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Abstract—GitHub Copilot is an artificially intelligent program-
ming assistant used by many developers. While a few studies
have evaluated the security risks of using Copilot, there has
not been any study to show if it aids developers in producing
code with better runtime performance. We evaluate the runtime
performance of C++ code produced when developers use GitHub
Copilot versus when they do not. To this end, we conducted a user
study with 32 participants where each participant solved two C++
programming problems, one with Copilot and the other without
it and measured the runtime performance of the participants’
solutions on our test data. Our results suggest that using Copilot
may produce C++ code with (statistically significant) slower
runtime performance.

I. INTRODUCTION

Advances in natural language processing and deep learning
have resulted in large language models (LLMs) that can
generate code from free-form text. With this, language models
like GPT-3 [1] have been extended to what Xu et al. [2] have
termed Natural-Language-to-Code (NL2Code) generators. No-
tably, Open AI’s extension of the GPT-3 language model,
Codex [3], and the production-ready product derived from
it, GitHub Copilot [4], are popular examples of NL2Code
tools in use today. In a recent StackOverflow survey, 44%
of developers state that they use LLM-based tools in their
development process already, and 26% plan to use such tools
soon [5]. While some studies show that developers may have
a positive experience using GitHub Copilot [6], others show
that it could generate potentially vulnerable code [7].

We present the first-ever evaluation of Copilot from a
runtime performance perspective in systems programming. We
focus on runtime performance as it is critically important
in large-scale systems. Google notes that a few additional
seconds of page load latency can increase customer bounce
rates by 90% [8]. Amazon reports that 100 milliseconds of
latency cost them millions of dollars in revenue [9]. Each
millisecond of additional latency costs financial firms $100
million every year [10]. Thus, large-scale systems designed
to maximize performance measure and report metrics such as
their tail latencies and throughputs [11], [12].

We conducted the first user-based study on Copilot to
evaluate the runtime performance of the C++ code generated
when developers use it. With the results from our study, we
answer the following research questions:

RQ0: Does using Copilot influence program correctness?

RQ1: Is there a runtime performance difference in C++
code when using GitHub Copilot?
RQ2: Do Copilot’s suggestions sway developers towards
or away from C++ code with faster runtime performance?

To answer these questions, we conducted a user study in-
volving 32 participants with systems programming experience.
Each participant solved two programming problems in C++;
one was solved with Copilot and the other was solved without
it. The problems were related to I/O operations and con-
current programming. We selected problems related to these
two domains as they directly impact the code runtime. We
compared the runtime performance of Copilot-aided solutions
against Copilot-unaided solutions, obtained survey responses
from participants after they completed the study, and analyzed
the video recordings of participants solving the problems.

Our findings indicate that using Copilot resulted in C++
code with (statistically significant) slower runtime perfor-
mance. Specifically, Copilot-unaided solutions were 26%
faster than Copilot-aided solutions on average for the I/O-
related problem and 15% faster for the concurrent program-
ming problem. Our expert solutions to the problems had up
to 6× faster runtime performance compared to the average
Copilot-aided solution. Additionally, Copilot’s aid tended to
tilt developers towards code with slower runtime performance.
Finally, as expected, higher developer experience and familiar-
ity with the C++ programming language were correlated with
faster runtime performance.

The rest of this paper is organized as follows: We provide
background related to GitHub Copilot and related work in
Section II. The process of creating the problems solved by the
participants and the rationale behind choosing the problems is
described in Section III. Our model solutions are elaborated
in Section IV. A summary of the participant recruitment
process and the participants is described in Section V. We
present the experiment design in detail in Section VI where
we cover the tasks that participants solved, how tasks were
split across the participants, and the rationale behind it. We
analyze and discuss the results of our study, answering our
research questions in Section VII. We include a discussion
on the participants and their familiarity with the problems in
Section VIII. Penultimately, we discuss the threats to validity
of our study in Section IX. Finally, in Section X, we discuss
the takeaways and potential future directions.
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Fig. 1: Overview of Methodology

II. BACKGROUND AND RELATED WORK

GitHub Copilot, the production-ready tool based on the
Codex model by Open AI, can be used as a Visual Studio
Code extension to suggest code snippets to users. Users can
receive suggestions by starting to write code or by writing
comments; either way, Copilot will suggest some snippets [4].

A. Related Work

Runtime performance of code generated by Copilot
or ChatGPT. A recent study [13] analyzes the correctness
and runtime performance of solutions produced by Copilot
using problems from the HumanEval [14] dataset. They focus
on comparing the multiple solutions suggested by Copilot.
Doderlein et al. [15] and Elnashar et al. [16] analyze the impact
of prompt engineering on the runtime performance of solutions
generated by Copilot and ChatGPT respectively. Mastropaolo
et al. [17] analyze the solutions generated by Copilot for dif-
ferent semantically equivalent task descriptions. Nascimento
et al. [18] evaluate the runtime performance of code produced
by ChatGPT [19] for various LeetCode problems to their
human-written solutions provided within LeetCode. All of the
past studies focus on the solutions generated by Copilot or
ChatGPT on their own and do not look at the scenario where
humans are using such tools to help write code. In our study
we examine code written by humans who use Copilot. This is
a key difference between past work and our work.

Security. Several studies within previous literature examine
the security aspects of solutions generated by Copilot. One of
the earliest such studies by Pearce et al. [7] sought to under-
stand how often suggestions from Copilot were vulnerable to
security attacks and the contexts which made Copilot suggest
vulnerable code. To achieve this, they prompted Copilot to

generate code in scenarios where the resulting solutions could
be either vulnerable or secure. 40% of the programs produced
in these scenarios were discovered to be vulnerable.

A study by Sandoval et al. [20] assesses the security of
code written by student programmers when assisted by an
NL2Code assistant (OpenAI’s code-cushman-001 model) like
Copilot. They conducted a between-subjects study with 58
computer science students where participants were tasked
with implementing operations of a Singly-Linked List in C.
Contrary to the previous study [7], their results showed that
Copilot had no conclusive impact on security.

Asare et al. [21] use a previously curated set of common
C/C++ vulnerabilities from human developers [22] to assess
whether Copilot introduces similar vulnerabilities when pre-
sented with the same scenarios. They conclude that while
Copilot is susceptible to introducing a few previously seen
vulnerabilities, it fares better than human developers in a
majority of the cases.

Other factors influencing runtime performance. Numer-
ous studies examine the impact of other parameters, such as
software refactoring [23] and specific code changes [24] on
the runtime performance of open-source software repositories.
These are orthogonal to our paper as we focus on evaluating
the code generated by GitHub CoPilot.

CoPilot for alternate problem domains. Drori et al.
[25] evaluate the effectiveness of Copilot when generating
programmatic solutions to university-level linear algebra prob-
lems. Tang et al. [26] use Copilot to tackle university-level
probability and statistics problems.

Dakhel et al. [27] report the correctness ratio of solutions
generated by Copilot for fundamental algorithmic problems.
In addition, they compare Copilot’s solutions against student



submissions for 5 Python programming assignments. They
found that while Copilot often generates ”buggy” code, its
repair costs are less than those of similar ”buggy” student so-
lutions. While they report the optimality of Copilot’s solutions
to the algorithmic problems, they do not report the runtime
performance of it’s solutions to the Python assignments or
compare them against human submissions.

Imai et al. [28] compare Copilot against human pair
programming by having participants develop a text-based
minesweeper game in Python. Nguyen et.al [29] evaluate
Copilot using 33 randomly chosen questions from LeetCode,
primarily focusing on solution correctness and comprehensi-
bility. Liu et al. [30] characterize the correctness and maintain-
ability of ChatGPT’s solutions for 2000 programming tasks.
Choudhuri et al. [31] look at the benefits and challenges faced
by students when using ChatGPT for software engineering
tasks. While this study does compare participants who used
other resources with students who used ChatGPT, they did not
look at the runtime performance of code.

Sobania et al. [32] compared Copilot’s solutions against
programs synthesised using genetic programming. They found
that genetic programming models are more expensive to train
and can sometimes result in solutions which aren’t easily
comprehensible for humans. They primarily examine the cor-
rectness of solutions generated using Copilot and not their
runtime performance.

Experiment with Humans using Copilot: Unlike a ma-
jority of past studies [25], [26], [28], [29], [32] that focus on
the solutions generated by Copilot on its own we focus on the
scenario where humans are using such tools to help write code.
Copilot was never meant to work without a human, at least to
date. Therefore, these related studies do not examine Copilot
in its intended environment and do not analyze the impact
that such tools can have on software developers. Our study
on the other hand is a more realistic experimental setting of
how humans will use these tools. Finally, studies using Copilot
without humans are limited to a set of simpler problems that
can be auto-generated in full by Copilot. Thus, we are also able
to examine more complex problems. Neither of our problems
can be solved by Copilot with just a prompt and without
human intervention.

To the best of our knowledge, we are the first study
to carry out a controlled experiment of the runtime
performance of code written by humans working in
tandem with Copilot.

III. PROGRAMMING PROBLEMS SOLVED BY PARTICIPANTS

Following in the same vein as Pearson et al. [7], we provided
incomplete code for participants to implement as a solution to a
given problem i.e., we provided code stubs and accompanying
documentation for the solutions participants were asked to
implement. We call the stubs problems throughout this paper.
These problems were provided to participants as a CPP
file containing the function declaration, the unimplemented

function definition that participants were expected to imple-
ment, i.e., the primary function, initialization functions and
sanity checks to verify correctness. A main function was also
provided as an entry point to call the initialization functions,
the primary function, and the sanity checks in the appropriate
order.

A. Problem selection

We chose two problem domains for our programming prob-
lems; file-system operations and multi-threaded programming.
We chose these areas because problems in those domains
directly impact application runtime performance. With file I/O
operations accounting for about 30% - 80% of interactions in
networked file systems [33], there is a need for file system
operations to be fast on storage devices [34]. Choosing a prob-
lem related to file systems reflects this demand. Additionally,
since modern computing is moving towards a more parallel
domain, there is a need to understand the bottlenecks of multi-
threaded applications [35] and optimize accordingly. To reflect
this, we chose a problem related to false sharing, a typical
multi-threading optimization problem [36].

We chose problems that fit the following criteria: (1) the
problem must have more than one solution where each solution
differs not in correctness but runtime performance, (2) The
problem should be solvable with or without Copilot assistance
in 30 minutes.

B. Problem A: File System Operations

For Problem A, participants were asked to read records
from three large text files. A record is a sequence of 5000
bytes; each file was 1GB. The read operation is specified by
FileCombo, a struct that specifies which file to read from and
at what offset. The FileCombo struct also has a buffer to hold
the record read from a file.

For this problem, participants received the CPP file and
the three text files. The full function signatures, the CPP file,
and the accompanying documentation given to participants for
Problem A are shown in Appendix A.1 [37].

C. Problem B: Multi-threaded Optimization

For Problem B, participants were asked to use a certain
number of threads to set all the values in a source array buffer
to zero while setting all the values in a destination array buffer
to a particular value. However, they were not allowed to use
assignment operations, i.e., move and copy semantics were not
allowed on either the source array buffer or the destination
array buffer. Participants were only allowed to increment or
decrement the values in the respective array buffers. This
restriction was in place because we wanted threads to access
and modify array items repeatedly, potentially experiencing
false sharing.

The full function signatures, the CPP file, and the accompa-
nying documentation given to participants for Problem B are
shown in Appendix A.2 [37].



IV. MODEL SOLUTIONS TO THE PROBLEMS

We created model solutions to each problem. Because there
was more than one solution to each problem, each solution we
derived differed only in performance and not correctness.

We itemize our solutions here and categorize them into
Levels 0 – 3 (L0 – L3) for Problem A and Levels 0 – 1
(L0 – L1) for Problem B. Higher levels correspond to faster
runtime performance i.e. L3 has a faster runtime than L0.
Details about each of these implementations for both Problem
A and Problem B can be found in Appendix B [37].

A. Problem A Solutions

1) Level 0: A naive solution to Problem A where calls to
open, seek, read, and close are made for each FileCombo.

2) Level 1: Using the knowledge that only three files are
being interacted with, we do not need to open and close a file
for each FileCombo. This optimization involves first opening
all the files in FILE_NAMES and closing them only after all
FileCombos have been processed. This avoids the repeated
opening and closing of file descriptors, which is detrimental
to runtime performance.

3) Level 2: Within this optimization, we sort the
FileCombos by fileId and break ties by offset before
reading the files from storage. As a result, reading records
within each specific file will be sequential and not random.
Such sequential accesses reduce disk response times, thereby
improving program runtime performance.

4) Level 3: The combination of the L1 and L2 optimiza-
tions we outlined above gives us the L3 optimization level,
representing the best model solution to Problem A.

B. Problem B Solutions

1) Level 0: Consider a solution to Problem B using
THREAD_COUNT concurrent threads. A naive solution to this
problem is one where all threads start at indices between 0
and THREAD_COUNT−1 in the src and dst arrays. Each thread
then decrements and increments one Item in src and dst, re-
spectively. After processing their respective Items, each thread
moves THREAD_COUNT steps until the next index and processes
the Item therein. For instance, with a THREAD_COUNT of 4,
threads would start at indices 0–3, increment and decrement
their respective Items, before moving 4 steps ahead to their
next index.

This is a naive solution because it promotes false sharing.
Due to the contiguous nature of the src and dst arrays,
threads working on Items with neighboring indices would
be operating on the same 64-byte cache lines. As a result,
these threads would clash by invalidating each other’s cache
lines when modifying the Item within the src and dst arrays,
leading to cache thrashing.

2) Level 1: False sharing can be avoided by dividing each
array (src and dst) into THREAD_COUNT slices and assigning
a single thread to process each Item within a slice. This
reduces the probability of mutual cache line invalidation
greatly, reducing cache thrashing.

Fig. 2: Distribution of Participants’ Developer Experience
from Screening Survey on a 5-point Likert-Scale from 1 (No
experience) to 5 (10 years or more).

Another solution to false sharing would be to add padding
within the Item struct definition (See Appendix A.2 [37]),
bringing its size up to 64 bytes (the cache line size). This
would place consecutive Items within different cache lines,
reducing cache thrashing. However, we chose not to allow
participants to modify the struct definition as this could lead
to longer debugging times, potentially violating the time limit
constraint for the problem.

V. PARTICIPANTS

A. Participant Recruitment

Participants were recruited mainly via the mailing list for
computer science graduate students and snowballed to other
interested participants. We primarily targeted participants with
experience in systems programming. We considered partici-
pants who met one or more of the following conditions to
have satisfied this requirement:

• The participant has been involved professionally in the
Systems / Networking domain, either via industry expe-
rience or open-source contributions to systems projects.

• The participant has been actively involved in a research
project within the Systems / Networking areas.

• The participant has taken one or more university courses
within the Systems domain including but not limited to
Operating Systems, Distributed Systems, or Computer
Networking.

Additionally, potential participants needed to be familiar
with C++, and have access to a web browser as well as GitHub
Copilot on Visual Studio Code at the time. Finally, participants
could not be employed by OpenAI / GitHub or involved with
the development of GitHub Copilot at the time.

To check if potential participants were eligible to participate,
they were sent a Qualtrics screening survey after they signed
the consent form declaring their intent to participate. The
screening survey can be found in Appendix C [37].

B. Difficulties Recruiting Professionals

At the halfway point of our desired participant goal, we
paused participant recruitment to analyze the preliminary data



Fig. 3: Distribution of Participants’ Familiarity with C++
from Screening Survey on a 5-point Likert-Scale from 1 (Not
familiar at all) to 5 (Extremely familiar).

collected. A majority of the preliminary participants thus far
had been graduate students with systems experience, i.e., they
were part of systems-focused research groups. We decided
to diversify our participant pool by including professional
systems developers.

The initial recruitment process for professional systems
developers started with contacting University of Waterloo
alumni working within systems-related roles. Additionally,
we looked for contributors to open-source systems projects
on GitHub which were primarily implemented in C++. The
advanced search feature was used to find projects that con-
tained the keywords systems, operating systems, or
databases. We also narrowed our search to include only
projects with a dedicated social platform where interested
parties connect, such as Discord [38] and Internet Relay Chat
(IRC) [39].

While projects such as SerenityOS [40] and SkiftOS [41]
had active Discord communities, their members were disin-
terested in the study. Attempts to garner interest within these
communities were met with suggestions to reach out to other
Discord communities such as the osdev (Operating Systems
Development) [42] discord channel and the associated IRC.
Within the osdev communities on Discord and IRC, there was
a general unwillingness to participate in the study. Community
members cited potential copyright issues with Copilot and
other negative perceptions of GitHub Copilot, GitHub, and
Microsoft as the primary reasons for their unwillingness to
participate in the study.

However, our persistent recruitment efforts eventually paid
off, as we located willing professional participants, enabling
us to meet our desired goal.

C. Participant Summary

We recruited a total of 32 participants for this study,
of which 25% were systems programming professionals or
contributors to open-source systems projects. Of the remain-
ing participants, one was a sessional lecturer with systems
experience at the University of Waterloo, while the rest were
graduate students with a systems research focus.

Figures 2 and 3 show the distribution of participants’
experience and their familiarity with C++. Further details
about the figures can be found in Appendix C [37]. Participants
were compensated $50 for their time and the study was
approved by the Research Ethics Board (REB #44162) at the
affiliated university.

VI. EXPERIMENT DESIGN

A. Order of Solving the Problems

Given our within-subjects experimental design where one
participant solves one problem with Copilot and then the other
problem without it, we needed to ensure that any order effects
are counterbalanced across all 32 participants. To this end, we
present all the possible orders of the Problems (A and B) with
the Modes (C and NC) which indicate using Copilot and not
using Copilot respectively. The four possible orders of Mode
× Problem are shown in Table I.

The orders in Table I enforced a requirement that our
participant pool be a multiple of four. Hence, we recruited
a total of 32 participants for the study.

# First Second Participant ID
1 C x A NC x B P1
2 C x B NC x A P2
3 NC x B C x A P3
4 NC x A C x B P4

TABLE I: Possible Orders of Mode x Problem

B. Session Overview

Within this section, we outline the steps carried out in each
session. Further details about the tutorial process can be found
in Appendix D [37].

1) Pre-session orientation.: The session was conducted
remotely via an online conferencing platform. Each session
began with the facilitator introducing the study and confirming
the participant’s consent to be a part of it. After this, screen and
audio recording consent for the session was obtained as well.
Finally, the facilitator gave the participant a few basic tips for
using Copilot such as accepting and rejecting suggestions.

2) Session Goals.: Participants were given two C++ pro-
gramming problems to solve during the session. Each prompt
was self contained within a C++ file and participants were
given a compressed archive containing this file. This com-
pressed archive was sent to the participant via the conferencing
platform’s chat feature (or Google Drive if technical issues
occurred).

The participant was asked to extract the contents of the
archive but not open them until the facilitator gave them the
signal. After verbally confirming that the participant was ready
for the screen capture process to begin, they were asked to
share their screen and view the C++ file.

The facilitator then confirmed that (1) all extensions except
for the Copilot extension were disabled.1(2) the participant

1keybinding related extensions like VSCode Vim [43] and SSH-related
extensions like Remote - SSH [44] were the only exceptions allowed



could easily switch between their browser and VSCode. The
participants were also reminded that the browser and other
online resources could be used in addition to GitHub Copilot.

3) Timing Constraints.: Before commencement, the partic-
ipants were notified that they had 30 minutes to tackle each
problem. Participants were also alerted at regular intervals
such as when 20, 10 and 5 minutes were remaining for each
problem.

4) After each problem.: Once the participant declared that
they were done with a problem (or the timer ran out), the
facilitator stopped the timer and notified the participant. They
were then instructed to compress their solution and send it
back to the facilitator via the conferencing platform, Google
Drive or email.

Once this step was completed, participants were asked to
deactivate Copilot (if activated) as well as to close their
VSCode window, browser window, and any other references
they had opened. This was done to prevent any learning
effects that could come from Copilot or the participants (e.g.,
their browser tabs could contain previous search results or
references) from carrying over to the second problem. The
participants were sent a link to a survey to complete after
which they were allowed a break before tackling the second
problem.

The instructions and procedure for the second problem were
the same as the first, differing only in the survey at the
end. The second survey contained demographic questions in
addition to the first survey’s questions. Details of the first and
second surveys are outlined in Appendix E [37].

5) Post session interview.: At the end of the session,
participants were asked for their feedback about the study,
GitHub Copilot or anything else they wanted to share.

VII. EVALUATION

Testbed. Each participant’s code was run on a Linux
machine with eight-core Intel Xeon D-1548 at 2.0 GHz, 64GB
ECC Memory (4 x 16 GB DDR4-2133), and 256 GB NVMe
flash storage. The machine was running Ubuntu 20.04 and the
code was compiled with gcc version 9.3.0 [45]. In order to
minimize the effect of small runtime performance variations,
we ran each participant’s code 32 times with the filesystem
cache cleared between each run.

Errors. If the participant’s code did not compile / com-
piled but encountered runtime errors, it was not analyzed.
For instance, one participant’s code produced a segmentation
fault error even though it compiled successfully. However,
if the participants’ code compiled, ran without errors but
failed the sanity checks, the runtime was recorded but not
used in the analysis. As a result, we have only considered
correctly implemented solutions when examining the runtime
performance.

A. RQ0 - Does using Copilot influence program correctness?

Out of our pool of 32 participants, 16 have attempted to
solve Problem A with Copilot while the other 16 tackled
the problem without its aid. Among the participants who

used Copilot for Problem A, every solution passed the sanity
checks. On the other hand, among the participants who tackled
Problem A without Copilot, 4 out of 16 code snippets either
did not compile (P15 and P7), ran and failed the sanity checks
(P3), or ran with errors (P23).

Similarly, 16 participants have attempted to solve problem
B with Copilot and 16 without its aid. However, in this case,
we observed that only 14 code snippets passed the sanity
checks both when Copilot was used and when it was not. The
2 “invalid” solutions where Copilot was used either did not
compile (P15) or ran and failed the sanity checks (P32). On
the other hand, the 2 “invalid” solutions where Copilot was
not used compiled but failed the sanity checks (P30 and P6).

Table II summarizes these invalid solutions. The fields
within the table are described below:

• PartID - The anonymized ID of the participant
• Problem - The problem type (A or B)
• Mode - Whether Copilot was used (C) or was not used

(NC) when tackling the problem
• Compiled - Whether the solution was compiled (TRUE) or

ran into compilation errors (FALSE)
• Passed - Whether the solution passed sanity checks

(TRUE) or failed them (FALSE). This field has a value of
NULL if the solution did not compile or ran into runtime
errors.

# PartID Problem Mode Compiled Passed
1 P3 A NC TRUE FALSE
2 P7 A NC FALSE NULL
3 P15 A NC FALSE NULL
4 P23 A NC TRUE NULL
5 P15 B C FALSE NULL
6 P32 B C TRUE FALSE
7 P6 B NC TRUE FALSE
8 P30 B NC TRUE FALSE

TABLE II: List of Invalid Runs

Our results suggest that using Copilot leads developers to
produce correct code in most cases.

B. RQ1 - Is there a runtime performance difference in C++
code when using GitHub Copilot?

1) Approach: To answer this question, we compare the
runtime performance of all 32 runs of the participants’ source
files for Problems A and B. We use the non-parametric
Wilcoxon rank sum test in R [46] wilcox_test() to compare
the runtime performance.

Problem Mode Valid Runs Mean Median Min Max
A C 16 x 32 34.86 s 34.85 s 33.82 s 36.02 s
A NC 12 x 32 26.02 s 34.47 s 4.045 s 35.84 s
B C 14 x 32 1898 ms 945.4 ms 612.1 ms 7356 ms
B NC 14 x 32 1628 ms 943.9 ms 494.9 ms 6761 ms

TABLE III: Summary Statistics of Runtime Performance

2) Results: On comparing the runtime performance of valid
solutions to Problem A with and without Copilot (p = 3.4e-34),
we find the results to be statistically significant. We observe
that solutions without using Copilot were about 29% faster



than the ones using Copilot when comparing the mean runtime
performance.

Similarly, comparing the runtime performance of the valid
solutions to Problem B with and without Copilot (p =
0.000058), we also find the results to be statistically signifi-
cant. Again, we observe that solutions without using Copilot
were about 15% faster than the ones using Copilot when
comparing the mean runtime performance.

Table III highlights the summary statistics of the runtime
performance for participants’ valid solutions to the problems.
From this we can see that while the mean runtime performance
is quite different, the median runtime performance in both
problems are closer when comparing solutions created with
and without Copilot. Even though the values are closer, not
using Copilot still has a marginally faster runtime than using
Copilot. This observation from medians along with the min
and max values tell us that there are outliers in the data. These
outliers matter too.

We notice that the fastest solution to Problem A is when not
using Copilot and is 8 times faster than the median solution to
the same problem with or without Copilot. However the same
participant who wrote the fastest code for Problem A without
Copilot had an average runtime performance of approximately
905 ms for Problem B when using Copilot. This value is much
closer to the median as we can see from Table III. Thus, we
can see that the same participant when using Copilot did not
write the same high performance code. Note also that the max
times are always faster when not using Copilot than when
using Copilot. From all these comparisons and the statistical
testing, we can see a picture emerging where participants
who used Copilot always wrote code that has slower runtime
performance than than those who did not.

For further context into the runtime performance, we also
ran our L1, L2, and L3 solutions to Problem A and our L1
solution to Problem B for 32 runs alongside the participants’
solutions. In Table IV we see that our L1 solution to Prob-
lem A was 13% faster and 16% slower than participants’
Copilot-aided and Copilot-unaided solutions respectively. Our
L2 solution to Problem A was 129% and 110% faster
than participants’ Copilot-aided and Copilot-unaided solutions,
respectively. Our L3 solution to Problem A was 147% and
132% faster than participants’ Copilot-aided and Copilot-
unaided solutions, respectively.

Similarly, our L1 solution to Problem B was 106% and 95%
faster than participants’ Copilot-aided and Copilot-unaided
solutions. We did not run our L0 solutions because the
participants already implement L0 solutions for both problems

Problem Level Mean
A L1 30.59 s
A L2 7.565 s
A L3 5.228 s
B L1 581.4 ms

TABLE IV: Model Solutions Runtime Performance

3) Discussion: Our results suggest that developers may
benefit from Copilot-unaided C++ code in terms of runtime

performance. We give further context to these results by high-
lighting some participants’ Copilot-unaided solutions whose
mean runtime performance was close to or better than the
model solutions highlighted in Section IV-A and Section IV-B.

Problem A. While our model L3 solution had a mean
runtime of 5.288 s, P31’s noteworthy Copilot-unaided solution
had a mean runtime of 4.547 s beating our best model solution
by 15%. Their solution is shown in Listing 1.

We note that their solution used the L3 optimization for
Problem A discussed in Section IV-A4. Additionally, in lines
4 - 7 a map was used to associate each fileId with a vector of
fileCombos for the associated file. The pre-processing in this
step allowed them to sort each vector of fileCombos belonging
to a file (line 9), open the file once (lines 11 - 12), process
all the fileCombos (lines 13 - 16) and then close the file (line
17). While the fundamental concept of the L3 optimization is
still present, some implementation details are slightly different
and as such may have contributed to the observed speed-up.

It is also pertinent to mention that P31 had ideas to add
other optimizations that could have potentially reduced the
runtime performance of their code even further. However,
they did not have sufficient time to do so and debug their
solution. They outlined this optimization in code comments
which have been removed from the Listing for clarity. The
potential improvement involved the usage of memcpy [47] “to
avoid overlaps”.

1 bool compareByOffset(const FileCombo* a,
const FileCombo* b) { return (a->offset <
b->offset); }

↪→

↪→

2

3 void readFileCombos(std::vector<FileCombo>
&fileCombos) {↪→

4 std::map<int, std::vector<FileCombo*>>
combosByFile;↪→

5 for (FileCombo& combo : fileCombos) {
6 combosByFile[combo.fileId ⌋

].push_back(&combo);↪→

7 }
8 for (auto combos : combosByFile) {
9 std::sort(combos.second.begin(),

combos.second.end(),
compareByOffset);

↪→

↪→

10 int previousOffset = 0-RECORD_SIZE-1;
11 std::ifstream in;
12 in.open(FILE_NAMES[combos.first]);
13 for (FileCombo* combo : combos.second) {
14 in.seekg(combo->offset);
15 in.read(combo->buffer, RECORD_SIZE);
16 }
17 in.close();
18 }
19 }

Listing 1: P31’s L3 Solution to Problem A without Copilot

Problem B. A noteworthy solution to Problem B was
P17’s Copilot-unaided solution (in Appendix F [37]). This
resembled the model L1 solution with some statement-level
optimizations explained in Section VII-C and was one of the



closest-performing solutions to our L1. Their solution had a
mean runtime performance of 636.4 ms which was only 9%
slower compared to our model L1 solution, which had a mean
runtime performance of 581.4 ms.

C. RQ2 - Do Copilot’s suggestions sway developers towards
or away from C++ code with faster runtime performance?

1) Approach: We wanted to understand how suggestions
from Copilot swayed participants to produce code with slower
or faster runtime performance. To this end, we took the last
snapshot of the participants’ submitted code and categorized
each participant’s code for problems A and B. We labelled
participants’ code according to the optimizations discussed in
Section IV.

An author of this work and a collaborator separately looked
through the source code for all participants and labelled each
solution for Problem A as either L0, L1, L2, or L3 to indicate
the levels of optimizations that participants used. Similarly, for
Problem B, they were labelled as L0 or L1. Additionally, they
also noted programming constructs that participants used that
could potentially increase or decrease the runtime performance
and tried to group similar constructs.

We term these “programming constructs” as statement-level
optimizations and refer to the optimizations within Section IV
as concept-level optimizations from this point.

2) Statement Level Optimizations & Open-coding: After
the author and the collaborator finished labelling participants’
source files with concept-level and statement-level optimiza-
tions, they came together to resolve disagreements and discuss
emerging patterns in the statement-level optimizations and
remarks. Upon resolving the disagreements, they came up with
a set of themes to encompass the statement-level optimiza-
tions. A summary of these themes/categories of statement-level
optimizations for Problem A and Problem B are in Table V
and Table VI respectively.

3) Video Analysis: Using the themes generated in Table V
and Table VI, the author went through all 32 screen-shared
recordings of participants solving the problem when Copilot
was used and tracked the accepted suggestions or series of
accepted suggestions that participants accepted that swayed
them to the solutions that fit their themes.

4) Results: For Problem A, where Copilot was used, 15
of the 16 correct solutions used the L0 naive implementation
with the <fstream> [48] family of library functions and thus
were categorized as L0F. Additionally, few remarks were made
as most solutions only used the naive L0F implementation in
IV-A1. Some solutions were remarked as NCLOSE because
they failed to close the files after reading from them. Some
solutions also landed in the BINARY category. From the
video analysis, it would seem that Copilot largely gave L0F
suggestions, and participants simply accepted them without
editing. Participants also only confirmed that the sanity checks
passed before declaring they were done with the problem.

In Problem B, we notice a relatively balanced use of
concept-level optimizations and varied use of statement-level
optimizations and remarks when using Copilot. From 14 (out

of 16) source snippets with correct solutions, we note that 9
of those solutions used the L1 concept-level optimizations of
avoiding false sharing. Notably, 1 of the 9 (P23) was classified
as L1 because it avoided false sharing by using OpenMP to
handle the multi-threaded execution. 2 of the 14 solutions
were encoded as L0 even though false sharing was absent
because they either used a single-threaded approach (P7) or
used only one additional thread (P3) for the problem instead of
THREAD_COUNT threads. 3 of the 14 (P4, P11 and P19) solutions
were encoded as L0 because false sharing was present in
their solutions. Additionally, statement-level remarks such as
2LOOPS or 1LOOP were prevalent in the solutions.

Moreover, ITER NAIVE and ITER FAST were also com-
mon categories that emerged. Rarer categories like OPENMP,
ONET and NT also appeared in a few cases. From the
video analysis, Copilot initially suggested incomplete snippets
leaning toward L0. Participants would accept the snippets and
try to get the rest of the solution to work by debugging. In
other cases, participants wrote comments about dividing an
array into THREAD_COUNT chunks, and Copilot would suggest
snippets leaning towards L1.

5) Discussion: For Problem A with Copilot, there was
an interesting case where P22 was swayed via Copilot’s
suggestions to use L1U (Level 1 optimization but using the
<unistd.h> [49] and <fcntl.h> [50] I/O functions). From
the video analysis, we observe that the participant was largely
responsible for coming up with concept-level L1 optimization
in that they only declared a vector of file descriptors before
the suggestions to use L1U with NCLOSE came along, which
the participant accepted. However, P22 remarked that they
“had to do more post-hoc checking” instead of “figuring out
how to solve the problems”; that it was “a different approach
of how they would solve the problem”. We also note that
while their solution used the L1 concept-level optimization,
the mean runtime for their solution was 35.48 s which was
15% slower than our model L1 solution. This difference
may be due to differences in the I/O implementation details
in the <unistd.h> and the <fcntl.h> libraries versus the
<fstream> [48] library. A snippet of P22’s Copilot-aided
solution to Problem A can be found in Appendix F [37].

Within Copilot-aided solutions to Problem B, we noticed
that the solution with the least mean runtime performance at
677.8 ms was from P12, who used the L1 concept-level opti-
mization, and landed in the 1LOOP and ITER LESS NAIVE
themes for the statement-level remarks. From the video analy-
sis, the initial incomplete solutions accepted by the participant
were leaning towards 1LOOP, NT and the incorrect solution
of MISSING LOOP. P12 was primarily responsible for im-
plementing the code in the ITER LESS NAIVE statement-
level remark because they “didn’t think Copilot understood
them[me] well when they[I] told it to increment or decrement”
and “just gave up and wrote it themself[myself]”. However,
the L1 suggestion to split the thread into slices was accepted
by the participant without much editing. P12 also remarked
that “Copilot was useful”, and they “usually just google” what
Copilot would have suggested. We also note that their solution



was 16% slower than our model L1 solution which could be
because the model L1 solution used ITER FAST and 1LOOP
statement level optimizations. See a snippet of P12’s solutions
to Problem B that was done with Copilot in Appendix F [37].

Some interesting categories for statement level optimiza-
tions in Problem B in Table VI are worth taking a
closer look at, notably, 2LOOPS, 1LOOP and ITER NAIVE
and ITER FAST. Our model L1 solution uses 1LOOP,
ITER FAST and also avoids false sharing and averages at a
mean of 581.4 ms. The closest Copilot-aided solution to the
model solution in terms of runtime performance was P12’s
(Appendix F [37]) with a mean runtime performance of 677.8
ms. At a close second was P24 (Appendix F [37]) with a
mean runtime performance of 784.0 ms, which avoided false
sharing and used 1LOOP and ITER NAIVE. This difference
in runtime performance between the model L1 solution and
P24’s suggests that using ITER FAST is better than using
ITER NAIVE to update the source and destination buffers
when false sharing is avoided. If we also look at P27’s Copilot-
aided solution to Problem B (See Appendix F [37]), we
notice that while it avoids false-sharing, it uses 2LOOPS and
ITER NAIVE which earns it a mean runtime performance
of 925.1 ms. Comparing P24’s with P27’s solution suggests
that using 2LOOPS instead of 1LOOP to update the source
and destination buffers when false sharing is avoided could
result in slower runtime performance. On the other hand, if we
look at solutions where false sharing was used, we note that
both P11’s (See Appendix F [37]) and P19’s (See Appendix
F [37]) Copilot-aided solutions had false sharing present.
However, their solutions used 2LOOPS with ITER NAIVE
with a mean runtime performance of 1434 ms and 1LOOP
with ITER NAIVE with a mean running time of 6202 ms,
respectively. This difference in runtime performance may
suggest that using 1LOOP instead of 2LOOPS could result
in slower runtime performance when false sharing is present,
which is different from when false sharing is absent, as with
P24’s and P27’s solutions.

VIII. DISCUSSION

A. Comparison of results between students and professionals

To see if students and professionals who took part in
our study had different outcomes, we split the data we had
between students and professionals. Then we compare the
runtime performance of the solutions written by students and
professionals with and without Copilot for problems A and B.
We compare the results using box plots and carry out the non-
parametric Wilcoxon rank sum test for statistical significance.
Problem A: From Figure 4 we can see the comparative
run time performance of the solutions from students and
professionals in Problem A. In both Figures. 4a and 4b we
can see that the runtime performance of solutions when both
students and professionals don’t use Copilot is faster than
when they use Copilot. The difference in the mean runtimes is
approximately 8-9 seconds slower when using Copilot. When
we test the data using the non-parametric Wilcoxon rank sum
test, we find that the results are statistically significant (p

(a) Students (b) Professionals

Fig. 4: Box Plots of runtimes for solving Problem A with
Copilot (C) and Without Copilot (NC)

(a) Students (b) Professionals

Fig. 5: Box Plots of runtimes for solving Problem B with
Copilot (C) and Without Copilot (NC)

= 4.99e-22 and p = 2.76e-15 for students and professionals
respectively). Hence we can conclude that in Problem A, when
taken as a whole and separately (as students and professionals),
we consistently get the result that C++ code written with
Copilot is slower than C++ code written without Copilot.
Problem B: In Figure 5, we can boxplots of the runtimes
between students and professionals when they solve problem
B with and without Copilot. We can again see that the mean
runtimes when using Copilot is slower than when not using
Copilot for both students (Figure 5a) and professionals (Figure
5b). The difference in means is approximately 0.2-0.5 seconds.
When we test the data using the non-parametric Wilcoxon rank
sum test, we find that the results are statistically significant for
professionals (p = 2.61e-9) and not for students (p = 0.049).
Therefore, while we cannot statistically conclusively say that
the runtimes are slower for both students and professionals
when considered separately, we see that the relationship be-
tween using and not using Copilot for Problem B is consistent
with the data as a whole.

From Figures 4 and 5 we can conclude that our results
from Section VII-B still hold when we consider students and
professionals separately for both problems A and B.

B. Familiarity with the problem

Two of the questions we asked participants in the post-
survey were whether they had previously seen the problem that
they solved, and if they had solved it when previously seen.
Out of the 64 combinations (32 participants each solving 2



Encoding Summary
L*F Used <fstream> [48] library for any of the concept-level optimizations L0, L1, L2, or L3
L*C Used <cstdio> [51] library for any of the concept-level optimizations L0, L1, L2, or L3
L*U Used <unistd.h> [49] and <fcntl.h> [50] libraries for any of the concept-level optimizations L0, L1, L2, or L3
NCLOSE Did not close file
EXCEPT Added file.exceptions(...) [52] to catch possible exceptions
ASSERT Asserted that no error flags were set after file operations using good() [53] method and other assertions to ensure program correctness
READ COMBO Helper function for processing a single fileCombo in fileCombos and by calling open(), seek(), read(), and close() in order
BEGIN Explicit seek from std::ios_base::beg [54] in call to seekg() [55]
OC WITHIN Opened and closed the files within the same loop as processing each fileCombo in fileCombos
BINARY Added a ”binary” flag to the open call using std::ios::binary [56] or similar
MAP Used a map [57] to associate a file with all the fileCombos associated with that file

TABLE V: Table of Statement-level Optimizations & remarks for Problem A

Encoding Summary
NT No threads used
ONET Only one thread was used. Equivalent to not using threads
MISSING LOOP Failed to loop to decrement src[i] to zero and to increment dst[i] to INIT_SRC_VAL. This is an incorrect solution.
ITER NAIVE Made SIZE X INIT_SRC_VAL repeated calls to dst[i].get() or src[i].get() while decrementing src[i] and incrementing dst[i]
ITER LESS NAIVE Made SIZE repeated calls to src[i].get() or dst[i].get() while decrementing src[i] and incrementing dst[i]
ITER FAST No calls to src[i].get() or dst[i].get() while decrementing src[i] and incrementing dst[i] but iterated up to INIT_SRC_VAL
2LOOPS Decremented src[i] to 0 then incremented dst[i] to INIT_SRC_VAL instead of in lockstep
1LOOP Decremented src[i] and incremented dst[i] in lockstep
SPLIT src[i] is decremented using a separate thread and dst[i] is incremented using a separate thread
SPLIT2 Like SPLIT but src[i] decremented using 2 threads after being divided into 2 slices and dst[i] incremented using 2 threads after being divided into 2 slices
MANY SPLIT Spawned SIZE threads where each thread handled src[i] and dst[i]. There could be context switches since not enough threads on machine
LOCKS Used locks.
RACET Race conditions in thread spawning without locks leading to incorrect results
HARDT Hardcoded thread spawning instead of dynamic based on THREAD_COUNT
PTHREAD Used pthread_create and pthread_join [58] to create and join threads instead of std::thread methods
SPAWN SEP Spawned THREAD_COUNT threads to process src[i] then wait to finish then spawn another THREAD_COUNT threads for dst[i] then wait to finish
OPENMP Used parallel for in OpenMP.

TABLE VI: Table of Statement-level Optimizations & remarks for Problem B

problems, one with Copilot and one without = 32x2), we found
that only in 8 cases had participants either seen or solved the
problem before (see Table VII. Therefore an overwhelming
majority of them had neither seen the problem nor solved it
before.

Problem Mode Have
Seen
Problem

Have
Solved
Problem

Is a
Profes-
sional

Runtime Difference
With
Mean
of the
Setting
(D)

A C Yes Yes TRUE 35.01 0.03
A NC Yes Maybe FALSE 21.53 -4.33
A NC Yes No FALSE 34.95 9.09
B C Yes Yes FALSE 773.99 -911.35
B C Yes No FALSE 1433.83 -251.51
B C Yes No FALSE 3561.19 1875.85
B C No Yes FALSE 2245.17 559.83
B NC Yes No FALSE 1404.06 -69.35

TABLE VII: Participant familiarity with the problem and the
solution. Column D at the end notes the difference between
the runtime of the solution from a participant with the mean of
the runtimes from all participants. A negative value indicates
that the participant had a faster solution than the mean.

In addition from Table VII we see that in 4 cases participants
had a faster solution and in 4 cases they had slower solutions
compared to the mean runtime for that setting (Problem x
Mode). Interestingly, in problem A we have a professional
who has both seen and solved the problem before. They used
Copilot to solve Problem A in our experiments and produced a
solution with a slightly slower runtime than the mean runtimes
when using Copilot to solve Problem A. This indicates that
even when people have solved the problems, Copilot may lead

them to a slower-than-average solution. On the other hand,
students using Copilot to solve Problem B were evenly split.
Two of them had a faster solution and two had a slower
solution compared to the mean. And when the student in the
last row on Table VII solved Problem B without Copilot, they
had a faster runtime than the mean.

From the results in this analysis, we can see that (a) our
experiments were not biased much with results from people
who had seen or solved the problem before, and (b) even when
they have, the results indicate that using Copilot may result in
solutions with slower performance than when not.

IX. THREATS TO VALIDITY

A. External Validity

Programming Language and Code Generation Tool.
This study is explicitly about the runtime performance of
C++ code written with the help of Copilot. We specifically
chose C++ as a programming language for the experiment
as C++ applications are typically performance-critical. We
also specifically chose Copilot as it is used by more than
a million developers [59]. We need more studies to examine
runtime performance in other settings - different programming
languages and different LLM-based code generation tools.

Number of Problems: We restrict our study to two prob-
lems as increasing the number of problems increases the
number of participants required exponentially in our controlled
experiment. To maintain the same experimental design we
would need 384 participants for 4 problems and 11520 partic-
ipants for 6 problems. The effort to run the experiment with
more than 12-360 times the current number of participants is



exponential in many ways: time to find participants, run the
experiment, pay the participants, and analyze the data from
the experiment. We do not know of any software engineering
research study with a controlled experiment where there were
more than 300 participants. There have been survey-based
studies with more than 300 participants, but surveys are not
high in effort like a controlled experiment. A recent paper
using LLMs for code understanding also has 32 participants
and 2 tasks [60].

Choice of Problems: We acknowledge the limitations of the
representativeness of the programming problems used for this
study. While file system operations and multi-threading pro-
gramming concepts are critical, there could be other important
domains that are not represented in our study that developers
could have been more aware of. However, we argue that our
chosen problem domains are typically part of the training of
software engineers making it worth examining.

B. Construct Validity

Not explicitly asking participants to write low runtime
performance code: Although it might seem that explicitly
directing participants to produce performant code with or
without Copilot, we argue that this directive would be part of
a different study. This future study would answer the question
of how well Copilot can generate highly performant code
compared to human developers. Typically while run time
performance is desired, we have not seen a case where every
requirement in a software is explicitly asked to have lower
runtime performance. Hence, our study explores whether code
written without any explicit requirement for performance is
different when using Copilot. Another possible study is when
compared to developers with no performance experience, can
directed prompts in Copilot produce higher-performance code.
The participant pool, experiment designs and analysis of all
of these studies are quite different. We leave these alternate
studies as future work that needs to be studied too and argue
that our study and its results are valuable too.

Choice of participants: We acknowledge that 75% of our
participants are graduate students. We intended to have more
than our current set of professionals (25%). However, as we
state in Section V-A, we faced difficulty in recruiting pro-
fessionals, especially systems programmers. However, all the
graduate students who did participate are systems researchers
who have extensive C++ and developer experience. Addition-
ally, we split the results for students and professionals, and
found that the findings remained the same - students and
professionals wrote code that on average had a faster runtime
performance when not using Copilot in comparison with using
Copilot for both problems A and B. We have included the
tables in our replication dataset online [37].

Finally, we acknowledge that there could have been some
participant selection bias as we only selected participants that
wanted to participate in the study. Our results may have
been slightly different if the developers that were unwilling
to participate actually took part in the study. A workaround
to recruit such developers unwilling to participate due to

negative perceptions about GitHub Copilot would be to omit
details about using it until the session actually began. However,
as there are significant ethical concerns with this type of
deception in controlled human studies, this was infeasible.

C. Internal validity
As we were looking at the runtime performance of par-

ticipants’ code, another possible limitation could have been
that participants did not have enough time to optimize their
solution. However, on average all 32 participants spent ap-
proximately 17 minutes of the 30 minutes allotted on problem
A and 20 minutes on problem B. Therefore the participants
were satisfied with their solution at least 10 minutes before
their time was up.

X. CONCLUSIONS AND TAKEAWAYS

This work evaluated the performance of C++ code generated
by the self-proclaimed AI programming assistant GitHub
Copilot by conducting a user study on systems programmers.
We present our main takeaways for different stakeholders.

• Developers: Developers must be careful about the code
they get from Copilot, and not only review Copilot-
generated code for functional correctness but also for
non-functional aspects like runtime performance.

• Maintainers: Maintainers of Copilot need to evaluate
and improve their tools and models to focus not only
on functional correctness but also on other aspects of
code that are just as important: performance, security,
reliability, etc.

• Researchers: While benchmark datasets like Hu-
manEval, MBPP, and SWE-Bench are available to eval-
uate the functional correctness, we need benchmark
datasets for non-functional aspects too. With GitHub
Copilot gaining ubiquity in modern software develop-
ment, more research is required to scope its strengths
and limitations.

XI. DATA AVAILABILITY

We provide the problems and prompts given to participants,
the expert solutions we generated, the test scripts we used for
evaluation, and the data set of the runtime performance of par-
ticipants’ solutions as well as the runtime performance of the
model solutions [37]. However, to respect participant privacy
and anonymity as well as to abide by the rules set by the ethics
review board, we are unable to share participant responses to
the screening survey, their video data, their responses to the
programming surveys, and their entire unedited source code
solutions. We share everything needed for anyone to be able
to replicate this study with their own set of participants by
ACM standards [61].
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