on synthetic workloads. Note the log scale y axis.

Figure 7. Examining Task Drops with the 250 µs workload

208 executors on our cluster to stress Draconis. The switch
can handle up to 4.7 billion packets per second, indicating
that Draconis’ peak throughput is significantly higher than
the workload our no-op executors can generate. We use sim-
ulations to evaluate Draconis’ scalability. Our simulations
show that Draconis supports clusters of millions of cores
when running 500 µs tasks.

We note that server-based schedulers do not scale well.
Draconis-DPDK-Server has the highest throughput of 1.1
Mtps while Sparrow’s throughput is the lowest at 500k and
900k tps for single and dual Sparrow schedulers. We construe
that supporting microsecond-scale workloads on large clus-
ters at low tail latencies will require hardware-acceleration,
such as the use of P4 programmable switches.

8.3 The Effect of JBSQ size on R2P2
R2P2 can be run with varying JBSQ executor queue size. The
executor queue size impacts the tail latency [17]. However,
in practice, the process is not as straightforward. Figures

(a) 100 µs tasks. (b) 250 µs tasks
Figure 8. Cluster Utilization vs 99th Percentile scheduling
delays for R2P2 configurations. Yellow triangles indicate runs
with dropped tasks.

8a and 8b compare the scheduling tail latencies of Draconis
and R2P2 with two configurations of the executor queue size.
Within R2P2-1, each executor has no queues and gets 1 task
to execute at a time. Within R2P2-3, each executor can hold
3 tasks; 1 task is executed and 3 tasks can be queued. We
use workloads with 100 µs and 250 µs tasks respectively. We
note that R2P2-1 has no queue in the system to absorb task
submission bursts, which leads to it dropping tasks. This is
confirmed by our experiments below.

Under low cluster utilization R2P2-1 achieves a tail latency
comparable to Draconis. As the load increases, R2P2-1 drops
an increasing number of tasks. Cluster loads with dropped
tasks are highlighted using yellow markers in both figures.
For instance, in Figure 8a at a cluster load of 82%, R2P2-1
drops 5% of tasks at the switch. In Figure 8b, R2P2-1 drops
9% of tasks at a cluster load of 93%. A client will timeout and
resubmit these tasks, causing a spike in tail latency in the
figures. Typically, clients use timeout values ranging between
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Figure 9. Scheduling Latency CDF of different alternatives
when running a real workload. X-axes are in log scale.

5–10× of the task execution time. In our experiments, we
have set the client timeout to 2× the task execution time.
Figure 7 provides further insight into the cause of these

dropped tasks. R2P2 heavily relies on packet recirculation to
find available executors (§2.2). If no executor is available, a
request is continuously recirculated within the switch. With
increasing cluster utilization, R2P2 suffers from a larger num-
ber of recirculations. Figure 7 shows the percentage of recir-
culated packets over the total packets processed by R2P2-1
with increasing cluster load (R2P2-1-Recirc), when running
250 µs tasks. At a load of 93%, almost 50% of all processed
packets are recirculations. This number increases to 75% at
a load of 97%. While the switch possesses a large packet
bandwidth, its recirculation bandwidth is far more limited,
thus resulting in many tasks being dropped while being re-
circulated. This makes R2P2-1 unsuitable for handling real
workloads with bursts.

The solution provided by the authors of R2P2 to address
this is to have larger executor queue sizes. Indeed, increasing
the queue size to 3 on each executor brings down the number
of recirculations and dropped tasks to zero, as shown in
Figure 7. However, R2P2-3 experiences higher tail latencies.
Figures 8a, 8b show that with a cluster utilization of 30%–
40%, its tail latency is equivalent to the task execution times
of 100 µs and 250 µs respectively. This is because of node-
level blocking at the executor queues. For the rest of our
evaluation we use R2P2-3, the configuration used by the
R2P2 authors [17] that does not drop tasks.

Figure 7 also shows that Draconis handles high cluster uti-
lization without dropping any tasks. This is because, Draco-
nis uses recirculations farmore sparingly. Figure 7 shows that
the percentage of recirculated packets in Draconis ranges
from 0.02% to 0.05%.

8.4 Performance with a Real Workload
We evaluate scheduling latencies using the Google cluster
traces [43], which include information about tasks running
on a 12,500-node cluster at Google for over a month. To
generate a trace that we can run on our 12-node cluster, we
followed an approach similar to that of Firmament [13]. We
took a uniform sample of the trace and accelerated it to run
on our cluster in 3 minutes. The resulting trace had a mean
task duration of 500 µs. The google trace is bursty i.e. it
may submit hundreds of tasks at once. Each task continually
performs integer arithmetic operations for the task duration.
We evaluate this workload by running 16 executors each on
10 worker nodes (160 executors total).

Figure 9 is a CDF of the scheduling delay using the alter-
native systems. We use four JBSQ queue sizes while running
this workload with R2P2. A JBSQ size of 1 (R2P2-1) caused
6.3% of tasks to be dropped, hence we omit it from the figure.
Figure 9 shows that the median scheduling delay of Dra-

conis is around 4.18 µs. R2P2 with a JBSQ size of 5 (R2P2-5)
is the best performing R2P2 variant with a median sched-
uling delay of 5.2 µs while the other variants have median
latencies varying from 60–160 µs. RackSched has a median
scheduling delay of 5.83 µs. This shows that Draconis’ me-
dian scheduling delay is 24% and 39% lower than R2P2-5
and RackSched respectively. The tail latencies for Draconis
at the 95𝑡ℎ and 99𝑡ℎ percentile are better than R2P2-5 by
200% and 20% respectively and are similar to RackSched’s
tail latencies. The increase in scheduling delay and long tails
for all alternatives is due to the bursty nature of the google
trace, which results in queuing.
We note that that increasing JBSQ queue size does not

translate to better performance, as R2P2-5 performs better
than R2P2-7 and R2P2-9 (Figure 9). On the other hand R2P2-3
queue size is not large enough, causing recirculation at the
switch and affecting performance.

The median scheduling delay for Draconis-DPDK-Server
is orders of magnitude higher than all network-accelerated
schedulers at around 2.1 seconds. This is because server-
based schedulers cannot handle the high throughput require-
ments of microsecond-scale workloads (§ 8.2).

8.5 Constraint-based Scheduling Policies
Locality-Aware Scheduling.To evaluate our locality-aware
scheduling policy, we designed an experiment that emulates
a multi-rack deployment. We divided our worker nodes into
3 racks. Each node runs 16 executors. We set the intra-rack
and inter-rack storage access times to 20 µs and 100 µs [44]
respectively.
We run a CPU-intensive synthetic locality-aware work-

load consisting of 100 µs tasks. The processed data is not
replicated and is evenly partitioned across the nodes. Thus,
each task has it’s data local to one node in the cluster.
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Figure 10. Locality-aware scheduling vs FCFS.

Figure 11. System throughput with resource constraints.

We run this workload with different configurations of
rack and global start limits. Figure 10 shows the CDF of
the scheduling delay with a rack_start_limit of 3 and
a global_start_limit of 9. This configuration schedules
27.66% of the workload on their preferred nodes, 38.82%
of tasks on the same rack as their preferred node, and the
rest on another rack. In comparison, Draconis-FCFS only
places 10.03% of tasks on their preferred node, 24.05% on the
same rack, and the remaining 65.94% on a different rack. We
experimented with other values for these limits and noticed
that at least 49% of tasks are scheduled on the target node or
rack in all configurations.

Figure 10 shows the CDF of the total end-to-end delays ex-
perienced by tasks scheduled usingDraconis-Locality against
Draconis-FCFS. We note that Draconis-FCFS has a median
latency of 203.87 µs while Draconis-Locality has a median
latency of 131.35 µs. Draconis-Locality performs 2× better
at the 66th percentile, after which Draconis-FCFS achieves
better latencies due to incurring the same locality overhead
without delaying the scheduling of tasks.

Resource-Aware Scheduling. To demonstrate the effec-
tiveness of resource-constraint aware scheduling, we design
the following experiment. We assume that the cluster has
three types of resources: A, B, and C. These can represent
different resources (e.g., GPU, large memory, hardware ac-
celerators). We divide the cluster nodes into three groups:

Figure 12. CDF of queuing delays across different priority
levels. The x-axis is in log scale.

G1 has resource A, G2 has resources A and B, and G3 has
resources A, B, and C. Tasks can specify the resources they
need. For simplicity, we design a synthetic benchmark where
each task requests only one of the resources A, B, or C.

The experiment runs for 90 seconds. In the first 30 seconds,
all submitted tasks require resource A, available on all nodes.
In the next 30 seconds, all tasks require resource B, available
on G2 and G3 nodes. In the last 30 seconds, all tasks require
resource C, only available on G3 nodes.
Figure 11 shows the average throughput of a node from

each one of the three node groups. In the first 30 seconds, all
nodes in all groups are busy, as all nodes have the requested
resource A. In the next 30 seconds, only the nodes in G2 and
G3 are running tasks. In the last 30 seconds, only G3 nodes
are running tasks. We note that G3 nodes are overloaded.
Thus, although the last task is submitted at the 90 seconds
mark, the execution only finishes at the 110 seconds mark.

8.6 Class-of-Service based Scheduling Policies
To demonstrate priority-based scheduling, we use an accel-
erated Google trace with a mean task execution time of 5 ms.
We have increased the sampling rate to place higher load
on the cluster, thereby increasing the queuing delays. The
Google traces [43] have 12 levels of priority, while our im-
plementation has four. We map every three levels of Google
priorities to one priority level in Draconis. The resulting
workload has 1.2%, 1.7%, 64.6%, and 32.2% of tasks at priority
levels 1, 2, 3, and 4, respectively. Tasks at different prior-
ity levels experience different queueing delays, with higher
priority tasks experiencing shorter queueing delays. Figure
12 shows the queueing delays of tasks at different priority
levels. Tasks with priority levels 1, 2, 3 and 4 have median
queueing delays of 1.4 ms, 2.9 ms, 13.3 ms, and 53.5 ms, re-
spectively. The same workload run with a priority unaware
FCFS policy (FCFS in Figure 12) has a median queuing delay
of 39.5 ms. Priority 1 (highest priority) tasks are only queued
when there are no free executors to run them, leading to the
lowest queueing delay.

13



Figure 13. Get_task() delays across different priority lev-
els.

8.7 Packet Recirculation Overheads
Heavy packet recirculation can impact the switch throughput
(§8.3). In this section, we evaluate the recirculation overhead
for each scheduling policy in Draconis.
FCFS Policy. In the FCFS scheduling policy, recirculation
is only used to fix pointers when the queue is empty / full
and to handle job submissions with multiple tasks. In our
experiments, recirculated packets make up only 0.02 – 0.05%
of all processed packets by the switch even at high cluster
loads (Figure 7). This small percentage of recirculation does
not impact system throughput.
Constraint-based policies. The amount of packet recircu-
lation within constraint-based policies is governed by user
configurable parameters, such as the rack and global limits.
For the configuration in Figure 10, the total percentage of
recirculated packets is less than 1%. This small percentage
of recirculation does not impact system throughput.
Priority-Based Policy. Draconis’ priority-based schedul-
ing currently uses packet recirculation to check the task
queues at different priority levels. Packet recirculation typ-
ically takes less than a microsecond. Figure 13 shows the
latency of the get_task() step from Figure 2. The median
and 90th percentile latencies between priority levels differ
by just 1–2 µs at most. Thus, the latency overhead imposed
by packet recirculation is negligible. Additionally, we did not
observe any impact on scheduling throughput up to 58M
tasks / second, the peak load our cluster is able to generate
(Figure 5b).

We note that, due to the limited number of match-action
stages in our switch, we place all the task queues in the same
set of stages and use recirculation to check multiple priority
queues. Newer programmable switches have doubled the
number of stages and can house each task queue in separate
stages, eliminating the need for packet recirculation.

9 Additional Related Work
Hybrid Scheduling. Hawk [45] and Mercury [46] propose
a hybrid paradigm involving centralized scheduling for long-
running jobs and decentralized scheduling for low-latency
jobs. However, they suffer the same drawbacks as their decen-
tralized counterparts when scheduling microsecond-scale
tasks.
Streaming Systems. Numerous systems [47–49] have

been designed to tackle sub-second tasks in the streaming
environment. However, they neither target dynamic sched-
uling nor workloads in the microsecond-scale.
Network-Accelerated Systems. Many recent projects

have used programmable switches to accelerate consensus
protocols [33, 34, 50, 51], implement in-network caching [52],
accelerate DNN training and inferencing [53], and support in-
network aggregation operations [54]. These are orthogonal
to Draconis. JumpGate [55] proposed offloading some data
analytics functions to the switch but did not investigate
supporting in-network scheduling.

Our previous workshop paper [56] examines the feasibil-
ity of building an in-switch centralized scheduler. However,
the paper does not present a complete system design that
supports multiple scheduling policies nor evaluates the pro-
posed approach against the state-of-the-art.
Low-Latency Optimizations. Several projects have ex-

plored operating system and network stack optimizations
for low latency workloads, including kernel-bypass tech-
niques [29, 57, 58] and efficient core reallocationmechanisms
[11, 59]. These efforts are orthogonal to ours as we design a
scheduler to support microsecond-scale workloads.

10 Concluding Remarks
We present Draconis, a centralized in-network scheduler
that supports microsecond-scale workloads on large clusters.
Draconis adopts a fundamentally different design approach
compared to the state-of-the-art by designing a switch com-
patible task queue and using a pull-based scheduling model.
Our evaluation shows that Draconis reduces scheduling over-
heads by an order of magnitude and achieve significantly
higher throughput compared to state-of-the-art schedulers.
Draconis shows that despite their restricted programming
model, modern programmable switches can implement com-
plex data structures and scheduling policies. The Draconis
source code is available on Github [30].
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A Artifact Appendix
A.1 Abstract
We are releasing Draconis’ source code along with our pa-
per. The repository contains the scheduler code and switch-
compatible circular queue implementation, the main contri-
butions of our paper. The repository additionally contains
the code for workers, clients and Draconis-DPDK-Server
used in our evaluation.

A.2 Description & Requirements
A.2.1 How to access. The Draconis code is publicly avail-
able on Github [30]. The repository contains a link to our
paper and uses the MIT license.
The packaged source code is also available via Zenodo

[60].

A.2.2 Hardware dependencies. Draconis requires a P4
programmable switch with a P4-14 compiler in order to be
deployed. We have used an EdgeCore Wedge switch with a
Barefoot Tofino ASIC for our evaluation. Draconis-DPDK-
Server as well as workers and clients require machines with
a DPDK-compatible NIC.

A.2.3 Software dependencies. Draconis-DPDK-Server
and workers / clients require machines with DPDK installed
and enabled to function. We have used Intel DPDK v18.11
for our experiments.
Draconis workers and clients require Ubuntu 16.04 or

greater on the machine they are deployed on.
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