
CASPR: Connectivity-Aware Scheduling for
Partition Resilience

Sara Qunaibi∗, Sreeharsha Udayashankar∗, Samer Al-Kiswany∗#
∗University of Waterloo, Canada

#Acronis Research, Canada
{squnaibi, s2udayas, alkiswany}@uwaterloo.ca

Abstract—We present a comprehensive empirical study of the
impact partial network partitions have on cluster managers in
data analysis frameworks. Our study shows that modern schedul-
ing approaches are vulnerable to partial network partitions.
Partial partitions can lead to a complete cluster pause or a
significant loss of performance.

To overcome the shortcomings of the state-of-the-art sched-
ulers, we design CASPR, a connectivity-aware scheduler. CASPR
incorporates the current network connectivity information when
making scheduling decisions to allocate fully connected nodes for
a given application. CASPR effectively hides partial partitions
from applications. Our evaluation of a CASPR prototype shows
that it can tolerate partial network partitions, as well as eliminate
application halting or significant loss of performance.

Index Terms—cloud computing, computer networks, network
partitions, fault tolerance

I. INTRODUCTION

Modern large-scale applications in domains such as data
analysis [1, 2], stream processing [3, 4], and online services
[5], use hundreds of machines that are often dispersed across
multiple data centers. These services are expected to provide
high availability, performance, and resource utilization, despite
failures in networks, devices, or software components.

Recent studies [6, 7, 8] have shown that network partitions,
particularly partial network partitions, pose special challenges
for system design. Partial partitions are network partitions
that divide the network into three groups (say G1, G2, and
G3) such that two groups (say G1 and G2) are disconnected,
whereas G3 is able to communicate with all nodes in the
cluster. Studies of failure reports [7] in production systems
show that this network fault leads to catastrophic failures, often
due to system design flaws.

In this work, we focus on studying the impact of partial
network partitions on large scale platforms. In these platforms,
scheduling is a core technique for improving system reliability,
performance, and resource efficiency. We conduct our study
using state-of-the art schedulers, when used for scheduling
data analytics applications. Nevertheless, our insights and
solution are applicable beyond data analytics applications.

We start by conducting a comprehensive empirical study
of the impact of partial partitions on modern schedulers. Our
study includes Kubernetes [9], Mesos [10], and the Spark
native scheduler [1]. We identify the stages in an application’s
execution that can be impacted by a network partition, and then

use fault injection to empirically evaluate the impact of a par-
tition occurring at these stages. Our study shows that modern
schedulers are vulnerable to partial partitions. In the majority
of cases, partial partitions caused complete application pause
until the partition is fixed, or caused significant performance
degradation, up to 11× longer execution time.

By studying the designs of these state-of-the-art schedulers,
we identify a key shortcoming. Modern schedulers assume that
network connectivity is transitive that is if the scheduler can
reach node A, and A can reach node B, then the scheduler can
reach node B. The scheduler also assumes that if it can reach
node A, all other nodes can reach A and vice versa. These
fundamental assumptions are violated under partial network
partitions, leading to failures with costly consequences.

To overcome the shortcomings of the state-of-the-art sched-
uler, we built the Connectivity-Aware Scheduler for Partition
Resilience (CASPR). CASPR uses cluster connectivity infor-
mation to augment its scheduling decisions. When a partial
network partition occurs, CASPR identifies the nodes that are
still connected, and allocates fully connected nodes to new
applications. If a partial partition happens during application
execution, CASPR adjusts an application’s allocation to ensure
that it runs on a subset of nodes that are fully connected.

We have implemented CASPR by extending the Kubernetes
scheduler. Our evaluation with standard data analytics work-
loads shows that CASPR eliminates all the negative impacts of
partial partitioning. With CASPR, applications never get stuck,
and their performance is not degraded significantly. Compared
to state-of-the-art schedulers CASPR improves the application
runtime by up to 7× under partial network partitions.

The rest of this paper is organized as follows. We present
an overview of the design of modern schedulers in Section
II. Section III presents the methodology and results of our
study. We present CASPR’s design in Section IV, offer our
evaluation in Section VI, and conclude in Section VIII. The
source code is publicly available on GitHub [11].

II. BACKGROUND

A. Network Partitioning

A network partition is a fault that causes nodes to be divided
into groups that cannot communicate with each another. These
network failures can have a significant impact on service
availability and performance [6, 12]. Network partitioning
faults are common: Google reports experiencing 40 network



Fig. 1: Data analytics system architecture.

partitions in two years [13], Microsoft reports that 70% of the
downtime is caused by network partitions [14], and Turner et
al. found that network partitions occur almost once every 4
days in the California-wide CENIC network [15].

Network partitions have a wide array of causes. They can
manifest in geo-replicated systems because of a loss of con-
nectivity between data centers [15], while switch failures can
cause network partitions within a data center [14]. Network
partitions caused by correlated failures are common [15, 16],
often caused by system-wide maintenance tasks [13, 14]. On
a single node, NIC or software failures can partition a node
that may host multiple Virtual Machines [17].

Network partitions are among the most complex failures
as they cannot be masked by the transport layer and impact
system semantics. Taking network partitions into account
complicates system design, fault analysis, and debugging.
The CAP [18] theorem sheds light on the theoretical limits
of availability and consistency in the presence of network
partitions.
Partial Network Partitioning. The most complex network
partitions are partial network partitions. Alfatafta et al. [7]
report that modern approaches toward designing schedulers
and resource managers are inherently vulnerable to partial
partitions. Partial partitions can lead to resource unavailability,
double the execution of tasks that may violate semantic guar-
antees, and complete system pause until the network recovers.

Consider a scenario where a partial partition isolates the
scheduler from one of the nodes. Although the affected node
can still reach the rest of the cluster, the scheduler will resched-
ule the tasks running on the affected node on other cluster
nodes. This leads to double, potentially concurrent, execution
of those tasks. Double execution can corrupt the shared state
(e.g., data on HDFS) or confuse clients [19]. MapReduce [20],
Mesos [21] and ElasticSearch [22] are examples of systems
that have experienced such failures.

B. Scheduling in Data Analytics Systems

We focus our discussion on resource management for data
analytics platforms such as Apache Spark [1]. We choose
Spark because it built the fundamental ideas for distributed
data analytics and is widely adopted. As other data processing
systems such as Apache Flink [23], Apache Storm [24], and

Apache Hadoop [25] adopt an architecture similar to Spark’s,
our insights and solutions are applicable beyond Spark.

The Spark architecture (Figure 1) consists of three com-
ponents [26]: driver, cluster manager, and worker nodes. A
worker node typically runs multiple executors, each of which
can run one or more application-level tasks. A typical Spark
application life-cycle is as follows. First, a client submits a
job to Spark that creates the driver program. The driver is
responsible for launching executors to run application tasks,
monitoring their progress, collecting the final results, and
returning these results to the client. The driver works with
the cluster manager to acquire worker nodes to run executors.

During execution, executor processes may exchange data.
The cluster manager continuously monitors the worker nodes
through heartbeats whereas the driver heartbeats its executors
to monitor their progress. When execution is complete, the
driver program collects the results and returns them to the
client.

Although Spark comes with a basic resource manager,
called the Spark Standalone manager, Spark supports other
resource managers including Mesos [10] and Kubernetes [9].
We use resource manager and cluster manager interchange-
ably.

1) Spark Standalone: Spark Standalone is a basic cluster
manager and has just the functionalities required to provide
drivers with enough resources to run their applications.

2) Mesos: Apache Mesos [10] is a cluster manager that
handles resource management in large distributed environ-
ments. Mesos has daemons (a.k.a. Mesos Agents) running on
cluster nodes. The agents monitor a node’s CPU and memory
resources and inform the cluster manager of the resources
available within that node. The cluster manager aggregates
information about available resources from all agents in a
cluster and offers those resources to application drivers. The
driver can decline or accept the offered resources. The driver
then launches executors on allocated nodes.

3) Kubernetes: Kubernetes [9] is a container management
platform for large clusters. Kubernetes uses containers to
run applications. Containerization is a deployment process in
which an application is packaged with all of its dependencies,
enabling it to run on any Linux Kernel. In Kubernetes,
containers run inside pods, which are the smallest and simplest
unit of a Kubernetes system. A pod is a group of one or more
containers sharing resources.

Kubernetes components are split into two planes: control
and data. The control plane consists of the components re-
sponsible for infrastructure management, such as the controller
manager, API server, and scheduler. Control plane components
run on the master node. Components running on the data plane
run on all worker nodes, such as kubelets.

When an application runs, it begins with the client contact-
ing the API server with an application deployment request.
The API server notifies the controller manager of this new de-
ployment. The manager creates a pod for the new application
and sends an acknowledgement to the API server. Then, the
API Server contacts the scheduler with the unassigned pod.



The scheduler selects a node to host the pod, updates the pod
assignments, and informs the API server of the assignment. Fi-
nally, the API server contacts the Kubernetes daemon (kubelet)
running on the node assigned by the scheduler. The kubelet
uses the information within the container to start the pod and
launch the application.

When running Spark with Kubernetes, Spark creates a driver
program and asks Kubernetes to deploy it. Kubernetes follows
the aforementioned steps to deploy a pod and run the driver
program. Once the driver pod starts, the driver submits a
request to the API server to create pods for the executors.
The scheduler chooses nodes to host these executor pods and
the application starts. When the application completes, the
executor pods terminate and the driver pod collects the logs.
The driver pod is eventually terminated.

III. THE IMPACT OF PARTIAL NETWORK PARTITIONS ON
SCHEDULING

In this section we present the first in-depth empirical study of
the impact of partial network partitions on scheduling systems.
The goal of this study is to understand the impact partial
partitions have on state-of-the-art schedulers and to identify
the design flaws that cause these failures. We use the findings
from our study to inform the design of CASPR (Section IV).

A. Methodology

Target Cluster Managers. We examine the impact of partial
partitions on Kubernetes, Mesos, and the Spark Standalone
cluster manager.

Workload. The workload we chose to run is the simple
WordCount application, which comes bundled with Spark [1].
We run the WordCount application with input files of sizes
5GB and 10GB.

WordCount uses the MapReduce [2] paradigm to count the
number of occurrences of each word in a large corpus. Spark
processes data in parallel by splitting it into chunks across
nodes and grouping the results for each word. This results
in shuffling intermediate results among nodes. We selected
this workload because it is simple, data intensive, includes
the typical stages of any data analytics application (i.e., map,
shuffle and reduce), and requires all Spark components in
Figure 1 to communicate.

The general workflow of the WordCount application is as
follows: a job submission first results in the creation of a driver
program by the cluster manager. The driver works with the
cluster manager to allocate executors on worker nodes. Then,
the input data are divided between executors who run mapping
tasks [1]. The executors exchange intermediate results among
themselves, known as a ”shuffle”. Once this data transfer is
complete, the executors perform reduce tasks and send their
results to the driver. To simplify system behavior, we run a
single executor on each worker node.

Approach. We follow an empirical approach to study the
impact that partial partitions have on cluster managers. We
start by deploying the target cluster manager on our nodes
and run the WordCount application, recording its execution

time and outcome. We then inject a partial network partition
between cluster nodes, before running WordCount again to
record the execution time and outcome. We compare these
results to examine the differences in application behavior and
performance when the cluster manager experiences a partial
network partition. Finally, we study the code to understand
why cluster managers fail in certain scenarios and outline why
their performance is affected.

Considering the architecture of data analytics systems (Fig-
ure 1), we identify four categories of partial partitions that
can impact them. For each of the categories, communication
is only broken between the specified nodes i.e. they can still
communicate with the remaining nodes in the cluster. The
categories are as follows:

1) W-W Partition: A partial partition between two or
more worker nodes.

2) D-W Partition: A partial partition between the ap-
plication driver and one or more worker nodes.

3) M-W Partition: A partial partition between the clus-
ter manager and one or more worker nodes.

4) D-M Partition: A partial partition between the ap-
plication driver and the cluster manager.

Within each category, we consider two scenarios related to
when the partial partitioning fault occurs: before the applica-
tion starts (pre-existing) and while the application is running
(mid-application). We experimented with these scenarios for
each of the four categories, leading to eight test cases for each
cluster manager.

B. Spark Standalone Cluster Manager

When using the Spark Standalone cluster manager [1], the
cluster manager and the application driver can only be run
on the same node. As we examine partial partitions at node
granularity, D-W and M-W partitions have similar effects. This
also excludes D-M partitions, as they are now on the same
node, leaving us with two unique kinds of partitions: W-W
and D-W.
W-W Partition. In this scenario we inject a single

partial partition between two worker nodes. Our experiments
show that the impact of the partition is the same regardless of
whether the partition was injected before the application starts
or during its execution.

Workers typically communicate during the shuffle step of
the application to exchange intermediate results. During this
step, executors running map tasks send out their intermediate
results to the executor running the relevant reduce task. If
a partial partition breaks the communication between two
workers, this data transfer fails and the destination worker
waits indefinitely for the intermediate results. Workers do not
report this communication problem to the driver; instead, they
retry the data transfer at regular intervals. As both workers
appear to be working correctly to the driver and cluster
manager, neither is able to detect this problem. Thus, the
application halts until the partial partition is healed.
D-W Partition. In this scenario, we inject a single

partial partition between the node hosting the driver program



and a worker node. The impact of this partition changes
depending on when it is injected.

Pre-existing partition. After worker nodes have been allo-
cated to run executors, the driver tries to establish a connection
with the nodes to launch them. If a driver and a worker node
are partitioned, the driver cannot communicate with the worker
node and assumes that it has crashed. Consequently, the driver
does not assign any tasks to the partitioned worker, distributing
all of its executors among the remaining worker nodes. This
reduces the number of nodes available to run the application,
degrading application performance.

Mid-application partition. If a partition is injected after the
driver launches executors on a worker, the driver will not be
able to communicate with these executors. The driver declares
these executors failed and relocates them to a different, poten-
tially busy, worker. Thus, despite executors on the partitioned
worker being able to finish their assigned tasks and exchange
data with other executors, their results are unused. In addition,
executor relocation and re-execution on the new worker node
add delays to the application execution. Thus, this partition
results in performance degradation and wasted computation.

C. Mesos

When running Spark with Mesos [10], the Mesos master
continuously offers a list of all available resources to the
application driver. The driver selects the nodes it needs for
executors from this list. The driver launches executors on
the chosen worker nodes, and then assigns tasks to them.
Within this section, we discuss the impact of each category
of partitions when using Mesos.
W-W Partition. In this scenario, we inject a single

partial partition between two worker nodes. This fault impacts
the shuffle stage. This causes the application to halt until the
partition is fixed. The timing of the partition’s occurrence does
not affect its impact.
D-W Partition. In this scenario, we inject a single

partial partition between the node hosting the driver program
and a worker node. Although the driver cannot communicate
with executors hosted on the partitioned worker, the cluster
manager is not aware of any problems as it can communicate
with both the worker node and the driver. The impact of this
partition varies depending on when it occurs.

Pre-existing partition. The cluster manager offers all avail-
able nodes to the driver program, including the node parti-
tioned from the driver. The driver program rejects any node
that it cannot reach. This results in the application running on
fewer nodes, causing performance degradation.

Mid-application partition. When a partial partition happens
between the driver and a worker, the driver suspects that
executors on the partitioned worker have crashed and relocates
them to other worker nodes. This fault leads to using fewer
nodes and causes the re-execution of tasks that are running on
the partitioned node, leading to performance degradation.
M-W Partition. In this scenario, we inject a single

partial partition between the Mesos master node and a worker

node. The impact of this partition varies depending on when
it occurs.

Pre-existing partition. If the cluster manager cannot reach
a worker node, it assumes that the node has crashed and will
not offer it during future resource offers. The partitioned node
is unused until the partition is healed, reducing the overall
available cluster resources, causing performance degradation.

Mid-application partition. If the partition occurs after the
manager allocates a node to a driver, the application program
continues operating normally. This is because the driver pro-
gram can still communicate with executors on the partitioned
node. In case the driver program needs more resources, the
cluster manager’s resource offers will exclude the partitioned
node.
M-D Partition. In this scenario, we inject a single

partial partition between the Mesos master node and the node
hosting the driver program. The impact of this partition varies
depending on its time of occurrence.

Pre-existing partition. If a partition happens before an
application starts, the driver will not receive any resource
offers from the cluster manager and the program will not run.

Mid-application partition. If the partition occurs during
application execution, the driver program continues to run
uninterrupted. This is because once the resources have been
offered by the cluster manager, the driver program does not
contact it again. However, if a failure manifests and the driver
needs additional resources, it will not be able to contact the
cluster manager.

D. Kubernetes

Kubernetes is different when compared to the previous cluster
managers, as task scheduling is performed by the Kubernetes
scheduler and not by the application driver. When an applica-
tion is created, Spark notifies Kubernetes that it has a driver
program that requires scheduling. The Kubernetes scheduler
then schedules the driver pod. Once the driver starts, it requests
the Kubernetes scheduler to schedule the executor pods to
nodes. Following this, the application starts.
W-W Partition. In this scenario we inject a single

partial partition between two worker nodes. A partial partition
between two workers impacts Kubernetes differently when
compared to Mesos and Spark Standalone. The impact is the
same regardless of when the partition occurs.

During the shuffle stage, the communication between the
impacted workers times out. The scheduler recognizes that
there is an issue among the executor pods, and the work-
load is reassigned to a new executor pod. Unfortunately, as
the scheduler is not aware of the network partition, it can
inadvertently assign the new executor pod onto the same or
another partitioned node. This will cause repeated data transfer
failure and executor reassignment, adding significant delays
and variance to the application execution time.
D-W Partition. In this scenario, we inject a single

partial partition between the node hosting the driver pod and
a worker node hosting its executor pods. The impact of this
partition varies depending on when it occurs.



Pre-existing partition. If a driver cannot reach some of its
assigned executor pods, the driver will assume that they have
crashed and will not assign tasks to them. The application’s
tasks are redistributed among the remaining available executor
pods. This leads to application performance degradation as the
application runs on fewer resources.

Mid-application partition. If the partition occurs after the
application starts, the driver requests Kubernetes to kill the
executor pod. Kubernetes creates a new executor pod and
assigns it to a new node, after which the driver restarts the
task on the new pod. Kubernetes can potentially assign the
new executor pod to a node that is partitioned from the driver.
As a result, driver will be unable to assign tasks to the executor
pod, leading to fewer resources and performance degradation.
M-W Partition. In this scenario, we inject a single

partial partition between the Kubernetes master node and a
worker node. The impact of this partition varies depending on
when it occurs.

Pre-existing partition. After a number of consecutive heart-
beats are missed, the scheduler declares a worker node as
dead. Once a node is declared dead, it is not used in future
allocations. However, if a partition occurs before this period,
fresh pods may be allocated onto this node. As the node is
partitioned from the scheduler, these pods will be unable to
start. Thus, in both cases, performance is degraded due to the
reduction of available cluster resources.

Mid-application partition. If a network partition occurs
between the scheduler and a worker node after the program has
begun execution, Kubernetes will not recognize that the node
is unreachable and the program will continue to execute unin-
terrupted. If the driver program were to need new resources,
Kubernetes will then recognize that the node is partitioned,
assume that the node has crashed and will not assign pods to
the partitioned node. Consequently, this partition scenario does
not affect currently running tasks but reduces the resources
available for future tasks.
M-D Partition. In this scenario, we inject a single

partial partition between the Kubernetes master node and the
node hosting the driver pod. The impact of this partition varies
depending on when it occurs.

Pre-existing partition. A network partition between the
Kubernetes scheduler and a driver before an application starts
prevents an application from starting at all. This is because
Kubernetes can assign the driver pod to a partitioned node,
which will then wait for the assigned node to contact the
scheduler and run the driver. The assigned node will never
begin executing the driver program because it cannot contact
the scheduler. The application does not start until the partition
is fixed.

Mid-application partition. A network partition between the
Kubernetes Scheduler and driver after the application starts
does not influence the execution time. The Kubernetes sched-
uler will not recognize that it has lost a node until after
the driver program has finished executing. The application
is unaffected because the driver has already acquired the

TABLE I: Summary of the impact of partial partitions. Pre-
App refers to partitions that occur before the application starts.
Mid-App refers to partitions that occur while an application
is running.

System Partial Partition Impact
Pre-App Mid-App

Spark Standalone
W-W H H
D-W P P

Mesos

W-W H H
D-W P P
M-W P -
M-D H -

Kubernetes

W-W P P
D-W P P
M-W P -
M-D H -

CASPR

W-W - R
D-W - R
M-W - -
M-D - -

resources it needs. However, users will be unable to access
the logs of the driver program pod.

E. Summary

Table I shows a summary of the impact of partial partitions on
different systems in different scenarios. H indicates application
halting, P indicates performance degradation and R indicates a
single re-execution or repetition. We note that partial partitions
often lead to a severe negative impact, regardless of the cluster
manager used. In some instances, we observe that the applica-
tion is halted until the partition is resolved whereas in others,
there is unbounded re-assignment and re-execution of tasks.
This behavior causes significant performance degradation for
running applications, up to a 11× increase in application
execution time (Section VI).

Cluster manager behavior during partial partitions differs as
well. For instance, during W-W partitions, Spark Standalone
and Mesos cause the application to halt whereas Kubernetes
does not due to the Kubernetes scheduler functioning differ-
ently from the other cluster managers. In other cases, such
as M-D partitions, the application program will not start in
Mesos or Kubernetes, and no system can detect the problem.

In scenarios with pre-existing partitions, the scheduler may
allocate a group of nodes that are not all-to-all connected to
applications, leading to many of the failure scenarios in Table
I. In scenarios with mid-app partitions, the scheduler either
does not react, leaving the application hanging, or reacts by
allocating new nodes for the application. In the latter case,
these allocations do not consider cluster connectivity, causing
the application to fail repeatedly. Because this process repeats
until the scheduler allocates a fully connected group by pure
chance, it can result in large performance degradation, as
shown in Section VI.

Our analysis shows that these problems are a result of
scheduling components not being connectivity-aware; that is,



Fig. 2: CASPR’s Design.

they do not know which nodes are connected to each other. In
the following chapter we discuss how CASPR overcomes the
shortcomings of current scheduling techniques.

IV. CONNECTIVITY-AWARE SCHEDULING FOR PARTITION
RESILIENCE

We propose the Connectivity-Aware Scheduling for Partition
Resilience (CASPR) approach to address the shortcomings
of current techniques. CASPR mitigates the impact of partial
partitions by incorporating information about cluster connec-
tivity into scheduling decisions. CASPR builds off Kubernetes’
scheduling approach because it is the best among the state-of-
the-art schedulers when handling partial network partitions.
However, as one of the design goals of CASPR was to enable
easy adoption, it is generic and easily extendable to other
scheduling systems.

The main insight into CASPR is that when allocating
multiple nodes to an application, the scheduler should allocate
nodes that are fully connected. In order to achieve this, CASPR
uses a connectivity graph to identify nodes that are fully
connected at the time of allocation.

Figure 2 shows the design of CASPR, which has three main
components: the connectivity monitoring overlay, the sched-
uler, and the scheduler metadata. The connectivity monitoring
overlay monitors the connectivity in a cluster and provides
a connectivity matrix representing the connectivity between
nodes. The scheduler uses this connectivity matrix to allocate
nodes for an application. The scheduler metadata keeps track
of the locations of previously allocated pods, per application.

A. Connectivity Monitoring Overlay

To monitor cluster connectivity we run a connectivity daemon
on each node in the cluster. Each daemon stores a connectiv-
ity matrix representing connectivity across the cluster. This
connectivity matrix is mapped to a file local to the node,
enabling it to be accessed by other processes running within
the node. The CASPR scheduler accesses the file stored by its
local daemon and uses it when making scheduling decisions.

Figure 2 shows the connectivity matrix of a 4-node cluster
experiencing a partial network partition. A value of 1 in the
matrix indicates that the pair of nodes can communicate with
each other, whereas a value of 0 indicates otherwise.

Each daemon sends a periodic heartbeat to all daemons
in the cluster. The default heartbeat period is 200 ms. If a
daemon misses three heartbeats from another, it assumes that
the node is unreachable and updates its connectivity matrix.
Daemons continue to attempt sending heartbeats to daemons
on disconnected nodes, to detect when the connection is
restored.

When a daemon detects a change in its connectivity matrix
it sends its matrix to all other daemons in the cluster. When
a daemon receives a matrix from another daemon, it updates
its own matrix and forwards this updated matrix to its con-
nections.

B. Scheduler Metadata

Each application submitted to Kubernetes is assigned a unique
identifier (application ID). Subsequent pod allocation requests
include this identifier. Whenever the scheduler receives a
pod allocation request, it queries the scheduler metadata to
inquire whether any pods have been allocated to the requesting
application. If no pods have been allocated, the scheduler
creates a new entry mapping to the application ID within the
scheduler metadata.

Anytime a pod is allocated, the scheduler metadata for the
application is updated with the pod’s name and node address.
When a pod is terminated, its entry is removed from the
application metadata. When an application is terminated, the
scheduler deletes the application mapping from within the
scheduler metadata.

Before allocating fresh pods to an application, the scheduler
queries the scheduler metadata to determine where previous
pods were allocated. This, along with the connectivity matrix,
gives the scheduler the connectivity information it needs to
make scheduling decisions.

C. Scheduler Design

The native Kubernetes scheduler (kube-scheduler) se-
lects a node for a pod in two steps, filtering and scoring.
During the filtering step, kube-scheduler finds the set
of feasible nodes (i.e. nodes with enough resources to run the
pod). The scoring step assigns a score to each of the nodes.
Finally, the kube-scheduler selects the feasible node with
the highest score to run the pod.

CASPR adds two additional steps to this. After filtering and
scoring, CASPR queries the scheduler metadata to identify the
locations of previously allocated pods. CASPR then uses the
connectivity matrix to select a node that is fully connected to
the nodes hosting previously allocated application pods.

Application drivers typically request that multiple pods run
executors. The native Kubernetes client sends these requests
one pod at a time, and each request includes the unique
application ID. If CASPR is scheduling the first pod for an
application, it consults the connectivity matrix to choose the



Algorithm 1 Scheduling Algorithm

1: procedure SELECTCONNECTEDNODE(pod, appID)
2: connectivityMatrix← Read from file
3: nodeList← GetFeasibleNodes()
4: if pod is first pod then
5: selectedNode←MostConnected(nodeList, connectivityMatrix)
6: else
7: prevPods← SchedulerMetadata.Get(appID)
8: selectedNode←MostConnectedTo(prevPods, nodeList, connectivityMatrix)
9: podAlloc← pod, selectedNode

10: SchedulerMetadata.Set(appID, podAlloc)
11: return podAlloc

most highly connected node among all filtered nodes. For
subsequent allocations, CASPR queries the metadata service
to locate all the nodes that are hosting active pods for this
application. It then uses the connectivity matrix to find new
nodes that are fully-connected to all previous nodes.

CASPR always allocates the node that is most connected
(i.e., has the most connections) and can be reached by all
the nodes that are hosting active pods for the application.
Whenever a pod is terminated, either by the application or
Kubernetes, CASPR removes the relevant entry from the
metadata.

Algorithm 1 shows the pseudocode of our scheduling algo-
rithm, whose steps are detailed below:

1) Read connectivity file the local connectivity daemon
generates. (line 2)

2) Get the nodeList containing all feasible nodes and their
score. (line 3)

3) If scheduling the first pod (lines 4-5),
a) Compare the nodes in connectivityMatrix and se-

lect the node with the highest connectivity.
b) If all connectivities are equal, select the node with

the highest score. Break ties in score by random
selection.

4) If scheduling a subsequent pod (lines 6-8),
a) Query scheduler metadata to obtain prevPods, the

list of active application pods and nodes hosting
them (line 7).

b) Filter nodeList to identify nodes connected to all
the nodes in prevPods.

c) Among these filtered nodes, select the node with
the highest connectivity. Break ties in connectivity
by selecting the node with higher score. If con-
nectivity and score are the same, select a node
randomly.

5) Update scheduler metadata and return allocated pod
information. (lines 9-11)

Every allocation has a complexity of O(N2), where N is
the number of cluster nodes, because we compare a new node
with all previously allocated nodes to ensure connectivity.

When there are no partial partitions in the cluster, CASPR
allocations are identical to allocations by kube-scheduler.

If no single node in the cluster has full connectivity, CASPR
chooses the node with the highest connectivity regardless of
its Kubernetes score because nodes have already gone past the
filtering stage, and any node the scheduler deems feasible is
a node with enough resources to run the program.

We illustrate the CASPR allocation protocol with an exam-
ple. Consider the connectivity matrix shown in figure 2. When
a Spark application is submitted, the driver is always the first
pod up for allocation. The most connected node is Node 1,
resulting in the driver program pod being allocated to it.

Following this, we observe that among the nodes connected
to Node 1, Nodes 2 and 4 have the highest number of
neighbors. Consequently, subsequent pods will be assigned to
Node 2 and Node 4. Therefore, the application will run on the
fully-connected nodes 1, 2, and 4, causing no disruptions in
its life cycle.

Algorithm 1 implements pod selection in a sequential
fashion, similar to the kube-scheduler to simplify the
integration effort with Kubernetes.

V. IMPLEMENTATION

We implement CASPR in 180 lines of Go [11], basing it
on the open source implementation of the Kubernetes native
scheduler [27]. We implement the connectivity monitoring
overlay in 441 lines of C++ code.

Connectivity monitoring overlay. We implemented the
daemons using C++. We run a connectivity daemon on each
cluster node. A configuration file lists the IP addresses of all
cluster nodes allowing daemons to heartbeat their peers. The
heartbeats are performed over UDP, with a default heartbeat
interval of 200 ms. Each daemon writes its connectivity matrix
to a node-local file.

Scheduler. We implement the CASPR scheduler by making
minimal changes to the native Kubernetes scheduler. We use
Kubernetes v1.20.7 for our implementation. In particular we
re-implement the SelectHost() function, a core function
within the Kubernetes scheduler.

In our re-implementation of SelectHost(), called
SelectConnectedHost(), we open and read the connec-
tivity file created by the local connectivity daemon running on
the same node as the scheduler. We map the information from



this file to the node names Kubernetes stores to create the
2-dimensional connectivity matrix used for scheduling.

VI. EVALUATION

Within this section we evaluate the performance of CASPR
by comparing it to the native Kubernetes scheduler
(kube-scheduler). We evaluate its fault tolerance capa-
bilities, overheads and application performance under each
partial network partition category outlined in Section III. We
ran each experiment 10 times, reporting their averages and
standard deviations. Although CASPR is capable of handling
multiple concurrent network partitions, we insert a single
network partition at any given time within our experiments
to simplify our analysis.

Testbed. We conduct our experiments on a 5 node cluster
at Cloudlab’s [28] Utah data center. Because the behavior
described in Section III is independent of cluster size, we use
a small cluster to simplify deployment and debugging.

We use c6525-25g nodes [29] each of which had 16 AMD
EPYC cores, 125GB RAM, and a 10 Gbps network connec-
tion. One of the nodes is always used to host the scheduler,
while the other 4 are used as worker nodes. We use a separate
set of nodes to host HDFS, to prevent the network partitions
in our experiments affecting data placement.

Workloads. We use the WordCount workload outlined in
Section III for our evaluation. We also include TeraSort, a
workload that comes bundled with Spark [1]. TeraSort sorts
a large amount of data via the MapReduce [2] paradigm and
involves large network transfers during its shuffle phase.

A. Fault Tolerance

We evaluate CASPR’s fault tolerance under the four partial
partition scenarios we present in Section III. Table I shows
the results of our evaluation, comparing CASPR with the
other schedulers. Our evaluation shows that CASPR avoids
the negative impacts of the previous schedulers (i.e. applica-
tions running using CASPR never get indefinitely stuck or
experience significant performance degradation).

In all pre-existing partition scenarios, CASPR completely
eliminates the negative impacts they impose. This is because
CASPR ensures that for a given application, all application
pods are allocated on fully-connected nodes. During mid-
application M-W and M-D partition scenarios, CASPR be-
haves similarly to the kube-scheduler, ensuring that the
partition does not impact the application.

An application running with CASPR experiences a small
performance degradation during mid-application W-W or D-
W partitions. In these two scenarios, the partition disrupts data
transfer between workers or prevents the driver accessing the
worker’s results. In both scenarios, CASPR selects a new node
to run the pod. This newly selected node is fully connected to
the all other nodes hosting the application’s pods.

The small performance degradation occurs due to the
single re-execution of the task on this new node. Section
VI-C shows that this degradation is minor compared to the
kube-scheduler in the same scenarios.

(a) Terasort Benchmark (b) Java WordCount

Fig. 3: Overhead evaluation in a partition-free scenario.

B. Overhead Evaluation

To measure the overhead CASPR imposes, we measure ap-
plication execution time under a partition-free scenario when
using CASPR and kube-scheduler. We ran WordCount
and TeraSort for this experiment, varying input data sizes from
1 GB to 50 GB. The standard deviations of all runs were less
than 6 %.

Figures 3a and 3b plot the application execution time
against input data size, when running Terasort and WordCount
respectively. Our results show that in partition-free scenarios,
application execution time with CASPR is comparable to that
with kube-scheduler, within 2% on average.

C. Performance Under Partial Partitions

We compare application execution times with CASPR and
kube-scheduler under the four partial partition categories
outlined in Section III: W-W, D-W, M-W, and M-D. The
partitions are inserted between nodes and not just target
processes. We vary the time of partition injection, evaluating
both pre-existing and mid-application partitioning scenarios
within each category.

We use the WordCount workload for this analysis. The
results for TeraSort are similar and have been omitted from the
paper for clarity. Each of the figures compares the following:

• K8s Base - kube-scheduler in a partition-free sce-
nario.

• CASPR Base - CASPR in a partition-free scenario.
• K8s PNP - kube-scheduler experiencing the speci-

fied partial network partition.
• CASPR PNP - CASPR experiencing the specified partial

network partition.
W-W Partition. Figures 4a and 4b show the perfor-

mance in the W-W partition scenario. K8s PNP suffers a
significant performance degradation in both pre-existing and
mid-application partitioning scenarios. Application execution
time with CASPR PNP is faster than K8s PNP by 4− 11× on
average. K8s PNP also causes a large variance in application
execution time (Section III-D), as the error bars show.

A W-W partition disrupts the communication between
two executor pods during the shuffle stage. Once
kube-scheduler detects this problem, it tries to
reallocate one of the pods. Unfortunately, the partition might
also impact the new worker node chosen for the pod, causing



(a) W-W Partition Pre-App (b) W-W Partition Mid-App

(c) D-W Partition Pre-App (d) D-W Partition Mid-App

Fig. 4: Average execution time of WordCount during W-W
and D-W partitions. K8s Base, CASPR Base, and CASPR
PNP have standard deviations less than 3%.

the communication to fail again and kube-scheduler to
allocate a new pod onto a node. This process repeats until
kube-scheduler, by luck, allocates a node that is fully
connected to all application nodes.

Pre-existing. WordCount with CASPR experiences no per-
formance degradation during pre-existing W-W partitions (Fig-
ure 4a). CASPR PNP has execution times similar to those of
CASPR Base and K8s Base, because CASPR uses the infor-
mation about cluster connectivity to schedule the application
on a fully connected subset of nodes.

Mid-application. During mid-application partitions (Figure
4b), application execution time with CASPR PNP is 3.5×
faster than K8s PNP on average and only 1.75× slower than
that of K8s Base. When CASPR detects a problem between
two executor pods, it allocates a new worker for one of them.
It selects a worker that is fully connected to the application’s
active pods and the application resumes execution. Unlike
kube-scheduler, CASPR restarts tasks only once.
D-W Partition. Figures 4c and 4d show the perfor-

mance of CASPR and kube-scheduler under D-W parti-
tions. K8s PNP suffers a significant performance degradation
during both pre-existing (Figure 4c) and mid-application parti-
tions (Figure 4d), with CASPR being 4-7× faster on average.

Pre-existing. With pre-existing partitions,
kube-scheduler may still allocate the partitioned
worker to the application to host executor pods. However, the
driver will not assign any tasks to these pods and the program
will execute with fewer resources, leading to performance
degradation. CASPR PNP in this case performs identically
to partition-free scenarios, as CASPR uses the information
about cluster connectivity to schedule the application on a

(a) M-W Partition Pre-App (b) M-W Partition Mid-App

(c) M-D Partition Pre-App (d) M-D Partition Mid-App

Fig. 5: Average execution time of WordCount under M-W and
M-D partition. K8s Base, CASPR Base, and CASPR PNP have
standard deviations less than 5%.

fully connected subset of nodes.
Mid-application. When the partition occurs mid-application,

the driver pod will request a new executor pod after a
small delay depending on the driver heartbeat timeout.
kube-scheduler can potentially allocate the new pod
onto the same or a different partitioned node, causing the
application to fail again as outlined above. With CASPR
however, when the driver requests a new pod, CASPR will
create a pod and allocate it to a node that is fully connected
to the previous nodes. Therefore, CASPR will only repeat the
failed task once. In this scenario CASPR is 2× faster than K8s
PNP. The execution time difference between CASPR PNP and
K8s Base in this case arises solely due to the detection delay
described above.
M-W Partition. Figures 5a and 5b show the perfor-

mance under M-W partial partitions.
Pre-existing. kube-scheduler suffers some perfor-

mance degradation during pre-existing partitions. This is be-
cause, as explained in section III-D, it may assign pods to
worker nodes that are unable to contact the scheduler, and the
executor pods will fail to start. CASPR on the other hand will
not allocate a pod onto a worker node that is partitioned from
it, resulting in application performance very similar to that in
partition-free scenarios.

Mid-application. During M-W mid-application partitions,
all systems achieve similar performance. After an application
starts, the driver program does not contact the schedulers
(unless there is a pod failure) and thus is not impacted by
the partial partition.
M-D Partition. Figures 5c and 5d show the perfor-

mance in the M-D partial partition scenario.



Pre-existing. During pre-existing M-D partitions, the appli-
cation does not run at all with kube-scheduler because
the driver pod is allocated to a node that cannot communicate
with the scheduler, causing the driver pod to never start.
CASPR is able to run and execute successfully with execution
times comparable to that partition-free scenarios as CASPR
allocates the driver pod onto a node that is connected to itself.

Mid-application. With M-D mid-application partitions,
all systems achieve similar performance. After an ap-
plication starts, the driver program does not contact
kube-scheduler barring pod failures, and thus is not
affected by the partial partition.

Variance in Application Performance with K8s PNP. It
is important to note the large variance in K8s PNP results.
For instance, under W-W and D-W partitions (Figure 4),
WordCount’s execution time with K8s PNP ranges from 1 –
17 minutes with 5GB of data. This is due to the unpredictable
number of reallocations kube-scheduler makes until it
allocates the impacted executor pod on a node fully connected
with the other active application pods (Section III-D). CASPR
avoids this problem by using connectivity information to select
a fully connected node.

VII. RELATED WORK

Failure Studies. NEAT [6] and NIFTY [7, 8] present a
study on the impact of network partitions, including partial
partitions, on a diverse set of distributed systems. NIFTY
reports that 76.4% of the studied failures caused by partial
network partitioning have catastrophic effects. The failures
studied were found to be deterministic or have known time
constraints. A majority of these failures (66.6%) require three
or fewer events (other than the partial partition) to occur. All
of the studied failures can be triggered by a single-node partial
partition, and design flaws account for most of the fixed bugs
(59.3%). While these studies motivated our work, they do not
focus specifically on the impact of partial network partitions
in scheduling and resource management systems.

In a large body of previous work, researchers have analyzed
failures in distributed systems. A subset of these efforts
focused on specific component failures such as physical [30]
and virtual machines [31], network devices [14, 15], software
bugs [32], storage systems [33, 34], and job failures [35, 36,
37]. Another set characterized a broader set of failures, but
only for specific domains of systems and services, such as
HPC [38, 39, 40], IaaS clouds [41], data-mining services [42],
hosting services [43, 44], and data-intensive systems [32, 35,
45, 46].

Majumdar et al. [47] theoretically analyze the space for
faulty executions with complete network partitioning faults.
They discuss the extreme size of the test space and how
effective it is to perform random testing if tests isolate a
specific node, place a leader in a minority, and test with a
random order of short sequences of operations. Bailis et al.
[48] discuss publicly disclosed failures in deployed distributed
systems and highlight the significance of network partitions as
a possible cause of such failures. The authors emphasize the

importance of taking network partitions into account during
design before they occur, because it is much easier to plan
for partition failures ahead of time than to make changes to a
complex system in a production environment.

We complement these efforts by studying the impact of
partial partitions on scheduling for data analytics frameworks.
Unlike previous efforts that relied solely on failure reports
to study failures, we followed an empirical approach. We
experimentally studied the impact of partial partitions on the
state-of-the-art schedulers and designed a new scheduling
approach using the insights from our study.

Fault Tolerant Scheduling. Although there are many schedul-
ing systems for data analytics workloads [1, 49, 50], they do
not tolerate network partitions, partial or complete. Sparrow
[49] and Falcon [50] expose task failures to the application,
allowing them to be handled in application specific format.
Falcon uses a programmable switch to accelerate scheduling
decisions, further complicating their fault tolerance model.

Elzeki et al. [51] review the many scheduling algorithms
that can be applied in cloud computing, and how different
characteristics such as the task arrival rate, task execution
cost on each resource, and communication costs come into
play when deciding which algorithm is best. Keivani et al.
[52] study task scheduling in cloud computing frameworks
and report that reliability, availability, and error handling re-
quire further improvements. They conclude that cloud services
would improve if they deployed enhanced algorithms which
account for these parameters.

Bala and Chana [53] discuss the existing fault tolerance
techniques in cloud computing based on their policies, tools
used and research challenges but none of the techniques
discussed refer to network partitions in scheduling.

VIII. CONCLUSION

We conducted an in-depth empirical study of the impact of
partial network partitioning on modern resource management
systems for data analytics frameworks. Our study shows that
these systems are vulnerable to partial network partitioning.
Partial partitions often lead to severe negative impact, such as
application pause until the partition is fixed, or a significant
performance degradation.

Based on our insights from the aforementioned study,
we propose a new connectivity-aware scheduling technique
(CASPR) that can tolerate partial partitions. CASPR incor-
porates cluster connectivity information in the process of
scheduling. Our evaluation shows that CASPR can tolerate all
partial network partitioning scenarios and imposes negligible
overhead.

Our study highlights the importance of considering network
failures and partial network partitions when designing and
implementing scheduling techniques in modern distributed
systems. By incorporating partition-resilience into their design,
we can significantly increase their reliability and performance.
The source code for CASPR is publicly available on GitHub
[11].



REFERENCES

[1] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Presented
as part of the 9th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 12), pp. 15–28, 2012.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System
Design and Implementation, (San Francisco, CA), pp. 137–150, 2004.

[3] A. Floratou, A. Agrawal, B. Graham, S. Rao, and K. Ramasamy,
“Dhalion: Self-regulating stream processing in heron,” Proc. VLDB
Endow., vol. 10, p. 1825–1836, aug 2017.

[4] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw,
and T. Roscoe, “Three steps is all you need: fast, accurate, automatic
scaling decisions for distributed streaming dataflows,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), (Carlsbad, CA), pp. 783–798, USENIX Association, Oct. 2018.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, pp. 74–80, 2013.

[6] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis
of network-partitioning failures in cloud systems,” in Proceedings of the
13th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’18, (USA), p. 51–68, USENIX Association, 2018.

[7] M. Alfatafta, B. Alkhatib, A. Alquraan, and S. Al-Kiswany, “Toward
a generic fault tolerance technique for partial network partitioning,” in
14th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 20), pp. 351–368, USENIX Association, Nov. 2020.

[8] B. Alkhatib, S. Udayashankar, S. Qunaibi, A. Alquraan, M. Alfatafta,
W. Al-Manasrah, A. Depoutovitch, and S. Al-Kiswany, “Partial network
partitioning,” ACM Trans. Comput. Syst., dec 2022. Just Accepted.

[9] “Kubernetes Documentation.” https://kubernetes.io/docs/home/, 2023.
[Online; accessed 24-Mar-2023].

[10] R. Ignazio, Mesos fundamentals, p. 58–62. Manning, 2018.
[11] WASL, “Caspr github repository.” https://github.com/UWASL/CASPR.
[12] R. Potharaju and N. Jain, “When the network crumbles: An empirical

study of cloud network failures and their impact on services,” in
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, (New York, NY, USA), ACM, 2013.

[13] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from google’s network
infrastructure,” 2016.

[14] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures
in data centers: Measurement, analysis, and implications,” SIGCOMM
Comput. Commun. Rev., vol. 41, p. 350–361, aug 2011.

[15] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California fault
lines,” Proceedings of the ACM SIGCOMM 2010 conference, 2010.

[16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, (New York, NY, USA), p. 3–14,
Association for Computing Machinery, 2013.

[17] T. Mills, “Bnx2 cards intermittantly going offline.”
[18] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, p. 51–59, jun 2002.

[19] JIRA, “Mapreduce-4819: Am can rerun job after reporting fi-
nal job status to the client.” https://issues.apache.org/jira/browse/
MAPREDUCE-4819.

[20] “Mapreduce ticket 4832.” https://issues.apache.org/jira/browse/
MAPREDUCE-4832. Accessed: April 2023.

[21] “Mesos-1529: Handle a network partition between master and slave.”
https://issues.apache.org/jira/browse/MESOS-1529. Accessed: April
2023.

[22] “Disconnect between coordinating node and shards can cause dupli-
cate updates or wrong status code #9967.” https://github.com/elastic/
elasticsearch/issues/9967. Accessed: April 2023.

[23] “Flink architecture.” https://nightlies.apache.org/flink/
flink-docs-release-1.17/docs/concepts/flink-architecture/. Accessed:
April 2023.

[24] “Apache storm documentation.” https://storm.apache.org/releases/2.4.0/
index.html/. Accessed: April 2023.

[25] “Hdfs architecture.” https://hadoop.apache.org/docs/stable/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html. Accessed: April
2023.

[26] J.-G. Perrin and R. Thomas, Spark in action. Manning Publications Co.,
2020.

[27] Kubernetes, “Kubernetes/kubernetes: Production-grade container
scheduling and management.”

[28] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and
P. Mishra, “The design and operation of CloudLab,” in 2019 USENIX
Annual Technical Conference (USENIX ATC 19), (Renton, WA), pp. 1–
14, USENIX Association, July 2019.

[29] T. C. Team, “Cloudlab documentation.” https://docs.cloudlab.us/
hardware.html. Accessed: April 2023.

[30] K. V. Vishwanath and N. Nagappan, “Characterizing cloud computing
hardware reliability,” SoCC ’10, (New York, NY, USA), p. 193–204,
Association for Computing Machinery, 2010.

[31] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen,
“Failure analysis of virtual and physical machines: Patterns, causes
and characteristics,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 1–12, 2014.

[32] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, and et. al, “What bugs
live in the cloud? a study of 3000+ issues in cloud systems,” in ACM
Symposium on Cloud Computing, SOCC, 2014.

[33] D. Ford, F. Labelle, F. I. Popovici, and et. al, “Availability in globally
distributed storage systems,” in USENIX Conference on Operating
Systems Design and Implementation, OSDI, 2010.

[34] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky, “Are disks the dominant
contributor for storage failures? a comprehensive study of storage
subsystem failure characteristics,” ACM Trans. Storage, vol. 4, nov 2008.

[35] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A character-
istic study on failures of production distributed data-parallel programs,”
in 2013 35th International Conference on Software Engineering (ICSE),
pp. 963–972, 2013.

[36] X. Chen, C.-D. Lu, and K. Pattabiraman, “Failure analysis of jobs in
compute clouds: A google cluster case study,” in IEEE International
Symposium on Software Reliability Engineering, pp. 167–177, 2014.

[37] P. Garraghan, P. Townend, and J. Xu, “An empirical failure-analysis
of a large-scale cloud computing environment,” in IEEE International
Symposium on High-Assurance Systems Engineering, 2014.

[38] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how hpc systems fail,” in 2013 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), pp. 1–12, 2013.

[39] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo,
“Bluegene/l failure analysis and prediction models,” in International
Conference on Dependable Systems and Networks (DSN), 2006.

[40] B. Schroeder and G. A. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–350, 2010.

[41] T. Benson, S. Sahu, A. Akella, and A. Shaikh, “A first look at problems
in the cloud,” HotCloud’10, (USA), p. 15, USENIX Association, 2010.

[42] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An
empirical study on quality issues of production big data platform,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, pp. 17–26, 2015.

[43] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?,” in 4th USENIX Sympo-
sium on Internet Technologies and Systems (USITS 03), (Seattle, WA),
USENIX Association, Mar. 2003.

[44] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?
lessons from hundreds of service outages,” SoCC ’16, (New York, NY,
USA), p. 1–16, Association for Computing Machinery, 2016.

[45] A. Rabkin and R. H. Katz, “How hadoop clusters break,” IEEE Software,
vol. 30, no. 4, pp. 88–94, 2013.

[46] D. Yuan, Y. Luo, X. Zhuang, and et. al, “Simple testing can prevent
most critical failures: An analysis of production failures in distributed
Data-Intensive systems,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pp. 249–265, Oct. 2014.

[47] R. Majumdar and F. Niksic, “Why is random testing effective for
partition tolerance bugs?,” Proc. ACM Program. Lang., vol. 2, dec 2017.

https://kubernetes.io/docs/home/
https://github.com/UWASL/CASPR
https://issues.apache.org/jira/browse/MAPREDUCE-4819
https://issues.apache.org/jira/browse/MAPREDUCE-4819
https://issues.apache.org/jira/browse/ MAPREDUCE-4832
https://issues.apache.org/jira/browse/ MAPREDUCE-4832
https://issues.apache.org/jira/browse/MESOS-1529
https://github.com/elastic/elasticsearch/issues/9967
https://github.com/elastic/elasticsearch/issues/9967
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/ concepts/flink-architecture/
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/ concepts/flink-architecture/
https://storm.apache.org/releases/2.4.0/ index.html/
https://storm.apache.org/releases/2.4.0/ index.html/
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://docs.cloudlab.us/hardware.html
https://docs.cloudlab.us/hardware.html


[48] P. Bailis and K. Kingsbury, “The network is reliable: An informal survey
of real-world communications failures,” Queue, vol. 12, pp. 20–32, 2014.

[49] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, (New
York, NY, USA), p. 69–84, Association for Computing Machinery, 2013.

[50] I. Kettaneh, S. Udayashankar, A. Abdel-hadi, R. Grosman, and S. Al-
Kiswany, “Falcon: Low latency, network-accelerated scheduling,” in
Proceedings of the 3rd P4 Workshop in Europe, EuroP4’20, (New York,
NY, USA), p. 7–12, Association for Computing Machinery, 2020.

[51] O. Elzeki, M. Rashad, and M. Abu Elsoud, “Overview of scheduling
tasks in distributed computing systems,” International Journal of Soft
Computing and Engineering, vol. 2, pp. 470–475, 01 2012.

[52] A. Keivani and J.-R. Tapamo, “Task scheduling in cloud computing:
A review,” in 2019 International Conference on Advances in Big Data,
Computing and Data Communication Systems (icABCD), pp. 1–6, 2019.

[53] A. Bala and I. Chana, “Fault tolerance-challenges, techniques and
implementation in cloud computing,” International Journal of Computer
Science Issues, vol. 9, 01 2012.


	Introduction
	Background
	Network Partitioning
	Scheduling in Data Analytics Systems
	Spark Standalone
	Mesos
	Kubernetes


	The Impact of Partial Network Partitions on Scheduling
	Methodology
	Spark Standalone Cluster Manager
	Mesos
	Kubernetes
	Summary

	Connectivity-Aware Scheduling for Partition Resilience
	Connectivity Monitoring Overlay
	Scheduler Metadata
	Scheduler Design

	Implementation
	Evaluation
	Fault Tolerance
	Overhead Evaluation
	Performance Under Partial Partitions

	Related Work
	Conclusion
	References

