
Detection of Feature Interactions in
Automotive Active Safety Features

by

Alma L. Juarez Dominguez

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Alma L. Juarez Dominguez 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

With the introduction of software into cars, many functions are now realized with
reduced cost, weight and energy. The development of these software systems is done in
a distributed manner independently by suppliers, following the traditional approach of
the automotive industry, while the car maker takes care of the integration. However, the
integration can lead to unexpected and unintended interactions among software systems, a
phenomena regarded as feature interaction. This dissertation addresses the problem of the
automatic detection of feature interactions for automotive active safety features. Active
safety features control the vehicle’s motion control systems independently from the driver’s
request, with the intention of increasing passengers’ safety (e.g., by applying hard braking
in the case of an identified imminent collision), but their unintended interactions could
instead endanger the passengers (e.g., simultaneous throttle increase and sharp narrow
steering, causing the vehicle to roll over). My method decomposes the problem into three
parts: (I) creation of a definition of feature interactions based on the set of actuators and
domain expert knowledge; (II) translation of automotive active safety features designed
using a subset of Matlab’s Stateflow into the input language of the model checker
SMV; (III) analysis using model checking at design time to detect a representation of
all feature interactions based on partitioning the counterexamples into equivalence classes.
The key novel characteristic of my work is exploiting domain-specific information about the
feature interaction problem and the structure of the model to produce a method that finds
a representation of all different feature interactions for automotive active safety features
at design time.

My method is validated by a case study with the set of non-proprietary automotive
feature design models I created. The method generates a set of counterexamples that rep-
resent the whole set of feature interactions in the case study. By showing only a set of
representative feature interaction cases, the information is concise and useful for feature de-
signers. Moreover, by generating these results from feature models designed in Matlab’s
Stateflow translated into SMV models, the feature designers can trace the counterex-
amples generated by SMV and understand the results in terms of the Stateflow model.
I believe that my results and techniques will have relevance to the solution of the feature
interaction problem in other cyber-physical systems, and have a direct impact in assessing
the safety of automotive systems.

v

Acknowledgements

First, I would like to thank my supervisor, Professor Nancy A. Day, for her guidance,
as well as her continuous support and inspiration. This thesis is better because of her
insightful comments and advice.

I also wish to thank the members of my examining committee, Professors Joanne M.
Atlee, Tim Brecht and John G. Thistle, for taking the time to read my thesis and for the
comments they provided. Special thanks to Professor Mats P.E. Heimdahl for being on
my committee. His valuable feedback and suggestions have given me a fresh perspective
on my research.

Funding for my research was partially provided by General Motors (GM) Canada,
Critical Systems Labs Inc., the Natural Sciences and Engineering Research Council of
Canada (NSERC), and the Cheriton School of Computer Science at the University of
Waterloo. My results were shaped by the experience I gained while collaborating with
members of the General Motors Research and Development team, particularly I would like
to recognize Rami Debouk, Barbara Czerny and Joseph D’Ambrosio. A special recognition
to Jeffrey J. Joyce, president of Critical Systems Labs Inc. for his supervision during my
industrial collaboration, and also for his support and insightful advice.

To all my friends in Waterloo and around the world, Alex Hudek, Angelica Alvarez,
Arturo Santillan, Catherine Donnelly, Cory Kapser, Dasha Hajducek, David Evans, Elodie
Fourquet, Ioana Burcea, Irene Pivotto, Joanna Ziembicka, Joyce Nieuwesteeg, Judith
Toms, Leticia Ramirez, Mike Patterson, Rob Warren, Sonia Waharte, Wendy Rush, thanks
for helping me through the rough patches and for continuously enriching my life no mat-
ter where they are! To all the families that have opened their homes and hearts to me,
Aagaard-Day, Cowan, Joyce, Richards, I cannot thank them enough for their kindness, for
all I have learned from them and the enjoyable times I have spent. Thanks also go to the
members of the WatForm lab, past and present, for providing me with valuable discussions
and interesting conversations. My recognition and appreciation to the members of Latinas
in Computing for their mentorship. And for all the members of #beer, thanks for letting
me be part of the club and remind me that I am not alone in this crusade.

Without my family, I could not be who I am today. I would like to thank my parents,
Alma Domı́nguez and Rafael Juárez, for their outstanding support, for always encouraging
me to pursue my dreams, but above all for their unconditional love. To my siblings, Karen
and Rafael, thank you for showing me how to laugh and live my life intensely. My heart
also goes to the Koulis family for their love, support and inspiration.

To my husband, Theo Koulis, thanks for always being there for me. Your patience,
support and encouragement help me complete this work, demonstrating that together we
can do anything. Your love makes my life special.

vii

Dedication

To my family, for the unconditional love, constant support and encouragement.

ix

Contents

List of Tables xviii

List of Figures xxi

1 Introduction 1

1.1 Automotive Active Safety Features . 4

1.2 The Feature Interaction Problem . 5

1.3 Thesis Overview . 8

1.3.1 Feature Interaction Definition in the Automotive Domain 8

1.3.2 Translation of Feature Models Designed in Matlab’s Stateflow
into SMV . 9

1.3.3 Detection of all Different Feature Interactions at Design-time 9

1.4 Validation . 13

1.5 Thesis Contributions . 14

1.6 Thesis Organization . 15

2 Background 17

2.1 Feature Interaction Problem . 17

2.1.1 Feature and Feature Interaction: Definitions and Variants 17

2.1.2 Classification of Feature Interaction Approaches 18

2.1.3 Approaches to Deal with Feature Interactions for Telecommunications 19

2.1.4 Approaches to Deal with Feature Interactions in Internet Applications 21

2.1.5 Approaches to Deal with Feature Interactions for Embedded Systems 23

xi

2.2 Stateflow . 24

2.3 Model Checking . 26

2.3.1 Modelling . 26

2.3.2 Temporal Logic Specification . 27

2.3.3 Verification . 28

2.3.4 State Explosion Problem . 29

2.3.5 The Model Checker SMV . 30

2.4 Summary . 31

3 Definition of Feature Interactions for Automotive Systems 33

3.1 Characteristics of Automotive Active Safety Features and their Interactions 33

3.2 Definition of Feature Interactions . 35

3.2.1 Immediate Feature Interactions . 36

3.2.2 Temporal Feature Interactions . 37

3.3 Validation of Definition of Feature Interactions 39

3.4 Related Work . 41

3.4.1 Definitions in Telecommunications 41

3.4.2 Definitions in Internet Applications 42

3.4.3 Definitions in Embedded Systems 43

3.5 Summary . 44

4 Translating STATEFLOW Feature Design Models to SMV: mdl2smv 45

4.1 Process Overview . 45

4.2 Subset of STATEFLOW Syntax . 49

4.3 Variable Declarations . 50

4.4 States . 52

4.5 Transitions . 52

4.6 Sequential Execution . 56

4.7 Integrating Features . 60

4.8 Related Work . 65

4.9 Summary . 66

xii

5 Detecting and Representing all Different Counterexamples to an Invari-
ant: Alfie 67

5.1 Process Overview . 68

5.2 Extended Finite State Machines (EFSMs) 70

5.2.1 EFSM as Kripke Structure (KS) . 74

5.3 Counterexample Paths . 75

5.4 Failed Invariant Paths (FIPaths) . 76

5.5 Counterexample Equivalence Classes . 79

5.5.1 Level 1: Distinct Paths . 81

5.5.2 Level 2: Distinct Last Transitions 84

5.5.3 Level 3: Distinct Initial and Final States 85

5.5.4 Level 4: Distinct Final States . 85

5.5.5 Discussion . 85

5.6 On-the-fly LTL Counterexample Grouping 86

5.6.1 Level 4: Distinct Final States . 89

5.6.2 Level 3: Distinct Initial and Final States 91

5.6.3 Level 2: Distinct Last Transitions 93

5.6.4 Level 1: Distinct Paths . 94

5.6.5 FIPaths . 97

5.7 Case study with Automotive Features . 97

5.8 Related Work . 102

5.9 Summary . 103

6 Detecting and Representing all Different Feature Interactions in Concur-
rent Features: Generalization of Alfie 105

6.1 Overview of Generalization . 106

6.1.1 From EFSM to STATEFLOW Models 106

6.1.2 Detect Feature Interactions in a big-step 108

6.1.3 Report Set of Transitions Taken in a big-step 110

6.1.4 Update Definition of FIPaths for Concurrent Models 110

xiii

6.1.5 Update Definition of Equivalence Classes 111

6.1.6 Remove EFSM loops with respect to big-step boundaries 112

6.1.7 No Environmental Constraints . 113

6.2 STATEFLOW Model . 114

6.3 Counterexample Equivalence Classes for a Pair of Concurrent Components 117

6.3.1 Level 1: Distinct Paths . 118

6.3.2 Level 2: Distinct Last Transitions 119

6.3.3 Level 3: Distinct Initial and Final States 119

6.3.4 Level 4: Distinct Final States . 120

6.4 On-the-fly Counterexample Grouping for Concurrent Components 120

6.4.1 Level 4: Distinct Final States . 122

6.4.2 Level 3: Distinct Initial and Final States 123

6.4.3 Level 2: Distinct Last Transitions 123

6.4.4 Level 1: Distinct Paths . 124

6.5 Related Work . 128

6.6 Summary . 129

7 Case Studies 131

7.1 Overview of the Design Models in the UWFMS 131

7.2 Scalability via Partitioning . 132

7.3 Same Actuator Feature Interactions . 138

7.3.1 Feature Interactions between LG and EVA 140

7.3.2 Feature Interactions between PSC and EVA 142

7.3.3 Feature Interactions between CC and EVA 143

7.3.4 Feature Interactions between CA and EVA 144

7.3.5 Discussion of Traceability and Manageability for Same Actuator Fea-
ture Interactions . 149

7.4 Conflicting Actuator Feature Interactions 150

7.4.1 Feature Interactions between CC and EVA 151

7.4.2 Feature Interactions between CC and LG 153

xiv

7.4.3 Feature Interactions between CC and CA 155

7.4.4 Feature Interactions between CA and EVA 158

7.4.5 Discussion of Traceability and Manageability for Conflicting Actua-
tors Feature Interactions . 161

7.5 Related Work . 162

7.6 Summary . 163

8 Conclusions 165

8.1 Contributions . 165

8.2 Limitations . 167

8.3 Future Work . 168

APPENDICES 171

A Non-Proprietary Automotive Feature Set: UWFMS 173

A.1 Cruise Control (CC) . 173

A.2 Collision Avoidance (CA) . 178

A.3 Park Assist (PA) . 183

A.4 Lane Guide (LG) . 188

A.5 Emergency Vehicle Avoidance (EVA) . 193

A.6 Parking Space Centering (PSC) . 197

A.7 Reversing Assistance (RA) . 201

A.8 Summary . 205

References 205

xv

List of Tables

3.1 Property to detect immediate feature interactions 37

3.2 Property to detect temporal feature interactions 38

3.3 Elements of multiple feature influence and thresholds for case study 39

5.1 Example of paths in AllPaths for AC shown in Figure 5.2 73

5.2 Counterexample equivalence classes for Figure 5.2.
The total number of elements of FIPaths is 45. 81

5.3 Example of elements in FIPaths for model AC shown in Figure 5.2.
The total number of elements of FIPaths is 45. 82

5.4 LTL properties per level of equivalence classes for counterexample
path p 3, 〈OFF-t1-IDLE-t4-ON〉, from model AC of Figure 5.2 89

5.5 Statistics for the analysis of model AC in Figure 5.2 98

5.6 Information on the size of CA, EVA, PSC and RA 98

5.7 Case study results per level of counterexample equivalence classes 99

6.1 Levels of equivalence classes of feature interactions for
the integrated model of AC and HEATER 118

6.2 LTL properties per level of equivalence classes for counterexample shown in
Figure 6.4, which illustrates a feature interaction for AC and HEATER . . . 122

6.3 Statistics for HEATER and AC . 128

7.1 Information on the size of the UWFMS translated SMV models 133

7.2 Elements of multiple feature influence and thresholds for same actuators . 139

7.3 Same actuator feature interaction analysis results for LG-EVA 140

7.4 Same actuator feature interaction analysis results for PSC-EVA 142

xvii

7.5 Same actuator feature interaction analysis results for CC-EVA 143

7.6 Same actuator feature interaction analysis results for CA-EVA 145

7.7 Elements of multiple feature influence and thresholds for conflicting actuators151

7.8 Conflicting actuators feature interaction analysis results for CC-EVA . . . 152

7.9 Conflicting actuators feature interaction analysis results for CC-LG 154

7.10 Conflicting actuators feature interaction analysis results for CC-CA 155

7.11 Conflicting actuators feature interaction analysis results for CA-EVA . . . 159

A.1 Local variables used in Cruise Control (CC) 175

A.2 Input variables used in Cruise Control (CC) 176

A.3 Output variables used in Cruise Control (CC) 176

A.4 Input variables used in Collision Avoidance (CA) 180

A.5 Output variables used in Collision Avoidance (CA) 181

A.6 Input variables used in Park Assist (PA) 185

A.7 Output variables used in Park Assist (PA) 186

A.8 Input variables used in Lane Guide (LG) 190

A.9 Output variables used in Lane Guide (LG) 191

A.10 Input variables used in Emergency Vehicle Avoidance (EVA) 194

A.11 Output variables used in Emergency Vehicle Avoidance (EVA) 195

A.12 Input variables used in Parking Space Centering (PSC) 198

A.13 Output variables used in Parking Space Centering (PSC) 199

A.14 Input variables used in Reversing Assistant (RA) 202

A.15 Output variables used in Reversing Assistant (RA) 203

xviii

List of Figures

1.1 Components of an automotive embedded system 4

1.2 Feature interaction detection method at design-time 8

1.3 EFSM of a flawed air conditioning (AC) model 11

2.1 Lifecycle timeline for the approaches . 19

2.2 Decomposition allowed at a hierarchy level in Stateflow 25

2.3 General format of SMV modules . 30

3.1 Example of output dataflow of feature influences 35

3.2 Illustration of immediate feature interactions 37

3.3 Illustration of temporal feature interactions 38

4.1 Strict execution order for ordered-compositions and transitions in Stateflow 46

4.2 Simplified air conditioning (AC) model . 48

4.3 Simplified heater (HEATER) model . 49

4.4 Formal parameters for AC and HEATER . 51

4.5 Local variables initialization for HEATER 51

4.6 State variables declaration and initialization for AC and HEATER 52

4.7 State variables declaration and initialization for AC and HEATER 53

4.8 Translation of transitions for AC with OR-states and no hierarchy 54

4.9 Translation of transitions HEATER with hierarchy and ordered-composition 55

4.10 Illustration of sequential execution for HEATER 57

4.11 SMV model of feature HEATER – Part I 58

xix

4.12 SMV model of feature HEATER – Part II 59

4.13 Illustration of concurrent execution for AC and HEATER 62

4.14 SMV model of integrated AC and HEATER 63

5.1 Example of simple EFSM . 70

5.2 Example EFSM of a flawed air conditioning (AC) model 73

5.3 Kripke structure and SMV model for EFSM in Figure 5.1 74

5.4 Example EFSM of an air conditioning (AC) model 76

5.5 Paths in CE are represented by elements of FIPaths 78

5.6 Paths in CE that become elements of FIPaths 79

5.7 Counterexample differentiated by last transition 83

5.8 EFSM loops due to counters are eliminated by reduceEFSM 83

5.9 Counterexample path with multiple failed invariants 86

5.10 On-the-fly grouping level process . 87

5.11 Relationship between CE, CErep, FIPaths and LTL properties
representing equivalence classes . 87

5.12 Counterexample path missed by property prop L4 if ¬inv is excluded . . . 90

5.13 Looping variations of path 〈t1, t2, t3〉 . 94

5.14 Errors in feature CA uncovered by Alfie 100

5.15 Number of data variant paths in equivalence class [〈t14, t16〉] 102

6.1 Elements of a Stateflow model that differ from an EFSM 106

6.2 Simplified air conditioning AC model . 107

6.3 Simplified heater HEATER model . 107

6.4 Counterexample path for HEATER and AC 109

6.5 Example of accepted and rejected steps by macro progress 111

6.6 Equivalence of paths per model, but not in the combined models 112

6.7 Equivalence of paths per model, but not in the combined models 113

6.8 On-the-fly grouping level process for concurrent components 121

6.9 LTL expressions per model for concurrent path p 125

xx

7.1 Illustration of a simple partitioning process 134

7.2 Illustration of a process with three partitions 136

7.3 Diagram of potential and actual same actuator feature
interactions in UWFMS combos . 139

7.4 Partitions needed during analysis of Level 1 for CC-EVA 144

7.5 Partitions needed during analysis of Level 1 for CA-EVA 149

7.6 Diagram of potential and actual conflicting actuators feature
interactions in UWFMS combos . 151

7.7 Partitions needed during analysis of Level 1 for CC-CA 158

7.8 Partitions needed during analysis of Level 1 for CA-EVA 162

A.1 Adaptive Cruise Control Functionality . 174

A.2 Cruise Control (CC) Stateflow design model 177

A.3 Collision Warning Functionality . 178

A.4 Collision Avoidance (CA) Stateflow design model 182

A.5 Park Assist Functionality . 183

A.6 Park Assist (PA) Stateflow design model 187

A.7 Lane Guide Functionality . 188

A.8 Lane Guide (LG) Stateflow design model 192

A.9 Emergency Vehicle Avoidance Stateflow design model 196

A.10 Parking Space Centering (PSC) Stateflow design model 200

A.11 Reversing Assistant (RA) Stateflow design model 204

xxi

Chapter 1

Introduction

“It takes dozens of microprocessors running 100 million lines of

code to get a premium car out of the driveway, and this software

is only going to get more complex.” [50]

The introduction of software into cars first occurred in 1977 to control the electronic
spark timing [22]. Nowadays, the amount of software in a premium-class vehicle is close
to 100 million lines of code, packed within 70-100 microprocessor-based electronic control
units (ECUs) networked throughout the body of the car [50]. In 2005, a study by the
Center for Automotive Research, PriceWaterhouseCoopers, VDA and the city of Leipzig
reported that software would account for 40% of a car’s total value by 2010 [166], which is
a continuing trend. Software is advantageous because it enables car makers and suppliers
to realize functions with reduced costs, weight and energy, while also making it possible to
personalize systems to particular customer’s needs [34, 149]. Thus, software helps control
functions like the volume of the radio, gas consumption and even the motion control systems
(e.g., braking). However, the advantages of software come with challenges, such as avoiding
glitches in the software. Software problems have put some automotive companies in the
spotlight over the years: In 2003, software problems in the BMW 7-series made engines
shut down at highway speeds [139]; In 2005, Mazda’s software controlling the fuel injection
was flooding the engine in its RX-8 sports car [177]; In 2010, Toyota reported problems
with the braking control software used in its Prius line [134]; In 2011, General Motors had
to fix a software system that prevents the defroster from clearing the windshield [155]. But
not all the challenges disappear by eliminating local software glitches. The modern car
has turned from an assembled device into an integrated system, and new challenges now
arise from the integration of subsystems from different sources [35]. The integration can
lead to unexpected and unintended interactions among subsystems, a phenomena regarded
as feature interaction [31]. In this dissertation, I tackle the problem of detecting feature
interactions in the automotive domain.

1

Traditionally, the automotive industry has been organized in a very modular manner,
thanks to the hard work of mechanical engineers for over a hundred years to make the sub-
systems of cars independent. Usually, a car’s parts are produced by a chain of suppliers, and
only an estimated 25% of the product value is created by the car maker, which concentrates
on the engine, assembly of the parts, design and marketing [149]. This division of labour
has been highly successful because it allows the suppliers to keep the development costs
low. However, with more software being part of the vehicle, there are two main changes in
the automotive industry: (1) cars change from being purely electro-mechanical devices to
being cyber-physical systems (CPS), in which embedded computers and networks monitor
and control physical processes [121], and (2) the car maker’s responsibility switches from
assembly of parts to system integration. But what exactly are these software systems that
need to be integrated?

In a premium-class vehicle, over 2000 ‘atomic’ functions are related to software, which
are then combined into about 270 ‘user’ functions that a driver or passenger interacts
with [34, 35]. When talking about a ‘feature’, the definition of this concept depends on
the level of granularity at which people decide to reason and work. The main difference in
definitions is the identification of a ‘feature’ either as a single function (such as an ‘atomic’
function or a requirement), or as “a coherent and identifiable bundle of system functionality
that helps characterize the system from the user perspective” [170] (such as the concept of
‘user’ function used by Broy et al. [35]). In the automotive domain, one can interpret the
definition of feature as “a service recognized by the driver” [104, 124], which identifies a set
of functionality in one package. Some examples of features in an automobile are automatic
door lock, pre-set seat adjustment, monitored tired pressure, and cruise control (CC).

Integration of software subsystems is challenging in itself, but in automotive systems
the integration problem is worse because the development is geographically distributed and
suppliers have great freedom in how they implement their solutions [35]. Often, the car
maker only gets a black box specification of the suppliers’ subsystems to integrate [149].
With the huge number of software related functions, and the challenge of distributed and
independent development of subsystems, the phenomena of feature interaction1 in the au-
tomotive domain is likely to appear. Feature interactions are not due to malfunctions
in individual features, but they arise from the integration of features developed in isola-
tion and whose goals potentially conflict. Therefore, the task of detecting and resolving
unexpected and unintended interactions among subsystems must be a priority, and new
techniques and tools are needed for this task.

The challenge of integration of automotive systems is also shaped by a recent trend, in
which subsystems that used to be highly independent, and controlled only by the driver,

1In this dissertation, the term feature interaction is always meant to refer to unsafe interactions among
subsystems, thus avoiding the confusion that arises when the term can be used to mean both intended and
unintended interactions (as used in references such as Zave [192] and Bowen et al. [31]).

2

start interacting with each other. A compelling example of this kind of interaction is
the central locking system [118]. This system integrates the functionality of locking and
unlocking doors with the functionality related to comfort (e.g., adjusting seats and mirrors
based on the key used), with the functionality related to safety/security (e.g., arming a
security device while the car is locked and unlocking all doors in case of a crash), and with
the functionality related to the Human-Vehicle Interface (HVI) (e.g., using the lighting
system to signal when the car is locked and unlocked). Because this new feature is composed
of other features, all the interactions among the composed subsystems must be analyzed to
ensure there are no feature interactions before the new packaged functionality is delivered.
A commonly referred to example of feature interaction occurs between a safety and a
security feature, both part of the central locking system [42]. The functionality of the safety
feature is to unlock all the doors automatically when a collision is detected, thus allowing
passengers to escape and paramedics to reach any injured people. The functionality of
the security feature is to keep all the doors locked, thus securing the occupants and their
valuables. Ideally, the safety feature must take precedence over the security feature by
unlocking all the doors when an accident happens. But, if a parked car gets hit in the
front intentionally by a thief, then the security feature is compromised by the safety feature.

Another type of subsystem that used to operate mostly independently and was acti-
vated based on driver input only are motion control systems, such as steering, braking
and propulsion. Recently, the automotive industry began introducing new features that
command its motion control systems (e.g., Collision Avoidance (CA) commanding the
braking), and these features then might direct the motion control systems to take actions
independent of the driver input under some conditions [65]. Due to the introduction of
these types of features, multiple control systems may activate simultaneously, based on
commands received from one or more features, and this situation can have the potential to
create safety-risk related issues e.g., when the features simultaneously request an increase
of throttle while also requesting a sharp narrow steering, the request could cause the vehicle
to roll over [105].

So far, I have identified challenges that occur during the integration of features within
a vehicle, or intra-vehicle features. In this thesis, I focus on the problem of detection of
intra-vehicle feature interactions. However, features within a car can interact with exter-
nal systems, e.g., integrating infotainment content, communicating with other vehicles or
communicating with roadside devices to obtain information regarding traffic, road con-
dition, etc. [92, 182]. These external systems are regarded as inter-vehicle features, or
more concretely, vehicle-to-vehicle and vehicle-to-infrastructure services [19]. This added
functionality, although leading to the vision of self-driving cars [66, 185], comes with many
other challenges to overcome, not only technological, such as security [186], but also social
and legal [182].

3

1.1 Automotive Active Safety Features

This dissertation focuses on detection of interactions among features that command the
motion control systems of automobiles because they could lead to safety risks. These
features use information from sensors, cameras, as well as radar, and they are normally
called “active safety features” [126, 5] since they request control of the motion control
systems independently from the driver’s requests when necessary, e.g., requesting hard
braking in the case of an identified imminent collision. These features are meant to help the
passenger’s safety by reacting when the driver is unaware of an unsafe situation. However,
an inappropriate resolution to a feature interaction in an automotive system can have
safety implications that could endanger the vehicle’s occupants, such as allowing requests
that make the car go out of control (e.g., simultaneous braking and throttle increase).

Active safety features are realized as software functions within embedded components.
An automotive embedded system is a cyber-physical system composed of a “cyber”
part and a “physical” part. The “cyber” part is software components running on digital
hardware that control the mechanical and electrical processes, which is the “physical” part.
The cyber and physical components of an automotive embedded system are illustrated
in Figure 1.1. The cyber components, i.e., active safety features, receive information
from their environment through sensors, and send commands to be executed by their
environment through actuators. The environment of active safety features is the physical
components, which are the mechanical and electrical processes of the vehicle that are part
of the motion control systems (i.e., throttle, brake and steering).

PHYSICAL COMPONENTS

(mechanical and

electrical processes)

F1 F2 Fn
CYBER COMPONENTS

(software features running

on digital hardware)

brakes steering

throttle

ACTUATORSSENSORS

Figure 1.1: Components of an automotive embedded system

Automotive active safety features usually run simultaneously and independently on dif-
ferent hardware with no direct communication between features because these features are
developed in isolation by different suppliers or by different teams within the same company.
Moreover, the features that are part of a vehicle might be selected at release or retail time,
and thus, they should not rely on other features to be present. Indirect communication

4

occurs through the mechanical processes since features share these processes as an environ-
ment and because of the closed-loop behaviour. In a closed-loop control system, a sensor
monitors the system output (the car’s speed) and feeds the data to a controller which ad-
justs the control (the throttle position) as necessary to maintain the desired system output
(match the car’s speed to the reference speed.) The output of the features change the
environment, which is then read through the sensors and becomes input to the features
at a later time. Automotive active safety features are typically modelled using Matlab’s
Stateflow language.

Embedded systems are often used in safety-critical applications, thus there is a com-
pelling need to ensure their reliability, correctness and safety. Reliability is the ability of a
system to perform and maintain its functions in all circumstances, either routine or unex-
pected. Traditionally, reliability, correctness and safety checks are achieved by performing
extensive testing and using techniques such as probabilistic reliability modelling [160] and
Failure Modes and Effects Analysis (FMEA) [122]. While the use of FMEA in the design
process helps us produce more reliable and safe products, it only focuses on individual
features failure and does not help identify and avoid feature interactions.

As I have observed in practice2, automotive domain experts meet to gather the scenarios
in which they think that features under consideration would interact in an unsafe manner.
Thus, they traditionally identify feature interactions by listing combinations of behaviours
that they consider as potentially problematic. However, there is no way to guarantee
that, following this traditional approach, the set of identified scenarios is complete. For a
set of automotive active safety features, feature interactions arise from the activation of
two or more features whose output requests to the actuators cause contradictory physical
forces in the environment of the features (e.g., simultaneous request of brake and throttle
independent from the driver). While both actions may be correct according to the intended
behaviour of each feature, their interaction is undesired. This view, although different from
the traditional approach of identifying feature interactions in the automotive domain, will
allow me to provide a definition that systematically detects this kind of feature interactions
for active safety features.

1.2 The Feature Interaction Problem

The feature interaction problem has been studied extensively for more than two decades,
mainly in telecommunications systems [154], but more recently also in internet applications
and embedded systems. As an example, a feature interaction in the telecommunications
domain occurs when user A subscribes (i.e., pays for selected features) to features Call

2 Observed during my visits to General Motors (GM) Research and Development as part of the require-
ments of my NSERC Industrial Postgraduate Scholarship.

5

Forwarding Unconditional (CFU) and Originating Call Screening (OCS), and CFU tries
to forward a call while OCS intends to abort the same call, if the same number is in the
forward and call screening lists.

Independent of the domain, the process to identify feature interactions is called detec-
tion. The process to minimize or eliminate the adverse effects of an interaction is called
resolution. Another approach to eliminate feature interactions is called avoidance, which
relies in guidelines or architectures to prevent interactions. However, complete domain
analysis is required to have an efficient architecture in place. But completeness is rare as
new types of features and technologies are added over time, and thus, detection approaches
are often needed to gain the required knowledge [86]. My methods and tools concentrate
on detection to acquire the knowledge of all different feature interactions among automo-
tive active safety features before defining an appropriate avoidance or resolution approach.
The approaches to deal with the feature interaction problem in telecommunications have
been applied either offline (i.e., while the feature is specified, designed and implemented),
online (i.e., while the feature is tested and after deployment), or hybrid (i.e., combina-
tion of offline and online). Compared to the well-studied problem of feature interaction in
the telecommunications domain, the feature interaction problem for active safety systems
in the automotive domain has the following characteristics [104]:

1. In automotive systems, there can be multiple outputs from the features, all modifying
the environment of the driver. In contrast, in a telecommunication system, the output
to a user is a route, which connects users or manifests itself as tones or messages
when a connection cannot be carried on (e.g., busy tone, away message).

2. In automotive systems, the interactions appear in the physical part in the form
of contradictory physical forces in the environment (e.g., actuators for brakes and
throttle conflict in their influence on speed). In contrast, in a telecommunication
system, the feature interactions appear in the cyber part.

3. In an automotive system, the set of features is fixed at retail or release time, which
makes an offline solution based on analysis of the designs appropriate. In contrast,
a telecommunication system is more likely to need an online feature detection and
resolution solution because of the incremental addition of features by a user.

4. In automotive systems there is only one copy of an active safety feature that can
be active in a vehicle, making it possible to analyze these systems as if the features
are invoked statically. In contrast, in a telecommunication system, multiple copies of
the same feature may be invoked dynamically by different users during a call (e.g.,
multiple uses of call waiting).

5. In an automotive system, the set of actuators and their range of possible values are
known in advance. In contrast, in a telecommunication system we do not know the
values that the route can take since subscription information can change dynamically
and features can be customized by the users.

6

Given the characteristics of automotive systems, the feature interaction problem in this
domain is bounded as compared to telecommunication systems, which makes offline model
checking of feature designs a promising detection technique [42, 105]. Model checking is a
powerful technique that searches exhaustively all behaviours of the system [57]. If a model
does not satisfy a property describing a desired behaviour, a model checker produces a
counterexample, which is a path of the model’s behaviour that fails the property.

The feature interaction problem for automotive active safety features requires a compre-
hensive view of the problem by looking at all different feature interactions before deciding
on a resolution strategy that reduces any safety risks for the passengers, as illustrated in
the following example.

Example 1.1: Consider two active safety features running concurrently. Collision
Avoidance (CA) helps mitigate collisions while driving forward. Emergency Vehicle
Avoidance (EVA) pulls the vehicle over when an emergency vehicle needs the road to be
cleared. Using a model checker, a feature interaction can be detected if simultaneously
CA requests hard braking while EVA requests soft braking. Based on this feature
interaction, the feature precedence of CA over EVA could be chosen as a resolution
strategy because applying hard braking is safer for the passengers to prevent a collision.
However, given this feature precedence, the system would still reach an unsafe situation
in the case that CA applies soft braking regardless of EVA’s request of mid-force
braking, which are allowed actions by both features. By looking at all different feature
interactions, a different resolution strategy could be chosen.

Domain experts can determine an appropriate resolution scheme or provide a correction
to the design features if during the formal analysis all feature interactions are found in the
feature models.

Chapter 2 provides an overview of the different techniques, including model checking,
that have been used in the literature to deal with the feature interaction problem in various
domains. The following couple of approaches attempt to deal with the feature interaction
problem in the automotive domain, but they do not solve the problem. The approach
of Lochau and Goltz uses test case generation for feature interaction analysis, defining
test cases whenever two features access (read or write) to a shared variable [124]. Even
though their method is aimed to deal with Stateflow feature models, it does not match
Stateflow’s semantics. Moreover, as with other test case generation approaches, it does
not discover all different feature interactions. The approach by D’Souza, Gopinathan et
al. uses concepts of supervisory control theory to detect interactions, based on a notion of
blocking supervisor conjunction [67]. However, not all different feature interactions might
be identified and properly handled by the resolutions included in their features. I believe
that this approach would benefit from using my method to recognize all classes of conflicts
before applying their resolution strategy. To the best of my knowledge, my work is the first
to propose a method to detect all different feature interactions in the automotive domain.

7

1.3 Thesis Overview

A high-level description of my feature interaction detection method and tools used at design
time is illustrated in Figure 1.2. The rest of this section provides an overview of the three
steps in my method. In this dissertation, FI is often used instead of “feature interaction”.

Stateflow
Design

Features

F1 Fn

.mdl .mdl

SMV
Formal
Models

M1 Mn

.smv .smv

Automatic

Translation

from

Stateflow
2

if ¬(c/e)

Automatic Feature Interaction Detection

Create
equivalence
class for c/e

if (c/e)

model +
new_property

SMV
Model

Checking All FI's

Feature

Interaction

Definition

1

includes some
domain expert

knowledge

3 one representative c/e

per equivalence class

Figure 1.2: Feature interaction detection method at design-time

1.3.1 Feature Interaction Definition in the Automotive Domain

I create a definition of feature interactions that is independent from the set of features,
and detects contradictory requests to the actuators. This definition is written as temporal
logic formulas based on each element of the system or its environment that is influenced
by multiple features. My definition is then used for detection of feature interaction as
illustrated by number 1 in Figure 1.2. Knowledge about the actuators in the system and
their influence on the environment are provided by domain experts. My definition contains
two main parts: (i) Same Actuator for direct actuator conflicts (e.g., sufficiently different
request to Brake); (ii) Conflicting Actuators for actuators unrelated in name that cause
conflicting physical forces in the environment (e.g., requests to Brake and Throttle). Within
these cases, the feature interaction might be: (a) Immediate when the conflict is caused by
two features making requests in the same step; (b) Temporal when the conflict is caused by
two requests happening within a certain time threshold of each other. In this dissertation,
only immediate feature interactions are detected and temporal ones are left for future work.

8

1.3.2 Translation of Feature Models Designed in Matlab’s State-
flow into SMV

To be most relevant to feature designers, I analyze models by translating automotive active
safety features designed using a subset of the Stateflow [63] language to the input
notation of the model checker SMV [130]. My translator is called mdl2smv, and its use in
my method is shown by number 2 in Figure 1.2. Matlab’s Stateflow is used extensively
for designing embedded components in various domains such as the automotive and avionics
industries. In Stateflow, features are hierarchical state machines, with syntax similar
to that of Statecharts [89], but with different semantics. An important distinction from
Statecharts is that in Stateflow a model runs in a single thread, so there is no true
concurrency. I use the SMV model checker because of its powerful features and general-
purpose, flexible input language that can reflect precisely the semantics of the design models
in Stateflow (e.g., the sequential execution of AND-states in Stateflow), as well as
the semantics of integrated features while detecting feature interactions (where features
run in parallel). The translated SMV models contain the same level of description as
the design (there is no abstraction), so that the findings of my analysis can be directly
understood in terms of the feature model in Stateflow. My Stateflow models do not
consider the vehicle dynamics, thus making analysis using formal verification practical,
however, the behaviour of the vehicle dynamics is left completely unrestricted to identify
any potential conflicting requests to actuators during analysis. I created a set of non-
proprietary feature design models in Stateflow to use in my case study because there
are no publicly available models. Each of the non-proprietary feature models were designed
to fulfill a goal, with no explicit intention of interacting in unsafe ways with other features.

1.3.3 Detection of all Different Feature Interactions at Design-
time

In the automotive domain, a comprehensive view of the problem is required by looking
at all different feature interactions before deciding on a resolution strategy. Therefore, I
propose a method to detect automatically all different feature interactions by performing
analysis of the feature models at design time using model checking. However, generating
all different counterexamples proved very challenging, and thus, I divide the problem into
two subgoals: (i) Find a summary representing all counterexamples for invariant checking
of an extended finite state machine (EFSM), therefore detecting all errors in a model,
and (ii) Generalize the method to find a summary of all counterexamples for a pair of
Stateflow models of active safety features, therefore detecting a representation of all the
feature interactions in the integrated set of features. This section overviews the solution
for (i) followed by the generalization to solve (ii).

9

The traditional use of model checking follows a cycle of find bug - fix bug - re-run
model checker, until no more counterexamples are found. However, it can be useful to find
multiple or all bugs prior to fixing the model [17, 60, 84, 51]. One counterexample by itself
may not contain enough information to isolate the error and correctly fix the bug [60].
Additionally, seeing all bugs at once rather than the user iterating this cycle can improve
the user’s experience of model checking and ultimately, the amount of time it takes to
create a correct model, in a similar way to having a compiler return all (or multiple) errors
in one pass [17, 60, 51].

But, what is a distinct bug in a model? There is no single answer to this question.
For extended finite state machine (EFSM) [52] models with control states and transitions
that manipulate data in triggers and actions, the paths through the EFSM provide a
way of differentiating one bug from another and removing the non-essential details of
the data variations of a single path that fails an invariant. I focus on EFSMs because
many commonly-used modelling languages are based on EFSMs (e.g., Statecharts [89],
Specification and Description Language (SDL) [7]) and these languages match the internal
conceptual models that people use to understand and represent complex systems [122].

Consider the simplified EFSM model of an air conditioning (AC) in Figure 1.3. The
input variable e can take on the values enter and exit, and the input variable t (temperature)
and controlled variable pt (previous temperature) range over the values 0..2. Checking the
invariant that when AC is not in control state OFF, the previous temperature has to be
less than or equal to 1 if and only if the model is in IDLE, the model checker generates the
counterexample

〈(OFF, e=enter, t=1, pt=0),
(IDLE, e=enter, t=1, pt=1),
(ON, e=exit, t=2, pt=1)〉

where AC is not in IDLE when the previous temperature is equal to 1. Another counterex-
ample for the same property is

〈(OFF, e=enter, t=1, pt=0),
(IDLE, e=enter, t=1, pt=1),
(ON, e=enter, t=0, pt=1)〉

and yet another counterexample is

〈(OFF, e=enter, t=0, pt=0),
(IDLE, e=enter, t=1, pt=0),
(ON, e=enter, t=1, pt=1)〉.

From the user’s perspective, these counterexamples are all instances of the EFSM path
〈OFF-t1-IDLE-t4-ON〉. The bug is that the model reaches ON when the previous temper-
ature is 1. It can be corrected by changing the condition on t4 to (t>1) instead of (t≥1).
The data variations in these counterexamples do not likely help the user in choosing a
resolution to this error in the model. We would much rather find a path that shows us
another bug in the model, such as counterexample

10

〈(OFF, e=enter, t=2, pt=0),
(ON, e=enter, t=2, pt=2),
(IDLE, e=exit, t=1, pt=2)〉,

which is an instance of the EFSM path 〈OFF-t3-ON-t5-IDLE〉. This new bug illustrates
that the model reaches IDLE when the previous temperature is 2, which can be corrected
by changing the condition on t5 to (t≤1) instead of (t≤2). Therefore, I developed a method
to produce automatically one counterexample for each distinct path of an EFSM that fails
the invariant, i.e., for each EFSM path that has a bug.

OFF IDLE ON

(e=enter∧ t ≤ 1) /
1
: t

pt=t

4
: t (t ≥ 1) / pt=t

2
: t (e=exit) / pt=t

5
: t (t ≤ 2) / pt=t

6
: t (e=exit) / pt=t

(e=enter ∧ t > 1) /
3
: t pt=t

AC

Figure 1.3: EFSM of a flawed air conditioning (AC) model

My solution to the problem of generating all different counterexamples (where “dif-
ferent” is defined using their similarities in the EFSM) is a method that automatically
modifies the property, unlike other methods that change either the model checking algo-
rithm ([93, 60, 98]) or the model ([17]). My method and tool, called Alfie3, can work
with any model checker (explicit or symbolic) that uses linear temporal logic (LTL), and
it covers the complete set of counterexamples because the model is never changed during
the process. The use of Alfie is illustrated by number 3 in Figure 1.2. Alfie executes a
cycle of (1) run model checker to find counterexample, (2) find the equivalence class of
the counterexample, and (3) re-run model checker on the same model but ruling out all
counterexamples within the same equivalence class using a modified LTL property. The
counterexample equivalence classes are based on the EFSM’s control states and transi-
tions. By ruling out counterexamples on-the-fly, the number of model checking iterations
needed is greatly reduced as compared to a process that generates all counterexamples for
a given property and then summarizes them after the model checking process (e.g., [60]).
Moreover, Alfie does not rely on the order in which the counterexamples are generated,
such as generation of the shortest one first. One representative of each equivalence class is
included in the set of counterexample paths presented to the user, creating a small, useful
set of counterexamples to study.

The idea of grouping paths based on control states and transitions of the model’s EFSM
can be extended to groupings other than just paths. I define four different levels each of
which groups the complete set of counterexamples into equivalence classes on-the-fly based
on their different properties in the EFSM. For example, if the feature designer wants

3The name Alfie is derived from All Failed Invariants or All Feature Interactions.

11

less detail, my method can group all counterexamples that end at the same control state
together. The different levels will be useful as different ways to isolate an error at different
times during the analysis process.

Then, Alfie is extended to handle pairs of Stateflow models and reports equiva-
lence classes of feature interactions. Beyond an EFSM, a Stateflow model also allows
composite states, which are similar to AND-states in Statecharts, but with different seman-
tics [104]. Because of these composite states, a model in Stateflow responds to an input
in several steps, i.e., as a big-step4 [72], that is, a sequence of transitions within the com-
ponents of the feature. Furthermore, two Stateflow models representing features must
be analyzed concurrently. Thus, the big-step of the combined model is a sequence of sets
of transitions. A feature interaction occurs if there are contradictory outputs from both
features generated on transitions anywhere within this big-step. To extend my method to
detect feature interactions between automotive features modelled in Stateflow:

• First, I generalize the description of the LTL representations of the equivalence classes
of counterexamples for two concurrent components without calculating the flattened
cross product of the two models. The LTL expression must cover all stuttering
variants of the combined path.

• Second, I describe a strategy to handle scalability by partitioning the LTL property
into two (or more) separate model checking runs that together cover the original
property. For large models with many counterexamples, the size of the LTL property
representing equivalence classes of counterexamples already seen becomes too large
to model check because LTL model checking depends on the size of the property, in
addition to the size of the model [143].

My thesis statement summarizes this overview:

Thesis statement: It is possible to make a systematic, complete, and general
definition of feature interactions for active safety features that identifies conflicting
requests to actuators. Automotive active safety features designed using a subset
of Matlab’s Stateflow can be translated into the input language of the model
checker SMV without losing any details, so the detected feature interactions can
be understood in terms of the feature design models in Stateflow. Feature in-
teractions in active safety software features can be detected using model checking.
Using definitions of equivalent paths based on the control states and transitions
of the Stateflow model, the set of all feature interactions can be summarized
into a manageable set on-the-fly during model checking via property modification.
Scalability of the process can be achieved by partitioning the LTL property.

4The details on Stateflow and big-steps will be explained in Chapter 4.

12

1.4 Validation

My definition of feature interactions for a set of automotive active safety features, presented
in Chapter 3, is systematic, complete, and general with respect to the set of actuators that
are controlled by the features and domain expert input, and it is independent of the set of
active safety features that are part of the system.

• My definition is systematic because from a list of the actuators influenced by the active
safety features and the value thresholds at which these actuators interact, LTL prop-
erties can be automatically created for the features to analyze, as I show and validate
in Section 3.3.

• My definition is complete with respect to the set of actuators and thresholds provided
by domain experts, meaning it will identify any conflicting actuator requests between
two features, as justified in Section 3.3.

• My definition is general because it is independent of the behaviours of features that
are part of the system. In this way, it differs from the traditional approach used by
the automotive domain, in which automotive domain experts list the behaviours in
which they expect features to interact. I validate the generality of my definition in
Section 3.3, where a justification by cases is provided with respect to new features
added to the system and the actuators these features control.

The translated SMV models generated by my tool mdl2smv from automotive active
safety features, which are designed using a subset of Matlab’s Stateflow, do not lose
any details during translation. I validate the translation by checking the traceability of the
results, i.e., verifying that the SMV counterexamples can be understood in terms of the
Stateflow model, as shown in Chapter 6 and Chapter 7.

My novel method and tool Alfie uses model checking to detect at design time a represen-
tation of all feature interactions for a set of active safety systems. For the validation of my
method, I created a set of non-proprietary automotive features designed in Stateflow,
which I call the “University of Waterloo Feature Model Set” (UWFMS). The features in
the UWFMS are representative in type and complexity of models that I have seen devel-
oped in industrial practice [99], but do not include failure modes (e.g., fail-safe states for
degraded modes of operation). Therefore, I validate that Alfie’s results are manageable by
illustrating the reduction achieved by my method in Section 5.5 and by observation of the
results of my case study that uses the UWFMS, as listed in Chapter 7.

Alfie is made scalable by partitioning the problem when the size of the LTL property
becomes too big to model check. This validation is done experimentally by analyzing the
partitioning performed in my case study, described in Chapter 7.

13

1.5 Thesis Contributions

The list of the contributions of this dissertation is the following:

• The dissertation identifies the characteristics of automotive active safety systems that
make model checking a promising technique to detect feature interactions [105].

• The dissertation introduces a systematic, complete and general definition of feature
interactions that identifies contradictory requests by software features to actuators.
This definition requires the set of actuators controlled by the features and domain
expert knowledge [104].

• The dissertation introduces the UWFMS, a set of non-proprietary feature design
models in Matlab’s Stateflowto use in my case study because there is not a
publicly available set of models [102].

• The dissertation creates the translator mdl2smv [103] that generates SMV models
from automotive features designed using a subset of the Matlab’s Stateflow
language. The translated SMV models contain the same level of description as the
design.

• The dissertation introduces a novel method and tool Alfie to detect a set of counterex-
amples that is representative of the set of all counterexamples to an invariant for an
EFSM by modifying the property being verified on-the-fly. The set of all counterex-
amples is divided into equivalence classes based on similarity in states and transitions
in the EFSM path. Alfie produces one counterexample from each equivalence class.

• The dissertation introduces the process to detect a feature interaction when two
Stateflow models are running in parallel, using the model checker SMV, where
the behaviour of the vehicle dynamics is left completely unrestricted to identify any
conflicting requests to actuators. This process preserves the individual semantics of
Stateflow models.

• The dissertation introduces the generalization of Alfie to multiple concurrent State-
flow models running in parallel to detect a set of counterexamples that is represen-
tative of the set of all counterexamples (feature interactions), producing a represen-
tative counterexample from each equivalence classes.

• The dissertation introduces a partitioning strategy to deal with scalability, by break-
ing down the LTL property when it becomes to large for the model checking verifi-
cation to complete.

14

1.6 Thesis Organization

Chapter 2 provides background and an overview of related work.

Chapter 3 describes my definition of feature interactions for the automotive domain. My
fundamental ideas on feature interactions in the automotive domain were published [105],
followed by the more detailed definition for the detection, which has also been pub-
lished [104].

Chapter 4 describes how to translate automotive features designed using a subset of the
Matlab’s Stateflow language into the input language of the model checker SMV. The
translation tool created is called mdl2smv. The research results reported in this chapter
have been published [104, 103].

Chapter 5 describes a novel method and tool, called Alfie, to represent levels of coun-
terexample equivalence classes that each identify a distinct bug of an EFSM. These levels
of equivalence classes can be represented in LTL on-the-fly.

Chapter 6 describes the generalization of Alfie to generate levels of counterexample
equivalence classes for concurrent components, and shows how the equivalence classes for
each level can be represented in LTL on-the-fly to detect feature interactions.

Chapter 7 describes the details of my case study, using the non-proprietary UW feature
model set (UWFMS), which I created and is presented in Appendix A. An early version of
most of the feature design models was made available as a technical report [102], but now
includes updates and two more features. The partitioning strategy used in my case study
is described in this chapter.

Finally, a brief summary, a list of the limitations of my method and a discussion of the
milestones for future work are presented in Chapter 8.

Chapter 3, Chapter 4, Chapter 5, and Chapter 6 have their own separate related work
section at the end of each chapter.

15

Chapter 2

Background

This chapter starts with an overview of the feature interaction problem in different domains
in Section 2.1. The main characteristics of Matlab’s Stateflow [162] are described in
Section 2.2. A brief overview of model checking is given in Section 2.3. Within the model
checking framework, the input language of the model checker SMV is introduced. SMV
is used to check for feature interactions, not only because of its powerful features and
flexible input language, but also because the language can describe precisely the semantics
of individual Stateflow feature design models as well as the features’ integration.

2.1 Feature Interaction Problem

This section gives an overview of the work that has been done on the feature interaction
problem. This has been a very active field in the last few decades, mainly in telecommuni-
cations systems, and more recently in Internet applications and embedded systems. I start
by defining the concept of feature and feature interaction, followed by an overview of the
feature interaction approaches that have been used in various domains.

2.1.1 Feature and Feature Interaction: Definitions and Variants

The concept of a feature depends on the level of granularity at which people decide to
work. In an early tutorial on feature interactions, Cameron and Velthuijsen [47] formulate
precise definitions of terms such as feature and feature interaction, which vary depending
on the perspective and usage of the terms. For instance, from a business view, a feature can
simply be a tariffable unit, while from the implementers’ view, a feature is any increment
of functionality added to an existing system. In both cases, a feature interaction occurs
when the behaviour of one feature is altered by the use of another feature.

17

The main differences in the definitions seem to identify a ‘feature’ either as a single
functionality, or as a bundle of functionality to perform a particular task or goal. A
‘functionality’ can be described as a capability of what a system can do for a user. More
technically, it can be thought of as an individual requirement. A ‘service’, which has been
frequently defined as a set of features, can also be seen as a synonym for a feature if it
is referred to as a collection of functionality. When identifying a feature as a module or
component, an ‘aspect’ can be interpreted as functionality that is scattered across several
features. However, a common problem recognized by the community is that aspects break
modularity [169], so they are not useful in my context. The level of granularity at which
a feature is defined also influences the methods proposed to solve the feature interaction
problem, since some approaches try to work at the level of individual functionality, while
others intend to solve the problem having bundles of system functionality.

I use the definition of feature as “a coherent and identifiable bundle of system function-
ality that helps characterize the system from the user perspective” [170]. More technically,
a feature can be thought of as “a modularization of individual requirements” of a require-
ments specification. In the automotive domain, I interpret the definition of feature as
“a service recognized by the driver” [104, 124], which identifies a set of functionality in
one package. Therefore, my definition of feature interaction intends to identify conflicts
among features, thinking of them as modules comprised of user-desired functionality with
a common goal.

2.1.2 Classification of Feature Interaction Approaches

Most existing approaches for analyzing and identifying feature interactions have been devel-
oped and applied to the telecommunications domain. Approaches for dealing with feature
interactions in telecommunications were first classified by Cameron and Velthuijsen [47],
and refined by Bouma and Velthuijsen [30] as:

• Detection: techniques that, if a feature interaction is present, identify and locate
such an interaction.

• Resolution: techniques that, if a feature interaction is detected, try to minimize,
or if possible eliminate, the potential adverse effects of the interaction.

• Avoidance: techniques to prevent undesired feature interactions, where a resolution
strategy is usually integrated by design.

This categorization has been widely used since then. Approaches from the three classes
might be applied offline (i.e., while a feature is being specified, designed and implemented),
online (i.e., while a feature is tested and after deployment), as well as using a hybrid
approach (i.e., combination of offline and online). Figure 2.1 illustrates when each of these
approaches is applied in the software development process.

18

specification
design

implementation
testing

deployment

offline
online

(not released)

online

(released)

Figure 2.1: Lifecycle timeline for the approaches

2.1.3 Approaches to Deal with Feature Interactions for Telecom-
munications

This section provides a broad overview of the approaches that have been proposed to solve
the feature interaction problem in telecommunications. Examples of contributions in each
class of approaches are given throughout the section.

Offline Approaches for Telecommunications

Offline techniques are mainly used in the early stages of software development and are
applied to existing requirements specification documents, design models and during im-
plementation. Analysis offline is also commonly referred to as analysis at design-time or
static analysis.

Most offline detection techniques are exhaustive and based on formal methods, which
involve the application of symbolic analysis techniques to check all possible behaviours
of a model. Examples of this approach can be found in papers by Accorsi et al. [9],
Au and Atlee [15], Bergstra and Bouma [23], Blom et al. [26], Blom [25], Boström and
Engstedt [29], Bruns et al. [36], Calder and Miller [44], Capellmann et al. [48], Combes and
Pickin [59], Felty and Namjoshi [73], Frappier et al. [75], Gammelgaard and Kristensen [78],
Gibson [80, 81], Hall [86], Kamoun and Logrippo [107], Khoumsi [111], Khoumsi and
Bevelo [112], L. de Bousquet et al. [64], LaPorta et al. [120], Nakamura et al. [135],
Plath and Ryan [146, 147], Pomakis and Atlee [148], Rochefort and Hoover [156], Siddiqi
and Atlee [161], Stepien and Logrippo [163], Thistle et al. [164], Thomas [165], Van Der
Straeten and Brichau [174], and Yoneda and Ohta [190].

Offline detection of feature interactions can be aided by filtering (i.e., pruning) to
reduce the number of cases to be considered for feature interactions. There has also been
some work on informal offline approaches using heuristics and probabilistic search for
undesired feature interactions. Examples of this approach can be found in papers by
Bredereke [33], Heisel and Souquières [91], Keck [109], Kimbler [113], Kimbler et al. [114],
Kimbler and Sobirk [115].

19

Other offline techniques for detection, that also include resolution, are architectures
and design policies. To create an architecture, one normally starts with exhaustive search
for interactions and a study of domain specific attributes to produce design guidelines
or architectural rules that will prevent interactions. Examples of this approach can be
found in papers by Braithwaite and Atlee [32], Hay and Atlee [?], Jackson and Zave [96],
Utas [172], van der Linden [173], Zibman et al. [193], Turner [171], and Zimmer and
Atlee [194].

Online Approaches for Telecommunications

Online techniques are mostly used during testing, and after deployment. Online analysis
is also commonly referred to as analysis at run-time or dynamic analysis. Online detection
techniques work at run-time, checking for undesired interactions at each step of the system’s
execution. Usually, online detection techniques are simple and are used to aid the online
resolution process.

One of the main techniques used for online resolution is the introduction of a feature
interaction manager (FIM) entity into the network to observe and control the processes,
and all components communicate with the FIM, which in turn determines if an interaction
occurs and proceeds to resolve it. Examples of this approach can be found in papers
by Aggoun and Combes [11], Cain [40], Fritsche [77], Homayoon and Singh [94], Jia and
Atlee [97], Marples and Magill [129], Pang and Blair [140], Reiff [153], and Tsang and
Magill [167, 168].

Another technique used online is negotiation, where features have the capability of
communicating their intentions to each other and, in the case of an interaction, negotiating
an acceptable resolution. Features are implemented with knowledge of the other features
that will be executing. Examples of this approach can be found in papers by Amer et al.
[13], Buhr et al. [38], Griffeth and Velthuijsen [83], and Velthuijsen [176].

Hybrid Techniques for Telecommunications

A hybrid technique uses an online approach for detection, which is complemented with
resolution of interactions based on offline information. Examples of this approach can be
found in papers by Calder and Reiff [45], and Calder et al. [43, 41]. An example of a hybrid
approach from Calder et al. [43] is the following: the knowledge from offline analysis such
as feature precedence relations, generic constraints laws (e.g., message x must never be
followed by message y as it lead to a deadlock), and theories of maximal satisfaction of a
set of features are incorporated in a hybrid feature manager for pruning/selection, while
the manager’s run-time experience will drive more knowledge for detection and resolution.

20

Summary

Usually, the set of possible feature interactions is not well defined because a domain often
evolves by adding new types of features and integrating new technologies, so architectures
are not likely to be complete enough to detect all the feature interactions in a system [24,
86]. A known disadvantage of exhaustive verification analysis, using formal methods, is
that determining when the feature interactions occur often encounters the state explosion
problem because of the combinational explosion in the number of features to analyze.
When dealing with online resolution strategies, a disadvantage is that it makes integration
or removal of features difficult because the online monitors need to be modified based on
a specific feature set. Finally, a disadvantage when applying hybrid techniques is finding
people with the expertise to integrate offline and online techniques.

For automotive active safety features, I propose the use of model checking at design-time
to exhaustively detect feature interactions, so a resolution strategy can be chosen at a later
time. My method also introduces a partitioning strategy to deal with scalability, breaking
down the verification problem into two or more subproblems that cover the original, thus,
potentially overcoming the state explosion problem. Moreover, my proposed method can
use a definition of feature interactions that is independent of the set of features in the
system.

2.1.4 Approaches to Deal with Feature Interactions in Internet
Applications

This section provides an overview of the techniques that have been developed and applied
to networked systems connected to the Internet. The systems that have been considered are
VoIP, e-mail, web services and networked home appliances, and examples of the techniques
proposed to deal with the feature interaction problem are given in the rest of this section.

Several approaches have been proposed to deal with Internet communication systems.
Crespo et al. [62] describe the detection and resolution of feature interactions in Internet
applications using a two-phase approach: (1) Filter features based on priorities among fea-
tures’ actions, and (2) Use negotiation to select the features to execute based on policies
that identify compulsory features. A similar two-phase approach is proposed by Gouya and
Crespi [82], where an offline selection is performed first, using a feature conflict database,
and the remaining interactions are handled by an online feature interaction manager. Chi
and Hao introduce two techniques to generate test sequences to check for correctness of a
feature-rich communication system, as well as to detect feature interactions in this type of
system [53]. Wu et al. describe an approach for the detection and resolution of functional
and non-functional interactions between Internet and telecommunication features using a
manager [187]. Nakamura et al. introduce an approach that detects feature interactions

21

at run-time when the behaviour of one feature is not executed as described when other
features are executing concurrently [136]. Following a different trend, Crespo proposes
a proactive approach for feature interaction detection, where the system’s events, predi-
cates and potential inconsistent behaviours are used to generate hypothetical features that
interact with the features that are part of the system [61].

Hall was the first to propose an approach to detect feature interactions in electronic
mail based in part on human intuition and in part on simulation and test coverage [87].
Pang and Blair introduce a method to resolve feature interactions among distributed e-
mail features [141]. Their method proposes two complementing resolution strategies: (1)
Features are augmented with logic that explicitly deals with potential conflicts with other
features, and (2) Negotiation based on operation precedence is used for any interactions
that cannot be handled by the augmented feature logic.

Weiss and Esfandiari describe a method to detect and resolve feature interactions be-
tween web services at the requirements level, based on the analysis of a goal graph derived
from the goal-oriented requirements [178]. They extend these ideas to propose a classifica-
tion of web service feature interactions, classified by their nature or by their causes [179].
Zheng et al. proposed a model checking-based method to detect feature interactions in web
services [189]. They classify feature interactions in five categories (deadlock, loop, invo-
cation error, race condition and resource contention), which are detected using properties
specified in LTL.

Kolberg, Magill, and Wilson consider feature interactions in home automation systems
connected to the Internet [116, 183]. They use an online feature interaction manager (FIM),
which detects an interaction as shared access to environmental variables with different
attributes. For the resolution strategy, features priorities and access attributes are used.
However, this technique requires the model environment to be given, with the shared
variables and their attributes explicitly defined. Also, FIMs have to be redesigned if new
devices influence physical environmental variables that were not considered before.

Summary

Crespo et al. [62] point out that given the distributed nature of the Internet, with multi-
vendor and multi-provider environments along with end user capability to program and
tailor features, it is not possible to rely on avoidance. Most approaches proposed have
an online component, as the features might meet for the first time when executing, and
offline approaches may not be sufficient to detect and resolve all kinds of interactions.
In my work, I handle inter-vehicle features where the feature set for a vehicle is known in
advance, making an offline approach applicable. This is a significant difference with respect
to automotive active safety features, although some of these techniques might prove useful
in the future, when considering detection of intra-vehicle feature interactions.

22

2.1.5 Approaches to Deal with Feature Interactions for Embed-
ded Systems

This section provides an overview of the techniques that have been developed and applied
to embedded systems, which is the domain most similar to that of automotive active safety
features. Not much work has been done in this domain, and many challenges regarding the
proper management of feature interactions still remain. The last two techniques described
in this section, although developed to address the detection of feature interaction in the
automotive domain, do not solve the problem or report any case studies to compare with.

Metzger introduces an approach for the automatic detection of feature interactions in
embedded control systems, where a feature interaction is defined as an element of multiple
feature influence (using my terminology, see page 34) on an object diagram [132, 131].
Lochau and Goltz propose a test case generation method for feature interaction analysis
between Statechart-like behavioural models, defining test cases whenever two features ac-
cess (read or write) to a shared variable [124]. D’Souza, Gopinathan et al. use concepts
of supervisory control theory to detect and resolve feature interactions, based on a notion
of “conflict-tolerance” [67, 68]. Thinking of each feature as a supervisor or controller, this
framework follows the process of Thistle et al. [164, 184] and detects an interaction as a
blocking controller conjunction. Their resolution strategy involves two parts: (1) Use of
a predefined priority of execution among features, and (2) Features are aware of poten-
tial conflicts, extending the functionality of each feature to continue operating based on
features’ priorities.

Summary

The approach by Metzger is conservative because it does not consider the operational
behaviour of each feature, and therefore, false positives are likely to be reported, unlike the
method I propose for detection of feature interactions. Also, Metzger’s detection approach
requires the existence of environment models, in contrast to my method that does not need
an explicit model of the environment.

The method by Lochau and Goltz, similar to other test case generation approaches,
does not identify all feature interactions, as opposed to my method, which creates all
equivalence classes of feature interactions for pairs of Stateflow models and avoids slight
data variations of paths that might be generated by test cases. Moreover, even though they
describe the input of their analysis as Stateflow models, the semantics described in the
paper does not match Stateflow, as an AND-state is not truly concurrent.

The disadvantages of the approach by D’Souza, Gopinathan et al. are that it only
detects one class of feature interaction, and that the priorities used or the conflict-tolerance

23

functionality added to features might not consider all possible conflicts in the system. In
contrast, the method I propose detects all classes of feature interactions, and thus, can
help to the process of adding complete conflict-tolerance functionality.

2.2 Stateflow

This section describes the main attributes of Matlab’s Stateflow, providing a brief
overview of its notation. Automotive features are designed in Matlab’s Stateflow by
multiple companies and suppliers. Therefore, I use Stateflow feature design models as
input to my feature interaction detection analysis. In Chapter 4, a method to translate
from Stateflow models to the modelling language of SMV is presented, so the detec-
tion process using model checking tools can be performed. Matlab’s Stateflow does
not have formal semantics, thus, its behaviour is defined via simulation, as described in
this section. The information presented in this section is derived from the Stateflow
documentation [2], as well as Dabney and Harman’s book [63].

Matlab is a numerical computing environment and programming language. Simulink
is a software package extension to Matlab that lets engineers rapidly and accurately model
and simulate dynamic systems using block diagram notation. Stateflow is an interactive
graphical design and development language for complex control and supervisory systems.
Stateflow supports visual modelling and simulation of complex reactive systems by
integrating finite state machine (FSM) concepts, Statecharts’ formalisms (as developed
by Harel [89]), and flow diagram notations. A Stateflow model can be included in a
Simulink model as a subsystem.

The syntax of Stateflow is similar to that of Statecharts. Some of the differences
from Statecharts are that the Stateflow action language has been extended to refer-
ence Matlab functions, use of early return logic to resolve conflicts arising from event
broadcasts, and that Stateflow does not perform true concurrency for AND-states as
Statecharts does. In Stateflow, AND-states execution is sequential: each AND-state
reacts to the same input, but only one AND-state executes at a time.

A Stateflow design model consists of a set of states connected by arcs called tran-
sitions. A state can be refined into a Stateflow diagram, creating a hierarchical state
diagram. The Stateflow documentation defines two kinds of decomposition for a state,
which are: (1) ‘exclusive’ or ‘OR-states’ (indicated by solid borders) and (2) ‘parallel’ or
AND-states’ (indicated by dashed borders). In Stateflow, at each level of the hierarchy,
only one kind of decomposition can be chosen, i.e., all states at the same hierarchy level
must be either OR-states or AND-states, which is illustrated by Figure 2.2. Unlike State-
charts, Stateflow AND-states are not truly concurrent since Stateflow actually runs

24

in a single thread during simulation. I call Stateflow AND-states ordered-compositions
to differentiate them from the ones in Statecharts.

!
1 2

1 2
1 2

"
1 2

"

Figure 2.2: Decomposition allowed at a hierarchy level in Stateflow

Each ordered-composition is executed sequentially following its respective execution
order. The execution order is based on the geometric position of the siblings in an ordered-
composition, where priority is assigned from top to bottom and then from left to right,
according to the rules:

• The higher the vertical position of a sibling in an ordered-composition, the higher its
priority for execution.

• Among siblings in an ordered-composition with the same vertical position, the left-
most sibling receives highest priority.

The lower the number, the higher the priority. This order determines when each sibling in
an ordered-composition executes its actions, only one sibling at a time. The same set of
inputs is used for all the siblings in an ordered-composition.

A Stateflow model can have data input/output ports and event input/output ports.
Both data and events can be defined as local to the Stateflow model or external, i.e.,
communicated from the Simulink parent model through ports. The types of data allowed
by Stateflow are: Boolean, integer, real (fixed and floating point), and enumerated. For
numerical data types, the range limit can be indicated, and if not, it assumes the default of
(-inf, inf), which basically means undefined type. The default initial value for a variable
is 0. Each transition’s label follows the syntax:

event[condition]{condition action}/transition action

Each part of the label is optional. The event specifies an event that causes the transition to
be taken, provided the condition, if included, is true; the condition is a boolean expression
on data that, when true, allows a transition to be taken; the condition action is executed
as soon as the condition is evaluated as true and before the transition destination has
been determined to be valid; the transition action is executed after determining that the
transition destination can be reached. Each transition has also a priority of execution,
determined by the hierarchy level of the transition’s destination state, the type of infor-
mation in its label (e.g., events have priority over conditions) and the geometric position
of the transition source. The lower the number, the higher the priority.

25

A history junction represents historical decision points in the Stateflow diagram,
indicating that historical state activity information is used to determine the next state to
become active.

In Chapter 4, I will describe the subset of Stateflow used to model automotive active
safety features, which I support in my translator.

2.3 Model Checking

Formal methods are mathematically-based analysis techniques for the specification, de-
velopment and verification of software and hardware systems [8]. One such technique is
model checking, whose main characteristics are described in this section. Because the fea-
ture interaction problem in the automotive domain studied in this dissertation is bounded,
offline model checking of feature designs is a promising detection technique [105]. The
descriptions of model checking in this section are based on Clarke et al. [57], Peled [143]
and Bérard et al. [21].

Model checking is an automatic technique for verifying finite state concurrent systems,
which has been successfully used to verify complex sequential circuit designs and com-
munication protocols. It is a powerful technique for finding errors, inconsistencies and
contradictions in a model because it searches exhaustively all behaviours of the system,
unlike other traditional approaches such as simulation and testing [57]. If a model does
not satisfy a property describing a desired behaviour, a model checker produces a coun-
terexample, which is a path of the model’s behaviour that fails the property. The main
challenge of model checking is the state explosion problem, which will be described in
Section 2.3.4. A user of model checking needs to perform three main tasks: modelling,
specification and verification, which are explained next.

2.3.1 Modelling

This task consists of constructing a formal model of the system in a notation that is
accepted by the model checking tool, and thus, allowing the automatic analysis of the
system specified by the model.

Common notations to describe a model are labelled transition systems, state machines
(e.g., finite or Büchi), Kripke structures and Petri nets. These notations use the concepts of
states and transitions to define the behaviour of the system. A transition can be described
as the rules defining the change from one state to another in the system. Therefore, the
computations of a system are defined in terms of its transitions.

26

2.3.2 Temporal Logic Specification

This task consists of identifying the properties that the model must satisfy. The properties
are normally described using a logical description such as temporal logic, which is a formal-
ism for describing paths: sequences of states in a system [128]. Temporal logics are useful
to describe the ordering of system events over time without introducing time explicitly,
but differ in the operators they provide. The main temporal logics used in model checking
tools are Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). The analysis
in this dissertation uses LTL.

For ψ and φ, predicates on states, informally the operators of LTL are:

• Next (X ψ): ψ must hold at the next position in the path.

• Eventually (F ψ): ψ must hold at a future position in the path.

• Globally (G ψ): ψ must hold on the entire path.

• Strong Until (ψ U φ): φ must hold at the current or a future position, and ψ has to
hold until that position. From there on, ψ does not need to hold.

The syntax of LTL is the following, where AP is a set of atomic propositional formu-
las:

• Every formula of AP is a formula of LTL,
• If ψ and φ are formulas, then so are (¬ψ), (ψ ∧ φ), (ψ ∨ φ), (X ψ), (F ψ), (G ψ),

and (ψ U φ).

The semantics of LTL are normally defined with respect to a Kripke structure (KS),
which is the simplest model to represent a system. Its formal definition is as follows.

Definition 2.1 Let AP be a set of atomic propositions. A Kripke structure M over
AP is a four tuple M = (S, S0, R, L) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S×S is a transition relation that must be total, i.e., for every state s ∈ S there
is a state s′ ∈ S such that R(s, s′).

4. L : S → 2AP is a function that labels each state with the set of atomic propositions
true in that state.

Sometimes, the set of initial states are not of interest, and this set is omitted from the
definition. A path in the structureM is an infinite sequence of states π=s0, s1, s2, · · · such
that s0 ∈ S0 and R(si, si+1) holds for all i ≥ 0. Therefore, an LTL formula is interpreted

27

over an infinite sequence of states, π=s0, s1, s2, · · · . The suffix of π starting at si is denoted
by πi. If ψ is a state formula, the notation π |= ψ means that ψ holds along path π. Then,
the definition of the semantics of LTL for an arbitrary suffix πi of a sequence π is the
following:

• πi |= p, where p ∈ AP ⇔ si |= p

• πi |= (¬ψ) ⇔ πi 6|= ψ

• πi |= (ψ ∧ φ) ⇔ πi |= ψ and πi |= φ

• πi |= (ψ ∨ φ) ⇔ πi |= ψ or πi |= φ

• πi |= (X ψ) ⇔ πi+1 |= ψ

• πi |= (F ψ) ⇔ there is a k ≥ i such that πk |= ψ

• πi |= (G ψ) ⇔ for every k ≥ i, πk |= ψ

• πi |= (ψ U φ) ⇔ there is a k ≥ i such that πk |= ψ, and for all j, where i ≤ j < k,
πj |= φ

The notation M |= ψ means that ψ holds for all paths of M.

2.3.3 Verification

A model checking procedure searches the state space of the system exhaustively to de-
termine if some specification is true or not. More formally, the model checking problem
consists of verifying if a model of the system M satisfies a formal specification φ, i.e.,
M |= φ. Given enough resources, the procedure will terminate with a yes/no answer.
Moreover, if the answer is no, the algorithm normally provides a counterexample, i.e., a
path of the model’s behaviour that does not satisfy the specification.

The original implementation of the model checking algorithm was explicit, representing
transition relations by adjacency lists [55, 152]. However, for concurrent systems with
many components, the number of states in the global transition graph became too large,
and the model checking procedure could not successfully terminate. Then, Burch, Clarke,
McMillan et al. introduced a symbolic model checking algorithm [39, 130], which uses
a more compact representation for the state transition graphs based on Bryant’s binary
decision diagrams (BDDs) [37].

The automata theoretic framework for model checking was suggested by Kurshan [10]
and also by Vardi and Wolper [175], which is the classical view of model checking for LTL.
Representing the system model M and the specification S over the same alphabet, the
general strategy for model checking described by Peled [143] is as follows:

28

First, complement the automaton S, i.e., construct an automaton S that recog-
nizes the language L(S). Then, intersect the automataM and S. If the intersec-
tion is empty, the specification S holds for M. Otherwise, use an accepted word
of the nonempty intersection as a counterexample.

The basic idea of symbolic model checking methods is to represent sets of states con-
cisely and to manipulate them as sets [21]. If both, the state transition relation of the
model and the specification in LTL are represented as Boolean functions, such as BDDs,
the model checking algorithm can be implemented as operations on those functions, there-
fore, not only reducing the model checking effort, but also increasing the size of the models
that can be analyzed [69].

A path reported by the model checker is an infinite path, composed of a finite prefix
and a cycle at the end, where the cycle must contain the state that fails the property.
However, in the case of an invariant property1, formulated as G p with p ∈ AP, the model
checker can modify its search to find reachable bad states from the initial states, and thus,
a counterexample would simply be a finite sequence ending in a bad state since no matter
how the infinite sequence is completed, the property was already violated [143]. In this
case, the counterexample returned by the model checker is a truncated path.

2.3.4 State Explosion Problem

A challenge that prevents the wide spread use of model checking is the state space explosion
problem. The problem occurs in systems with a large number of interacting components,
since the verification of the behaviour of these systems consists of enumerating and ana-
lyzing the set of system states that can ever be reached, so the number of system states
can be too big to be handled.

Many techniques have been proposed to aid with the state space explosion problem,
and some examples are described next.

• Application of partial order reduction [144, 142] to reduce the size of the state space
by constructing a reduced state graph. This technique exploits the commutativity
of concurrently executed transitions that result in the same state when executed in
different orders. In the abstract model, all those transitions are lumped together into
one.

• Application of abstraction techniques to produce a high level description of the sys-
tem. One technique, cone of influence reduction [119], attempts to reduce the model
size by only focusing on variables that contribute to the verification of the property.

1An invariant property is one that must be true at all times during the execution of the model.

29

Another technique, data abstraction [125, 56], attempts to map the actual data values
in the system to a small set of abstract data values.

• Application of symmetry reduction [70, 138] to reduce the size of the model by ex-
ploiting symmetry in the system and finding a model that is equivalent to the original
one, but smaller. Symmetry in a system means that there exist nontrivial permu-
tation groups that preserve the state labelling and the transition relation, so the
permutation groups are used to define equivalent classes on the state space of the
system.

2.3.5 The Model Checker SMV

In this section, the Cadence SMV notation that is used in the translated models from
Stateflow is described. SMV was chosen because it allows me to describe precisely the
semantics of Stateflow feature design models, as well as the integration of features. The
description is based on McMillan [130].

The general format of an SMV module is shown in Figure 2.3. An SMV model consists
of a set of modules and a main module. An SMV module is composed of declarations,
assignments, and optionally, assertions. Each model can also have formal parameters,
which are often declared as inputs (assigned outside the module) or outputs (assigned
inside the module).

1 MODULE Module_name (inputs, outputs)

2 {

3 /* *** Declaration Section *** */

4 INPUT input_name : [boolean | enumerated | range];

5 ...

6 OUTPUT output_name : [boolean | enumerated | range];

7 ...

8 local_name : [boolean | enumerated | range];

9 ...

10

11 /* *** Assignment Section *** */

12 name := value;

13 init(name2) := value;

14 next(name2) := NEWvalue;

15 DEFINE name3 := condition;

16 ...

17

18 /* *** Assertion Section *** */

19 property_name: assert temporal_logic_formula;

20 }

Figure 2.3: General format of SMV modules

30

The Declaration Section contains the input, output and local type declarations, with
the input and output declarations occurring before any local declarations and assignments.

In the Assignment Section, a set of assignments of the form ‘name := value;’ are de-
clared, indicating how the variables change value. Different operators can be used in the
Assignment Section, and for my translator, I used operators such as Boolean (“and”, “or”,
“not”), conditional (“if-then-else”, “case”, “switch”), arithmetic (“+”, “-”, “*”, “/”), and
comparison (“=”, “<”, “>”, “>=”, “<=”). Special operators for describing recurrences
are “init” and “next”. The sequence of values of a variable in a path of the computation
is described using init(x), which specifies the initial value of x (i.e., the first value of x)
and next(x), which denotes the next value of x (i.e., the (i+1)-th value of x). The next
value of x is defined using operators and constants from the range of values that x can
take given its declaration.

A macro uses the DEFINE statement to give a concise and meaningful name to a constant
or a conditional directive.

The Assertion Section contains the properties that need to be checked. An assertion is
a condition that must hold true in every possible execution of the program, and in SMV
each assertion is written in LTL.

2.4 Summary

In this chapter, I defined the term feature, and provided a classification of the approaches
that have been used to deal with feature interactions in various domains. I have also
explained the main characteristics of Matlab’s Stateflow, which is the main tool used
in practice by the automotive and avionics domain to design embedded controllers, such
as automotive features. Finally, I described model checking, a formal methods technique
for the automatic verification of software and hardware systems. In the same section, I
provided an overview of the model checker SMV, which will be used for the detection of
feature interactions. My past experience with formal methods techniques has been the
use of a combination of model checking and theorem proving approaches to evaluate LTL
correctness properties of Distributed Feature Composition (DFC) architecture [100, 101].

31

Chapter 3

Definition of Feature Interactions for
Automotive Systems

This chapter presents a systematic, complete and general definition of feature interactions
for the automotive domain that identifies contradictory requests to the actuators. It is
independent of the set of features, and it is based on the set of actuators controlled by
active safety features and domain expert knowledge.

The present chapter is organized as follows. Section 3.1 describes the characteristics
of the automotive domain that allows me to identify feature interactions for automotive
active safety features. Section 3.2 presents my systematic, complete and general definition
of feature interactions for automotive active safety features. Section 3.3 provides validation
of the definition presented in Section 3.2. Section 3.4 discusses related work.

3.1 Characteristics of Automotive Active Safety Fea-

tures and their Interactions

Across all domains, an interaction arises when the features have conflicting effects on a
system and its environment. While the behaviour of both features may be correct according
to each feature’s intended behaviour, their interaction is undesired1.

I have observed that traditionally, automotive domain experts identify feature interac-
tions by trying to come up with all the scenarios in which they think that the features
under consideration would interact, making the detection dependent on the behaviours of
individual features, and therefore, on the set of features that are analyzed.

1Recall that in this dissertation, the term feature interaction is always meant to refer to unsafe inter-
actions among subsystems.

33

Example: When identifying interactions for features that command the vehicle’s
motion control systems (e.g., Collision Avoidance commanding the brakes and Cruise
Control commanding the throttle), domain experts describe the steps in each feature’s
behaviour that lead to the interaction (e.g., the behaviour of one feature leading to
braking while another feature’s behaviour leads to acceleration, causing an unsafe
situation where the driver loses control of the car). The set of behaviours are identified
by domain experts as the interactions to detect.

However, even domain experts may not be able to list all the possible features’ behaviours,
and thus, this traditional approach does not guarantee that all feature interactions are
identified.

While classifications of feature interactions in telecommunications exist (e.g., [42, 110]),
these classifications do not systematically lead to a set of properties to detect feature in-
teractions. But the characteristics of automotive active safety features make it possible to
create a systematic, complete and general definition of feature interactions. The charac-
teristics for a definition of feature interactions, as introduced in Section 1.1, are:

• There is only one copy of an active safety feature that can be active in a vehicle at
any time, making it possible to consider these systems as if the features are invoked
statically.

• The set of actuators of automotive active safety features and their range of possible
values are known in advance, and this information is available from the domain
experts.

• The interactions appear in the physical part of the system, i.e., the environment of the
active safety features, in the form of contradictory physical forces in the environment
(e.g., actuators for brakes and throttle conflict in their influence on speed).

Given these observations of the characteristics of automotive active safety features, a pre-
requisite for a feature interaction in the automotive domain is that two features both
influence (i.e., modify) the same element of the system or its environment. Thus, the
search for feature interactions can be limited to those that influence the same element,
creating unsafe situations.

In automotive systems, the elements influenced by active safety features are either (1)
the actuators that receive requests from the features, or (2) elements of the environment
influenced by the actuators’ actions. Figure 3.1 illustrates that in the automotive domain
an element influenced by multiple features is either directly modified by the system and
referred to by both features using the same name (e.g., throttle); or it might exist outside
the system as a conflict manifested in the environment caused by outputs of the system
(e.g., speed in the environment affected by brakes and throttle). For active safety features,
the actuators are brakes, steering and throttle, while the elements in the environment
influenced by multiple actuators are speed (influenced by brakes and throttle) and position

34

(influenced by throttle and steering). Both, the set of actuators and the elements of the
environment influenced by actuators, are well-known to all feature designers. In contrast, a
definition similar to the one proposed here would not work in telecommunications because
in that domain feature interactions are conflicts on the creation of the one actuator, the
route, which has an unbounded set of possible values.

F1

F2

Fn

speed

 System +
Environment

System

Feature

brakes

throttle

Figure 3.1: Example of output dataflow of feature influences

Simply searching the system’s dataflow for influences among the features to determine
feature interactions, as done by Metzger [131], would be too conservative an approach alone
because even if two features influence the same element, they might never influence the
element at the same time when the features are operating. Thus, the operational behaviour
of the features needs to be considered. In addition, searching the system’s dataflow would
not uncover conflicts that appear outside the system of features. Therefore, I use the
elements of multiple feature influences to construct temporal logic properties that check
the operational behaviour of the features during model checking to detect whether a feature
interaction can occur. My definition of feature interactions takes as input (a) the names of
the actuators and (b) sets of actuators’ names that all influence the same element in the
environment. This information can be determined by domain experts and is unlikely to
change across projects that deal with the same kind of features, e.g., active safety features.

3.2 Definition of Feature Interactions

Table 3.1 and Table 3.2 present the schemas of my definition of feature interactions for
automotive active safety features, described as formulas in linear temporal logic (LTL).
All the properties are described using the globally operator (G) to verify the absence
of feature interactions. This definition contains two main parts: (1) Same Actuator for
direct actuator conflicts, and (2) Conflicting Actuators for actuators that cause feature
interactions in the environment. In the tables, the schema uses assign X and assign Y to
represent a value assignment made to actuator X and actuator Y respectively, meaning

35

that the feature is setting the value of X or Y . A feature interaction may be Immediate,
in that the conflict is caused by features making requests in the same step, or Temporal, in
that the conflict is caused by requests happening within a certain time threshold of each
other. I abbreviate the phrase “feature interaction detection property” to FIDP.

It is sufficient to analyze automotive features pairwise since any interaction in a set of
k features, with k > 2, would be detected as an interaction between two features because
the output of one feature never directly enable another feature. In the telecommunications
domain, Kawauchi and Ohta indicate that 3-way interactions appear when one of the
three features under consideration enables certain behaviour [108] (i.e., Terminating Call
Screening (TCS) restricts the reception of calls from certain phone numbers or area codes,
but another feature enables the restricted behaviour). When two features are provided
simultaneously, if the execution of the feature that causes the potential interaction is
disallowed, a feature interaction does not occur. However, when the third feature is applied
to the pair under consideration, its output becomes an input that enables the execution
condition of the feature that was prevented from executing when only two features were
present, and therefore, causes the interaction. In contrast, in the automotive domain, all
the active safety features have independent inputs, and their outputs never directly enable
other features. Therefore, there is no potential of 3-way interactions that are not 2-way
interactions for active safety features. Pairwise detection is advantageous for the model
checking process because it reduces the size of model to analyze.

I assume that each feature is designed correctly with no inner feature interactions
(i.e., no conflicting request to actuators come from the same feature), but a procedure to
check for these interactions within a feature as a design error could be created easily. My
definition detects feature interactions in a pair of Stateflow models running in parallel
with no modelling of vehicle dynamics.

3.2.1 Immediate Feature Interactions

For all pairs of active safety features that influence an actuator, an Immediate feature
interaction is a race condition on such an actuator. The schema for the Immediate FIPDs
are shown in Table 3.1. The goal of the Immediate Same Actuator FIDPs is to detect a
situation where two features request sufficiently different values for an actuator that it is
considered a feature interaction. The Immediate Same Actuator set of FIDPs detects if the
actuator requests from a pair of features have sufficiently different values based on a value
threshold, e.g., | assign throttle1 − assign throttle2 | > value thresholdthrottle,
with assign throttle1 being the request from one of the features and assign throttle2
being the request from the other feature, which is illustrated by Figure 3.2 (a). The value
thresholds would be determined by a domain expert and could be zero to detect if the
requests to the actuators are different.

36

Immediate

Same
G ¬(| assign X1 − assign X2 | > value threshold)

Actuator

Conflicting G ¬((assign X > value thresholdX)
Actuators ∧ (assign Y > value thresholdY))

Table 3.1: Property to detect immediate feature interactions

The Conflicting Actuators FIPDs are properties for pairs of different actuators (X and
Y in the schema) that both influence an element of the environment. The Immediate Con-
flicting Actuators case detects if the requests to the conflicting actuators are both greater
than each actuator’s value threshold e.g., ((assign brake > value thresholdbrake) ∧
(assign throttle > value thresholdthrottle)), with assign brake being the request
from one of the features and assign throttle being the request of the other feature, as
illustrated by Figure 3.2 (b). The value thresholds for Same Actuator FIPDs and Con-
flicting Actuators FIPDs do not need to be the same, as different conditions are checked
in each case.

time

}value_
thresholdthrottle

max_limit

min_limit

a
c

tu
a

to
r'

s

v
a

lu
e

(a) Same Actuator

assign_throttle1

assign_throttle2

t
time

}

}

max_limit

min_limit

a
c

tu
a

to
r'

s

v
a

lu
e

(b) Conflicting Actuators

assign_throttle

assign_brake

t

value_
thresholdthrottle

value_
thresholdbrake

Figure 3.2: Illustration of immediate feature interactions

3.2.2 Temporal Feature Interactions

Because the actuators are requests to the mechanical processes, such as “reach maximum
braking”, the effects of these requests will not always be instantaneous, so a feature inter-
action can occur between requests of the features at distinct times. For example, a feature
interaction occurs if a feature requests full throttle force at time t, and while the throttle
is still increasing, another feature requests a small amount of throttle at a time t+1. I call
this case a Temporal interaction. The schema for Temporal FIPDs are shown in Table 3.2.

37

Temporal

Same G ¬((| assign X − assign Xlast set | > value threshold)
Actuator ∧ ((tnow − tlast X) < time threshold))

Conflicting
G ¬((assign X > value thresholdX)

Actuators
∧ (assign Ylast set > value thresholdY)
∧ ((tnow − tlast Y) < time threshold))

Table 3.2: Property to detect temporal feature interactions

A domain expert determines the threshold of time within which contradictory requests
to an actuator constitute a feature interaction. To describe a temporal feature interaction
in LTL, two history variables are maintained: one to capture the last time an actuator was
assigned a value (e.g., tlast brake), and one to hold the last value that was assigned (e.g.,
assign brakelast set).

The Temporal Same Actuator FIDP detects (a) whether the difference between the
last and current values requested exceeds the value threshold, e.g., | assign throttle−
set throttlelast set | > value thresholdthrottle, and (b) whether sufficient time has
passed for the previous output to take effect, e.g., | tnow− tlast throttle | < time threshold,
illustrated by Figure 3.3 (a). It might be the case that both immediate and temporal
feature interactions exist with different value thresholds. In model checking, optimizations
to handle time could be used, e.g., only storing the differences in time, rather than absolute
times.

The Temporal Conflicting Actuators FIDP detects whether the current value of X
exceeds its threshold of conflict and the last value of Y exceeds its threshold of conflict,
and that the time between now and when Y was last set is less than a time threshold,
which is illustrated by Figure 3.3 (b). An FIDP for the symmetric case also exists.

time

}

}time_threshold

max_limit

min_limit

a
c

tu
a

to
r'

s

v
a

lu
e

(a) Same Actuator
t t'

value_
thresholdthrottle

assign_throttlelast_set

assign_throttle

time

}time_threshold

}

max_limit

min_limit

a
c

tu
a

to
r'

s

v
a

lu
e

(b) Conflicting Actuators

value_
thresholdthrottle}

t t'

set_throttle

set_brakelast_set

value_
thresholdbrake

Figure 3.3: Illustration of temporal feature interactions

38

3.3 Validation of Definition of Feature Interactions

Because the set of actuators that are controlled by automotive active safety features is
well-known by the feature designers, I believe it is reasonable to ask these domain experts
to provide the elements that are influenced by active safety features (in the system or its
environment) as input to the process that creates the FIDPs for feature interaction detec-
tion. The list of FIDPs generated and the set of non-proprietary automotive active safety
features, described in Appendix A, are both used in my case study shown in Chapter 7. For
the features in Appendix A, the actuators Brake and Throttle range from 0 to 100, while
actuator Steering has three values: -1 indicating that the vehicle shall turn the wheels to
the right, 0 indicating that the wheels shall be centred, and 1 indicating that wheels shall
turn to the left. In this dissertation, only immediate feature interactions will be detected
and temporal ones are left for future work.

My proposed definition of feature interactions for automotive active safety features,
based on the actuators and environmental elements of multiple feature influence, is

Systematic: Because the definition is based on actuators controlled by active safety fea-
tures and the thresholds at which these actuators interact, the FIDPs for a set of
features using these actuators can be created automatically. This is justified by list-
ing the Immediate FIDPs that can be automatically generated, given the actuators
and their value thresholds in Table 3.3.

Actuator Value threshold

Same
Brake 30

Actuators
Throttle 20
Steering 1

Brake 40
Conflicting Throttle 30
Actuators Throttle 40

Steering 0

Table 3.3: Elements of multiple feature influence and thresholds for case study

A list of actuators and value thresholds would be expected from domain experts, but
for my case study in Chapter 7, I selected the value thresholds shown in Table 3.3 as
sufficiently different values to identify feature interactions given the actuator’s ranges
of possible values. Based on the information in Table 3.3, the following list of imme-
diate FIDPs can be automatically generated, with one FIDP created when feature
F1 and feature F2 both (a) influence the same actuator, and thus, checking for same

39

actuator interactions, or (b) influence the same element in the environment given the
actuator’s actions, and thus, checking for conflicting actuators interactions:

• G ¬(| assign BrakeF1
− assign BrakeF2

| > 30)
• G ¬(| assign ThrottleF1

− assign ThrottleF2
| > 20)

• G ¬(| assign SteeringF1
− assign SteeringF2

| > 1)
• G ¬((assign BrakeF1

> 40) ∧ (assign ThrottleF2
> 30)) and the symmetric

case G ¬((assign BrakeF2
> 40) ∧ (assign ThrottleF1

> 30))
• G ¬((assign ThrottleF1

> 40) ∧ (assign SteeringF2
> 0)) and the symmetric

case G ¬((assign ThrottleF2
> 40) ∧ (assign SteeringF1

> 0))

Complete: Because the definition is based on actuators, which are well-known to all
feature designers and defined in advance, my definition identifies an interaction every
time two features have conflicting requests on these actuators. However, my definition
of feature interactions is only complete with respect to the set of actuators and
thresholds provided by domain experts, and it does not consider vehicle dynamics.

General: Because the definition is independent from the set of features, my definition
remains the same even when features are modified or new features are added to the
system. In the traditional approach to identify feature interactions in automotive
systems, domain experts list the behaviours in which they expect features to interact,
and therefore, the definition would have to change each time a feature is modified or
a new feature is added to the system. In contrast, my definition based on actuators
would still hold. The justification of the generality of my definition by cases is as
follows:

• Case of feature modified – Assume that all active safety features, including the
one being modified, use the same set of actuators already provided by domain
experts. In this case, my definition can be used without change because the
list of actuators and thresholds was not modified, and therefore, the FIDPs
derived from these actuators and thresholds will still identify all the same and
conflicting actuator interactions. In contrast, in the traditional approach, the
definition of feature interaction would have to be modified if it relies on the
particular behaviour of the feature that was modified.

• Case of new feature added – Assume that all active safety features, including
the one being added, use the same set of actuators already provided by domain
experts. In this case, my definition can be used without change even when new
features are added to the system because the list of actuators and thresholds
was not modified, and therefore, the same FIDPs will identify all the same
and conflicting actuator interactions. Moreover, only the new feature added
has to be checked against the features that were already part of the system,

40

given that the definition of feature interaction did not change, and therefore,
the features that were part of the system have already been checked and their
interactions identified. In contrast, the traditional approach would have to
change the definition of feature interaction, considering any cases in which the
behaviour of the newly added feature can interact with all the features that were
part of the system, and the analysis will likely have to be completely re-done.

3.4 Related Work

This section gives a brief overview of the definitions that have been proposed in the lit-
erature to detect feature interactions in telecommunications, Internet applications and
embedded systems.

3.4.1 Definitions in Telecommunications

For telecommunications systems, which can change dynamically as features from different
users can join or drop the call as time progresses, the criteria for detection could be general
(e.g., presence of deadlock/lifelock, ambiguities) or specific (e.g., conflicts with respect to
shared resources), as described by Keck and Kuehn [110]. My definition falls into the
specific criteria, regarding conflicts with respect to shared resources. However, the shared
resources for automotive active safety features, i.e., the actuators, are well-known and not
likely to change across projects when new features are added into the system. In con-
trast, in telecommunications, the shared resource is a signal, and the set of these signals
might vary between networks where the features are deployed. Also, in the telecommu-
nications domain, the conflicts on shared resources are detected as logical inconsistencies,
e.g., (set busy ∧ ¬set busy), whereas in the automotive domain, my definition recognizes
conflicts using value thresholds, not only for the same actuator, but also for conflicting
actuators whose effects are recognized in the environment.

Given the above classification of interactions, there are different ways that the defini-
tions can be expressed, depending on the techniques used for detection of interactions, as
well as the language used to describe the features. Calder et al. [42] define several options:

• Service and Software Engineering – the application of techniques within the devel-
opment process to address feature interaction. An example of these techniques is
filtering, introduced in Section 2.1.3, which aims to remove combinations that that
are unlikely to produce interactions and has been used by Heisel and Souquières [91],
Bredereke [33], Keck [109], Kimbler [113], Kimbler et al. [114, 115].

41

• Formal techniques – The application of formal description, modelling and reason-
ing techniques. These techniques include: classical, constructive, modal and non-
monotonic logics, process algebra, finite and infinite state automata, extended state
automata, petri-nets, transition systems, and languages such as State Description
Language (SDL) [7], State Transition Rules (STR) [191], Promela [93], Z [6] and
LOTOS [28]. This work characterizes these methods by three major approaches:

– Properties Only: The definition of features and that of interactions are expressed
in terms of a logic, where normally the interaction takes the form of inconsistency
or unsatisfiability. Examples of this approach can be found in papers by Blom
et al. [26], Boström and Engstedt [29], Felty and Namjoshi [73], Frappier et al.
[75], Gammelgaard and Kristensen [78], Gibson [81], Rochefort and Hoover [156],
Stepien and Logrippo [163].

– Behaviour Only: The behavioural description of features is defined using vari-
ants of automata and transition systems, while the definition of the interaction
is expressed in a variety of ways such as deadlock, non-determinism, etc. Ex-
amples of this approach can be found in papers by Accorsi et al. [9], Au and
Atlee [15], Bergstra and Bouma [23], Blom [25], Bruns et al. [36], Gibson [80],
Hall [86], Khoumsi [111], LaPorta et al. [120], Nakamura et al. [135], Plath
and Ryan [147], Pomakis and Atlee [148], Thistle et al. [164], Thomas [165],
Yoneda and Ohta [190].

– Properties and Behaviour: The features are described by a behavioural descrip-
tion, while a property specifies the intended functionality of a feature or a set of
features. The definition of the interaction is such that the intended functionality
of the system does not hold when some combination of features execute together.
Examples of this approach can be found in papers by Calder and Miller [44],
Capellmann et al. [48], Combes and Pickin [59], Kamoun and Logrippo [107],
L. de Bousquet et al. [64], Plath and Ryan [146], Thomas [165].

My proposed definition uses the approach of properties and behaviour, where properties
describe how an unexpected combined behaviour of a pair of automotive feature models
can be identified.

3.4.2 Definitions in Internet Applications

Previous work on feature interactions for Internet application has not been as extensive as
in the telecommunications domain, and the systems studied are VoIP, e-mail, web services
and networked home automation. As described in the corresponding background section
in Chapter 2, most of the approaches related to Internet applications require an online

42

component (e.g., [62, 82, 187, 136, 141]) as features come from multiple distributed sources,
where the end-user or Internet providers have flexibility to create and modify features. In
contrast, because active safety features are unmodifiable and the features to be delivered
with the vehicle are fixed at release or retail time, my solution can be implemented offline
and it is based on analysis of the design models. Other definitions proposed for Internet
applications are based on test case generation (e.g., [87, 53]) which does not detect all
feature interactions, unlike my definition for active safety features.

Weiss and Esfandiari defines a feature interaction between web services as an element
of multiple feature influence (using my terminology) on a goal graph derived from the
goal-oriented requirements [178]. This method would miss feature interactions if the re-
quirements are incomplete or if the goals are not correctly specified. Zheng et al. [189]
define feature interactions as a general criteria, as defined by Keck and Kehn [110], while
my definition uses specific criteria based on actuators of the motion control systems in the
vehicle, although both, their and my definition, specify properties in LTL.

Kolberg, Magill, and Wilson consider feature interactions in home automation systems,
where appliances are connected to the Internet [116, 183], defining a feature interaction
when devices access shared variables with different attributes. Unlike my definition, the
shared variables considered in their definition depend on the devices integrated into the
home system, and because these appliances come from different vendors, it would not be
possible to produce a systematic and complete definition when the shared variables and
their attributes are not part of the model of the environment provided.

3.4.3 Definitions in Embedded Systems

Contributions to the feature interaction problem for embedded systems are fairly recent,
and only a few contributions can be reported and compared with my proposed definition.

Metzger also defines a feature interaction as an element of multiple feature influence
(using my terminology) on an object diagram [131]. However, this definition relies on the
existence of an environment model to be combined with the system, so the object diagram
can be constructed, whereas my definition does not require a model of the environment.
Moreover, this approach is conservative because it does not consider the operational be-
haviour of each feature, so the definition by Metzger identifies false positives.

Lochau and Goltz propose a test case generation method for feature interaction analysis
between Statechart-like behavioural models [124], defining test cases whenever two features
access (read or write) to a shared variable. In contrast, my method defines a feature
interaction when two features try to change (i.e., write) to the same actuator, but providing
the data threshold in which an interaction exist. Moreover, my definition also accounts

43

for interactions that occur in the environment based on changes to actuators that are not
related in name, unlike their definition.

D’Souza, Gopinathan et al. use concepts of supervisory control theory to detect interac-
tions, based on a notion of blocking supervisor conjunction [67, 68]. Thus, this work uses
behavioural descriptions only, whereas my definition describes LTL properties to verify
with behavioural models of features.

3.5 Summary

Feature interaction in the automotive domain is a relatively new area of study and will
remain of interest in the future as vehicles continue to increase in complexity. To the best
of my knowledge, I am the first to propose a systematic, complete and general definition
of feature interactions in the automotive domain. My definition is based on the set of
actuators controlled by active safety features and results in a set of LTL properties to
detect contradictory requests to actuators from models of software features without vehicle
dynamics through model checking. My definition requires that the domain experts provide
the set of actuators that all influence the same elements in the environment, as well as
the thresholds (value and time) that produce a conflict in the environment. Since the
set of actuators controlled by active safety features is relatively small and they are well-
known to all feature designers, I believe it is reasonable to ask the domain experts for this
information. In the rest of this dissertation, only immediate feature interactions will be
detected, whereas temporal ones will be left as future work.

44

Chapter 4

Translating STATEFLOW Feature
Design Models to SMV: mdl2smv

This chapter describes the translation process from automotive design models created using
a subset of Matlab’s Stateflow into the input language of SMV. I also summarize the
design decisions made during the creation of my translator tool, called mdl2smv.

The present chapter is organized as follows. Section 4.1 provides an overview of the pro-
cess to translate models created in Stateflow to the input language of SMV. Section 4.2
lists the syntactic rules used for modelling automotive features in Stateflow, as observed
in practice within the automotive industry, which define the subset of Stateflow sup-
ported by my tool. The core of this chapter explains the two main parts of the translation:
(1) Section 4.3 through Section 4.6 describe how the different elements of an individual
model designed in Stateflow are translated into the SMV notation; (2) Section 4.7 de-
scribes what is needed to perform the integration process, as a feature interaction can only
be detected in the integrated model when features are executing concurrently. Section 4.8
discusses related work.

4.1 Process Overview

This section starts by reminding the reader of the elements of Stateflow, which were
first described in Section 2.2. The rest of the section provides an overview of the translation
process, and introduces two models that will help illustrate the translation as well as the
detection of feature interactions in this dissertation: a Stateflow model of a simple air
conditioning system and a Stateflow model of a simple heater system.

45

A Stateflow model is a state machine that can include hierarchical and composite
states. The syntax of Stateflow is similar to that of Statecharts [89], but with different
semantics. Unlike Statecharts, a Stateflow model runs in a single thread, so there is
no true concurrency. Therefore, AND-state execution is sequential: each sibling of an
AND-state is given an order of execution, running one at a time. I call Stateflow AND-
states ordered-composition to differentiate them from AND-states in Statecharts. Non-
determinism is avoided because Stateflow defines strict ordering rules of execution for
siblings within ordered-compositions as well as for transitions, as illustrated in Figure 4.1.
Matlab’s Stateflow does not have formal semantics, although its behaviour is defined
during simulation. A formal definition of the semantics of Stateflow is out of the scope
of this dissertation, but I follow precisely Stateflow’s simulation semantics.

B

(c) / a : t
M

D

B1 1
B2C

1

1

2

E

F G

1 2

1

1

2

2

A

1

1

defined order of execution for
AND-states (ordered-composition)

defined priority of execution
for transitions leaving a state

Figure 4.1: Strict execution order for ordered-compositions and transitions in Stateflow

In addition to the explicit priority of execution associated with transitions leaving
a state, transitions whose source is a superstate have higher priority of execution than
transitions within a superstate. For instance, the transition exiting B has priority of
execution over any other transition within B. If the trigger of the transition exiting B is not
satisfied, then Stateflow allows a transition to be taken in B1 (respecting the priority of
execution for transitions within B1) followed by a transition taken in B2. In Stateflow,
all the states at the same hierarchy level have the same type of decomposition, e.g., in
Figure 4.1, M’s main superstate has only OR-states, while B is an ordered-composition.

One can think of the behaviour of an ordered-composition as each sibling executing in a
small-step, and the execution of all siblings completing in a big-step1. When an ordered-
composition is part of the model and it is executing, a big-step is a sequence of small-steps
with one transition taken per small-step. All the siblings in an ordered-composition respond
to the same set of inputs. A model is stable when the execution of a big-step has been
completed (more details are given in Section 4.6), which is the point at which a feature
has generated all its outputs for the current inputs and receives new inputs. The produced
SMV model includes the macro stable (or sys stable for integrated features), which is
true when the execution of the big-step is complete.

1Big-steps and small-steps are often called macro-steps and micro-steps, respectively. I follow Es-
maeilsabzali et. al [72] and use big- and small-steps.

46

The key aspects that make this translation interesting are:

• The sequential execution of ordered-compositions (Section 4.6), which requires that:

1. each sibling executes following a predefined order, one sibling per small-step;

2. the inputs are semi-controlled, so all the siblings in the ordered-composition
react to the same set of inputs.

• The parallel execution of features in the integrated model (Section 4.7), which re-
quires that:

1. each feature follows its own execution constraints, such as sequential execution
for ordered-compositions;

2. the inputs are semi-controlled, so all features react to the same set of inputs;

3. a feature that has fewer siblings in its ordered-composition or contains no
ordered-composition has to idle and hold its outputs constant while the other
feature in the integrated model completes its execution.

• The use of parameterized events for output requests to actuators (Section 4.3), thus
making the request identifiable at the big-step boundary.

Based on the Stateflow design models I have observed in practice2, I define and
translate a subset of the Stateflow syntax, described in Section 4.2. Matlab’s State-
flow stores the model’s information in a file with a .mdl extension. My tool mdl2smv
extracts the necessary information from the .mdl file and translates a model into the SMV
modelling notation, creating a text file with extension .smv. I chose SMV because its no-
tation can reflect precisely the semantics of the individual design models in Stateflow,
and that of the composition of features, which is used during feature interaction detection.
As a stand-alone tool, mdl2smv is more portable than a plug-in to Matlab and it can be
used without a license for Matlab. mdl2smv is written in the C programming language.

Each Stateflow feature model becomes a separate module in SMV. The name of
the SMV module is the name of the Stateflow subsystem within the Simulink model.
Although one SMV model is generated from each Stateflow model by mdl2smv, each
translated SMV model includes some elements that makes it “integration-ready”. In
Section 4.7, I indicate explicitly the elements in a SMV model that are included to aid
integration. My tool Alfie (described in Chapters 5 and 6) creates the integrated model by
taking two .smv files as input. During the integration, Alfie: (1) takes the SMV modules
from the two .smv files, and (2) creates a main module, which coordinates the concurrent
execution of the two features that are part of the integrated model. The relevant details
on integration are given in Section 4.7.

2Observed during my visits to General Motors (GM) Research and Development as part of the require-
ments of my NSERC Industrial Postgraduate Scholarship.

47

An overview of how the elements of Stateflow are mapped to elements in the SMV
notation is as follows:

1. Stateflow variables are declared as SMV variables of the appropriate type.

2. Stateflow states are declared as SMV variables of enumerated type. Hierarchi-
cally, the possible values of each superstate variable are the names of its substates.

3. To translate the behavioural description, a Stateflow small-step is mapped into
an SMV step. The initial state of each superstate, and the initial values of variables
are defined using an init operator. In each small-step, one transition is taken, which
changes the values of states and variables. Conditional expressions in SMV on input,
output and local variables are used to produce the updates to the state and output
variables (using the operator next).

4. The behaviour on an ordered-composition is captured through a sequence of SMV
steps, as several small-steps need to be taken to complete the big-step defined by an
ordered-composition.

5. Feature models are integrated by synchronizing the times at which new inputs are
generated and received by the models.

To illustrate the mapping from Stateflow into SMV, as well as the integration of
SMV modules for feature interaction detection, I use two models: a simplified model of an
air conditioning (AC) feature in Figure 4.2 and a simplified model of a heater (HEATER)
feature in Figure 4.3. Both feature models share as inputs: the variable e that takes on
the values enter and exit, and the variable t that indicates the current temperature, which
ranges over the values 0..2. HEATER also includes the Boolean variables B inc and B dec
to indicate if the button to increase and decrease the desired temperature is respectively
pressed or depressed, and the local variable t want that holds the desired temperature
(ranging over 0..2). Both models can set the output variable set therm to request that
the thermostat make a change to the temperature, which ranges over the values 0..2.
When AC and HEATER are integrated, a feature interaction is detected if contradictory
output requests from these features are made to set therm, which is their shared actuator
controlling the room temperature.

OFF IDLE ON

(e=enter ∧

(t < 1))

1
: t

2
: t (e=exit)

4
: t (t ≥ 1)

6
: t (e=exit)

5
: t (t < 1)

AC

(A)

(e=enter ∧ (t ≥ 1))
3
: t

t 7:
/set_therm=t-1

1

1
2

12

2

3

Figure 4.2: Simplified air conditioning (AC) model

48

ON

OFF

IDLE

HEAT

3
: t

(t <

t_want)

4
: t

(t ≥

t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER

(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=

t_want-1

t_want>0)/

6
: t (B_inc ∧

t_want=

t_want+1

t_want<2)/

1

1

1

2

1

1

2

Figure 4.3: Simplified heater (HEATER) model

The translation process to create an SMV module and the process for integration of
SMV modules for feature interaction detection are described in the rest of this chapter.
The complete translated SMV model for AC is in Figure 4.14 on page 63, while the complete
translated SMV model for HEATER appears in Figure 4.11 and Figure 4.12 on pages 58-59.
Excerpts from the SMV translations are used in examples throughout this chapter.

4.2 Subset of STATEFLOW Syntax

I define and translate a subset of the Stateflow syntax, which matches the subset used
in the operational semantics for Stateflow, defined separately by Hamon [88] and by
Whalen [180], except that my subset does not include junctions and event broadcasting
as they are not used when developing active safety systems [16]. There exists a report
with design guidelines for modelling with Matlab’s Stateflow in the automotive in-
dustry [74], however, this report is outdated and refers to an old version of Stateflow.
As I observed in practice, feature modellers in the automotive domain did not use the
following Stateflow syntax:

• condition action’s in transitions,

• actions within states,

• connective junctions,

• graphical and Matlab functions,

• In(state name) condition function (which is evaluated as true when the state specified
as the argument is active),

• temporal conditions using operators such as after, at, every (a type of temporal
logic within Stateflow, which is different from the one described in Section 2.3.2),

• any notation that could allow event broadcasting.

49

mdl2smv supports all Stateflow features except the list above. These syntactic elements
were not needed when modelling any of the non-proprietary automotive design features part
of the “University of Waterloo Feature Model Set” (UWFMS), described in Appendix A.
If they are desired while designing a feature model, in most cases, an equivalent design can
be created without these syntactic elements.

In addition, mdl2smv assumes that Stateflow design models adhere to the following
minor syntactic modelling rules:

• The type of data and range of values used must be set for all input data, output
data, and local data. Thus, every variable has a finite type.

• Strings of any label must not contain quotes.

• Names must not include anything other than numbers, letters, or an underscore
(spaces are not allowed as part of the name).

• Each action in a transition must have the form “ x = y ; ”.

• No two Stateflow models can have the same name (i.e., “Chart”, which is the
default). The designer must provide a meaningful name.

• Label strings must appear on a single line3.

4.3 Variable Declarations

One SMV module is created per Stateflow model. At each step in the execution of a
Stateflow feature model, only one event occurs at a time. Therefore, the event inputs are
modelled using one variable with an enumerated type containing the names of the possible
events. The event inputs are kept separated per model, as some events are relevant to
a particular feature, e.g., an error signal. The formal parameters of the SMV module
include this event variable, as well as all the data that is an external input or output
to the Stateflow feature model. All data variables (inputs, outputs and local) are
declared as type range of integers or Boolean in SMV, accordingly to the type they have
in Stateflow. The declaration of an input variable in the SMV module is prefixed
by the keyword INPUT, while the declaration of an output is prefixed by the keyword
OUTPUT. Figure 4.4 illustrates the formal parameters for AC and HEATER, with line numbers
referring to Figure 4.14 and Figure 4.11 for each respective model. Event variables names,
which are part of the formal parameters, have prefix “A” for AC and “H” for HEATER.

3Parsing errors can occur due to newline characters such as \n and \r.

50

1 MODULE A (Ae, t, set_thermA, sys_stable) {
1 MODULE H
2 (He,t,B_inc,B_dec,set_thermH,sys_stable) {

Figure 4.4: Formal parameters for AC and HEATER

Only local variables are initialized within each SMV feature module, using the init

operator. mdl2smv uses the initialization information from the .mdl file, but if none is
available, mdl2smv initializes the local variables to zero, which is the default value for
variables of any type in Stateflow. Variables initialized with the init operator must be
updated using an assignment with the next operator. Figure 4.5 illustrates initialization
of local variables for HEATER, as there are no local variables initialized in AC.

19 init(t_want):=1;

Figure 4.5: Local variables initialization for HEATER

A feature that influences its environment, such as an air conditioning system or an active
safety feature, contains multiple kinds of outputs. Some of these outputs are indications to
the user, such as warnings or errors occurring in the system. Other outputs are meant to
influence the environment by requesting changes to the actuators’ values. The SMV model
does not include a model of the dynamics of the car, therefore, when a feature produces
an output to actuators, it is interpreted as a command to the environment. To model
these actuator commands correctly, I use parameterized events, which are represented
in SMV by (1) a variable that has the value associated with the command (“set ” followed
by the actuator name) and (2) a Boolean that represents the presence or absence of the
command (actuator name followed by “ req”). The Boolean variable is created during
translation by mdl2smv. Its intended meaning is that when the “ req” Boolean is true,
the “set ” variable contains an output from the feature. The process to set and reset the
Boolean variable will be explained in Section 4.7. For AC and HEATER, the parameterized
event for actuator therm is modelled by the output variable set therm and the Boolean
variable therm req. Each output variable name associated with one of the parameterized
events has suffix “A” or “H” (i.e., set thermA and set thermH) to differentiate which one
refers to AC or to HEATER respectively. In analysis, the environment is left unconstrained,
i.e., an output to an actuator is unrelated to the next sensor reading of the environment.
The effects of this choice on analysis will be discussed in Chapter 7.

51

4.4 States

mdl2smv declares one state variable per level of state hierarchy in the Stateflow model.
Each state variable has an enumerated type consisting of the names of all of its substates,
prefixed with “s”. For OR-states, the default transition information stored in the .mdl file
is used to initialize the first active state at the corresponding level of the state hierarchy.
For an ordered-composition, there is no default transition, but the state labelled with
execution order of 1 is initialized to be the first active state. For example, HEATER
contains the ordered-composition ON, which is initialized to DO. The declarations and
initializations of state variables for AC and HEATER are shown in Figure 4.6.

2 sA: {sOFF, sIDLE, sON}; /* main superstate AC */

5 init(sA):=sOFF;

4 sH: {sON, sOFF}; /* main superstate HEATER */
5 sON: {sDO, sSET}; /* superstate ON */
6 sDO: {sIDLE, sHEAT}; /* superstate DO */
7 sSET: {sCHANGE}; /* superstate SET */

12 init(sH) :=sOFF;
13 init(sON) :=sDO;
14 init(sDO) :=sIDLE;
15 init(sSET) :=sCHANGE;

Figure 4.6: State variables declaration and initialization for AC and HEATER

4.5 Transitions

Transition variables are used to record and report concisely the transitions taken in a path.
The name of a transition variable is prefixed by “Tr”. The information recorded by a tran-
sition variable is the name of the transition taken at each step of the execution. Although
the name of a transition is not explicit in the graphical view of a Stateflow model,
Stateflow includes a number label for each transition in the .mdl textual description.
Stateflow uses the name of the transition, which is simply a number greater than 0,
when reporting syntactic errors found during parsing or simulation. Thus, mdl2smv uses
this information to create the declarations of transition variables. mdl2smv takes the num-
ber that identifies a transition from the .mdl file, and prefixes it with “t” to denote that
the identifier refers to a transition. I refer to these transitions as progressing transitions in
later chapters.

A model with no ordered-compositions needs only to declare one transition variable,
whose name is “Tr” followed by the main superstate’s name and all the transition names in
the model as its enumerated values, such as is done for model AC. In contrast, a model with
ordered-compositions requires more than one transition variable to report all the transitions
taken in a big-step4. It is sufficient to declare one transition variable for each sibling in an

4This information will be used to report feature interactions in Chapter 6.

52

ordered-composition as an enumerated type, with the names of the transitions contained
in the sibling as values because each sibling is executed at most once in a big-step and,
when executing, a sibling can take at most one transition. For example, for the ordered-
composition ON in HEATER, two transition variables are declared: TrDO and TrSET. If the
main superstate is not an ordered-composition, a transition variable for the main superstate
must also be declared as some transitions are not within any of the ordered-compositions.
For instance, for model HEATER, the transition variable TrH for its main superstate is
declared. Transition variables are initialized to t0, meaning ‘no transition taken’. There
is also an implicit self-looping transition tn in each state of a Stateflow model that
is considered to execute (and do nothing) when none of the other transitions exiting a
state can be executed. I call t0 and tn non-progressing transitions. The declarations and
initializations of transition variables for AC and HEATER are shown in Figure 4.7.

3 TrA: {t0,tn,t1,t2,t3,t4,t5,t6}; /* Trans within AC */

6 init(TrA):=t0;

7 TrH: {t0,tn,t1,t2}; /* Trans within HEATER */
8 TrDO: {t0,tn,t3,t4,t5}; /* Trans within DO */
9 TrSET: {t0,tn,t6,t7}; /* Trans within SET */

16 init(TrH):=t0;
17 init(TrDO):=t0;
18 init(TrSET):=t0;

Figure 4.7: State variables declaration and initialization for AC and HEATER

As is common in translators to SMV (e.g., [49]), the behaviour of transitions is mod-
elled in SMV using switch statements. Nested switch statements follow the hierarchy of
states in the Stateflow model and check whether the model is in the source state of a
transition. Within the switch, there is a case statement for each state at the corresponding
level of the hierarchy. Within each case, there is a series of if-then-else statements, one
per transition, checking whether the event and/or condition of the transition are satisfied.

A simple state diagram of only one level of hierarchy would have one switch statement.
Figure 4.8 shows the translation of an excerpt of AC, containing only OR-states and which
has one hierarchy level. The order of the if-then-else statements within the case corre-
sponds to the transitions’ priority of execution, as illustrated by Figure 4.8. Within each
if statement, there are assignments for the next state, transition and output variables as
a result of a transition:

• For OR-states, the assignment corresponds to the state name that is the destination
of the transition, e.g., state sA is set to OFF by taking transition t6, shown in line
46 of Figure 4.8. For an ordered-composition, the updating process is discussed in
Section 4.6.

• There is an assignment for every output variable. For variables that are directly
changed by an assignment in the transition’s action of the Stateflow design model,

53

mdl2smv creates its corresponding assignment, e.g., set thermA in line 55 of Fig-
ure 4.8. For any output variable whose value is not explicitly defined in the tran-
sition’s action of the Stateflow model, mdl2smv assigns it the value it currently
holds, e.g., set thermA in line 13 of Figure 4.8.

• The transition variable is assigned the value of the identifier of the transition taken
(prefixed by “t”) for a model with only OR-states and one level of hierarchy, e.g.,
TrA in line 12 of Figure 4.8.

The last else statement identifies the case where none of the transitions exiting the state
can be executed, and therefore, a non-progressing transition is taken, e.g., 58 of Figure 4.8.
In this case, the state and output variables retain the value they currently hold, and the
transition variable is updated to the value tn.

9 switch (sA) {
10 sOFF :
11 if ((Ae = enter) & (t < 1)) {
12 next(TrA):=t1;
13 next(set_thermA):=set_thermA;
14 next(therm_req):=(!sys_stable & therm_req);

42 sON :
43 if (Ae = exit) {
44 next(TrA):=t6;
45 /* Same update as lines 13-14 */
46 next(sA):=sOFF;
47 } else {
48 if (temp < 1) {
49 next(TrA):=t5;
50 /* Same update as lines 13-14 */
51 next(sA):=sIDLE;
52 } else {
53 if (1) { -- no guard
54 next(TrA):=t7;
55 next(set_thermA):=(t - 1);
56 next(therm_req):=1;
57 next(sA):=sON;
58 } else {
59 next(TrA):=tn;

execution

order 1

execution

order 2

execution

order 3

OFF

IDLE

ON

1

1

2

1

2

2

3

AC

(A)

t 7:
/set_therm=t-1

6
: t (e=exit)

5
: t (t < 1)

1
: (e=enter ∧

(t < 1))

t

(Equivalent to Figure 4.2)

Figure 4.8: Translation of transitions for AC with OR-states and no hierarchy

Figure 4.9 shows the translation of an excerpt of HEATER, where state hierarchy and
ordered-composition are present. As described in Section 4.1, outgoing transitions from a
superstate must be listed before inner transitions, in order to follow Stateflow’s priority
of execution, which is done while creating transitions within a nested switch statement
(i.e., at a hierarchy level other than one), for instance, as is done for t2 in line 24 of
Figure 4.9. Then, internal transitions are listed; first, the transition with highest priority
(i.e., priority 1), and consecutively creating the rest in decreasing priority, as shown for
transition t3 in line 42 of Figure 4.9. Even when hierarchy and ordered-composition are
present, the variables for states, outputs and transitions are still updated within each if

statement as follows:

54

• For OR-states, the state variables are updated to the state name that is the desti-
nation of the transition, updating as well default states for transitions whose source
is a superstate, and state’s parents hierarchically for transitions whose destination is
within a superstate (e.g., lines 30-33 of Figure 4.9). For ordered-compositions, the
updating process is discussed in Section 4.6.

• For output variables, the updating process is as described in the case of a state
diagram with only one level of hierarchy.

• For the transition taken, its corresponding transition variable is assigned the identifier
of the transition taken (prefixed by “t”), e.g., TrH in line 24 of Figure 4.9. More than
one transition variable is declared when a model contains ordered-compositions, but
only one transition is taken in a small-step which is updated as explained above. The
other transition variables, which are not directly updated in that small-step, must
preserve their value, which will be either t0 (no transition taken in that small-step),
or the value of the transition taken in the big-step already. At a big-step boundary,
transition variables are reset using an expression of the form (sys stable ? t0 :

TrDO)5, as in line 25 of Figure 4.9 (i.e., when sys stable6 is true).

21 switch (sH) {
22 sON :
23 if (He = exit) {
24 next(TrH):=t2;
25 next(TrDO):=(sys_stable ? t0 : TrDO);
26 next(TrSET):=(sys_stable ? t0 : TrSET);

30 next(sON):=sDO;
31 next(sDO):=sIDLE;
32 next(sSET):=sCHANGE;
33 next(sH):=sOFF;
34 } else {
35 switch (sON) {
36 sDO :
37 if (sys_stable) { -- otherwise IDLING
38 switch (sDO) {
39 sIDLE :
40 if (t < t_want) {
41 next(TrH):=(sys_stable ? t0 : TrH);
42 next(TrDO):=t3;
43 next(TrSET):=(sys_stable ? t0 : TrSET);

priority of execution
over trans in ON

execution
order 1

ON

OFF

IDLE

HEAT

3
: t

(t <

t_want)

4
: t

(t ≥

t_want)

DO

2
: t (e=exit)

t 5:
/set_therm=t+1

1

1

1

2

1
...

SET1

HEATER

(H)

Figure 4.9: Translation of transitions HEATER with hierarchy and ordered-composition

Note that given the condition on sys stable in line 37 of Figure 4.97, the reset ex-
pressions in lines 41 and 43 are redundant as the transition variables could simply have an

5(a ? b : c) is the SMV short version of if (a) { b } else { c }.
6Instead of using the stable macro that indicates the model’s big-step boundary, mdl2smv uses

sys stable to make the model “integration-ready”. However, if the model is going to be analyzed in
isolation, one can simply define sys stable=stable in the main module.

7This condition on sys stable makes a feature to idle when integrated with another feature that
requires more small-steps to complete its execution, as explained in detail in Section 4.7.

55

assignment to t0. However, for simplicity of implementation, these reset expressions are
translated as any other reset expressions for transition variables, e.g., the reset expressions
in lines 25 and 26 of Figure 4.9.

4.6 Sequential Execution

To translate the behaviour of an ordered-composition in Stateflow, one must ensure
that

1. the siblings in an ordered-composition execute sequentially in the order assigned to
each sibling, and

2. all the siblings that are part of the ordered-composition use the same set of inputs
when checking which transitions can be taken.

Thus, the execution of the behaviour of an ordered-composition will take several SMV
steps, one SMV step per small-step. Only one transition is taken per small-step. Fig-
ure 4.10 shows an example of the execution of the ordered-composition labelled ON in
model HEATER, consisting of siblings DO (numbered 1) and SET (numbered 2), therefore,
taking two small-steps to execute. Figure 4.11 and Figure 4.12 show the translated SMV
module for the feature model HEATER in Figure 4.3, and it will be referred to in the
following paragraphs.

First, to model the sequential behaviour of the components of an ordered-composition
in Stateflow appropriately in a sequence of SMV steps, in each step the parent state
variable is updated to the next sibling in the ordered-composition (e.g., line 48 in Fig-
ure 4.11 sets the ordered-composition ON to the sibling SET, which has execution order
2). This assignment is illustrated in Figure 4.10 by the change in SMV step i to step
i+1. Also, the last component transfers the token for execution back to the first sibling of
the ordered execution, which is captured in lines 124, 136 and 147, of Figure 4.12, where
the ordered-composition ON is set to the sibling DO, which has execution order 1. This
assignment is illustrated in Figure 4.10 by the change in SMV step i+1 to step i+2.

Second, inputs should stay the same for the execution of all siblings of an ordered-
composition in Stateflow as illustrated by Figure 4.10. At SMV step i, new inputs are
received, and DO takes its turn to check if, based on this set of inputs, any of its transitions
can be taken. Following the example, transition t3 was taken, and at SMV step i+1, SET
checks if any transition can be taken with the same set of inputs. Finally, at SMV step
i+2, new inputs are received. Therefore, in the SMV models, the input variables are
semi-controlled by allowing the inputs to change only in the SMV step indicating that the
execution of the big-step has completed. This behaviour is modelled in SMV using the

56

(i+1)-th
SMV
step

ON

OFF

HEAT

3
: t (t <

t_want)

4
: t (t ≥

t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER

(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want= t_want+1
t_want<40)/

1

1

1

2

1
1

2

IDLE

Current state

of HEATER

Current state

of ON

Current state

of DO

i-th
SMV
step

(i+2)-th
SMV
step

new

inputs

same

inputs

new

inputs

ON

OFF

HEAT

3
: t (t <

t_want)

4
: t (t ≥

t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER

(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want=t_want+1
t_want<40)/

1

1

1

2

1
1

2

IDLE

ON

OFF

HEAT

3
: t (t <

t_want)

4
: t (t ≥

t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER

(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want=t_want+1
t_want<40)/

1

1

1

2

1
1

2

IDLE

Figure 4.10: Illustration of sequential execution for HEATER

macro stable, which defines the boundaries of a big-step per model. By using a macro,
this approach does not introduce any extra steps in the computation, and the number of
variables in the SMV model does not increase.

At each step of the execution, a big-step varies in size, depending on whether the model
includes ordered compositions or not, and the number of siblings in an ordered composition.
Therefore, the macro stable per model, identifying a big-step boundary, is defined as:

1. No ordered-compositions are present in a model : In this case, a model has only OR-
states and the boundary of the big-step is always reached after only one transition is
taken, so the size of any big-step is one. Therefore, the macro stable is defined as 1
(i.e., true), as done in line 69 of Figure 4.14, which shows the SMV model for AC.

57

1 MODULE H

2 (He, t, B_inc, B_dec, set_thermH, sys_stable) {

3 sH: {sON, sOFF}; /* main superstate HEATER */

4 sON: {sDO, sSET}; /* superstate ON */

5 sDO: {sIDLE, sHEAT}; /* superstate DO */

6 sSET: {sCHANGE}; /* superstate SET */

7 TrH: {t0,tn,t1,t2}; /* Trans within HEATER */

8 TrDO: {t0,tn,t3,t4,t5}; /* Trans within DO */

9 TrSET: {t0,tn,t6,t7}; /* Trans within SET */

10 t_want: 0..2; /* temp wanted */

11 therm_req: boolean; /* change in temp request */

12 init(sH):=sOFF;

13 init(sON):=sDO;

14 init(sDO):=sIDLE;

15 init(sSET):=sCHANGE;

16 init(TrH):=t0;

17 init(TrDO):=t0;

18 init(TrSET):=t0;

19 init(t_want):=1;

20 init(therm_req):=0;

21 switch (sH) {

22 sON :

23 if ((He) = (exit)) {

24 next(TrH):=t2;

25 next(TrDO):=(sys_stable ? t0 : TrDO);

26 next(TrSET):=(sys_stable ? t0 : TrSET);

27 next(set_thermH):=set_thermH;

28 next(t_want):=t_want;

29 next(therm_req):=(!sys_stable & therm_req);

30 next(sON):=sDO;

31 next(sDO):=sIDLE;

32 next(sSET):=sCHANGE;

33 next(sH):=sOFF;

34 } else {

35 switch (sON) {

36 sDO :

37 if (sys_stable) { -- otherwise IDLING

38 switch (sDO) {

39 sIDLE :

40 if ((t) < (t_want)) {

41 next(TrH):=(sys_stable ? t0 : TrH);

42 next(TrDO):=t3;

43 next(TrSET):=(sys_stable ? t0 : TrSET);

44 next(set_thermH):=set_thermH;

45 next(t_want):=t_want;

46 next(therm_req):=(!sys_stable & therm_req);

47 next(sDO):=sHEAT;

48 next(sON):=sSET;

49 next(sSET):=sSET;

50 next(sH):=sON;

51 } else {

52 next(TrH):=(sys_stable ? t0 : TrH);

53 next(TrDO):=tn;

54 next(TrSET):=(sys_stable ? t0 : TrSET);

55 next(t_want):=t_want;

56 next(set_thermH):=set_thermH;

57 next(therm_req):=(!sys_stable & therm_req);

58 next(sDO):=sIDLE;

59 next(sON):=sSET;

60 next(sSET):=sSET;

61 next(sH):=sON;

62 }

63 sHEAT :

64 if ((t) >= (t_want)) {

65 next(TrH):=(sys_stable ? t0 : TrH);

66 next(TrDO):=t4;

67 next(TrSET):=(sys_stable ? t0 : TrSET);

68 next(set_thermH):=set_thermH;

69 next(t_want):=t_want;

70 next(therm_req):=(!sys_stable & therm_req);

71 next(sDO):=sIDLE;

72 next(sON):=sSET;

73 next(sSET):=sSET;

74 next(sH):=sON;

75 } else {

76 if (1) {

77 next(TrH):=(sys_stable ? t0 : TrH);

78 next(TrDO):=t5;

79 next(TrSET):=(sys_stable ? t0 : TrSET);

80 next(set_thermH):=(t + 1);

81 next(t_want):=t_want;

82 next(therm_req):=1;

83 next(sDO):=sHEAT;

84 next(sON):=sSET;

85 next(sSET):=sSET;

86 next(sH):=sON;

87 } else {

88 next(TrH):=(sys_stable ? t0 : TrH);

89 next(TrDO):=tn;

90 next(TrSET):=(sys_stable ? t0 : TrSET);

91 next(t_want):=t_want;

92 next(set_thermH):=set_thermH;

93 next(therm_req):=(!sys_stable & therm_req);

94 next(sDO):=sHEAT;

95 next(sON):=sSET;

96 next(sSET):=sSET;

97 next(sH):=sON;

98 }

99 }}

100 } else { -- IDLING

Figure 4.11: SMV model of feature HEATER – Part I

58

101 next(TrH):=TrH;

102 next(TrDO):=TrDO;

103 next(TrSET):=TrSET;

104 next(set_thermH):=set_thermH;

105 next(t_want):=t_want;

106

107 next(therm_req):=(!sys_stable & therm_req);

108 next(sH):=sH;

109 next(sON):=sON;

110 next(sDO):=sDO;

111 next(sSET):=sSET;

112 }

113 sSET :

114 switch (sSET) {

115 sCHANGE :

116 if ((B_inc) & ((t_want) < (2))) {

117 next(TrH):=(sys_stable ? t0 : TrH);

118 next(TrDO):=(sys_stable ? t0 : TrDO);

119 next(TrSET):=t6;

120 next(set_thermH):=set_thermH;

121 next(t_want):=(t_want) + (1);

122 next(therm_req):=(!sys_stable & therm_req);

123 next(sSET):=sCHANGE;

124 next(sON):=sDO;

125 next(sDO):=sDO;

126 next(sH):=sON;

127 } else {

128 if ((B_dec) & ((t_want) > (0))) {

129 next(TrH):=(sys_stable ? t0 : TrH);

130 next(TrDO):=(sys_stable ? t0 : TrDO);

131 next(TrSET):=t7;

132 next(set_thermH):=set_thermH;

133 next(t_want):=(t_want) - (1);

134 next(therm_req):=(!sys_stable & therm_req);

135 next(sSET):=sCHANGE;

136 next(sON):=sDO;

137 next(sDO):=sDO;

138 next(sH):=sON;

139 } else {

140 next(TrH):=(sys_stable ? t0 : TrH);

141 next(TrDO):=(sys_stable ? t0 : TrDO);

142 next(TrH):=tn;

143 next(t_want):=t_want;

144 next(set_thermH):=set_thermH;

145 next(therm_req):=(!sys_stable & therm_req);

146 next(sSET):=sCHANGE;

147 next(sON):=sDO;

148 next(sDO):=sDO;

149 next(sH):=sON;

150 }}

151 }}

152 }

153 sOFF :

154 if ((He) = (enter)) {

155 next(TrH):=t1;

156 next(TrDO):=(sys_stable ? t0 : TrDO);

157 next(TrSET):=(sys_stable ? t0 : TrSET);

158 next(set_thermH):=set_thermH;

159 next(t_want):=t_want;

160 next(therm_req):=(!sys_stable & therm_req);

161 next(sH):=sON;

162 } else {

163 next(TrH):=tn;

164 next(TrDO):=(sys_stable ? t0 : TrDO);

165 next(TrSET):=(sys_stable ? t0 : TrSET);

166 next(t_want):=t_want;

167 next(set_thermH):=set_thermH;

168 next(therm_req):=(!sys_stable & therm_req);

169 next(sH):=sOFF;

170 next(sON):=sDO;

171 next(sDO):=sIDLE;

172 }

173 }

174 DEFINE stableOFF :=(sH = sOFF);

175 DEFINE stableON :=(sON = sDO) & (sH = sON);

176 DEFINE stable :=(((TrH = t1) | (TrH = t2))

177 | (stableOFF) | (stableON));

178 }

179

180 MODULE main () {

181 He :{enter, exit};

182 t :0..2;

183 B_inc :boolean;

184 B_dec :boolean;

185 set_thermH :0..2;

186 init(set_thermH) :=0;

187 DEFINE sys_stable :=(Hmodule.stable);

188 if (next(sys_stable)) {

189 next(Ae):={enter, exit};

190 next(He):={enter, exit};

191 next(t):=0..2;

192 next(B_inc):={1, 0};

193 next(B_dec):={1, 0};

194 } else {

195 next(Ae):=Ae;

196 next(He):=He;

197 next(t):=t;

198 next(B_inc):=B_inc;

199 next(B_dec):=B_dec;

200 }

201

202 Hmodule: H(He, t, B_inc, B_dec, set_thermH,

203 sys_stable);

204 }

Figure 4.12: SMV model of feature HEATER – Part II

59

2. Ordered-compositions are present in a model : The definition is given by a recursive
function that follows Algorithm 1.

An example of a model with both OR-states and ordered-compositions is HEATER,
whose macro stable is defined by several macros, as shown in lines 174-177 of Figure 4.12.
To define the macro stable, Algorithm 1 is first called with the main superstate H and
the name “stable”. Then, following the if statement in line 1 of Algorithm 1, the
macro stable for HEATER is defined as (TrH=t1 ∨ TrH=t2 ∨ stableOFF ∨ stableON).
Next, in lines 3-10 Algorithm 1 checks each child of state H to create macros stableOFF
and stableON appropriately as follows:

• For child OFF, the if statement in line 4 is followed as OFF is a basic state, thus
defining the macro stableOFF as (sH=sOFF).

• For child ON, the else statement in line 6 is followed because ON is a superstate, thus
the function define stable is called recursively with state ON and name stableON.

The call of function define stable with ON follows the else statement in line 11 of Algo-
rithm 1 because the decomposition of state ON is ordered-composition. However, because
there are no nested ordered-compositions, and the first sibling of ON, i.e., DO, contains
only basic states, lines 20-22 of Algorithm 1 are followed, defining the macro stableON

as (sH=sON ∧ sON=sDO). By using macros, this approach to defining big-step boundaries
does not introduce any extra steps in the computation, and the number of variables in the
SMV model does not increase.

4.7 Integrating Features

In the automotive domain, when several active safety features are integrated in a vehicle,
in the most general case they may work concurrently, i.e., they all receive the same set
of inputs simultaneously. However, each feature reacts to the inputs independently, not
communicating with each other directly. Therefore, even though all features receive their
inputs synchronously, each feature must preserve its individual Stateflow semantics,
e.g., ordered-compositions execute their siblings sequentially. Figure 4.13 illustrates the
concurrent execution of AC and HEATER, while Figure 4.14 shows the SMV model for the
integrated model in Figure 4.13. Designers cannot use Stateflow to simulate the com-
bined behaviour of features because there is no operator in Stateflow that corresponds to
the concurrent behaviour of features integrated in a vehicle. But the integrated behaviour
of features can be modelled in SMV, while preserving each feature model’s Stateflow
semantics.

60

Algorithm 1 – define stable(state, name)

Input: state (state whose macro is defined), name (macro’s name: for the main superstate
the name is simply stable, otherwise, use “stable” followed by state’s name)

Output: List of macros for model

1: if (state’s decomposition is OR) then
2: Create macro for state with name, defined as the disjunction of the list of transitions

within state with the disjunction of the list of macros for the state’s children
3: for (each child in state) do
4: if (child is a basic state) then
5: Create macro for child named stable+(child name), defined as (state=child)
6: else . child is a superstate
7: . Call function recursively with child
8: define stable(child, stable+(child name))
9: end if

10: end for
11: else . state’s decomposition is ordered-composition
12: if (nested ordered-compositions) then
13: if (innermost ordered-composition’s first sibling contains only basic states) then
14: Create macro for state with name, defined as the condition, including the state’s

parent, that identifies when the token is in every first sibling hierarchically
15: else
16: Create macro for state with name, defined as the condition, including the state’s

parent, that identifies when the token is in every first sibling hierarchically, but
a macro is included for the innermost first sibling instead

17: . Call function recursively with innermost first sibling
18: define stable(innermost first sibling, stable+(innermost first sibling name))
19: end if
20: else . there are no nested ordered-compositions
21: if (first sibling contains only basic states) then
22: Create macro for state with name, defined as a condition that includes the state’s

parent and (state=first sibling)
23: else
24: Create macro for state with name, defined as a condition that includes the state’s

parent and (state= macro first sibling)
25: . Call function recursively with first sibling
26: define stable(first sibling, stable+(first sibling name))
27: end if
28: end if
29: end if

61

My tool Alfie generates the integrated SMV model, taking as input two SMV models,
translated with mdl2smv, and creating the main module that coordinates the concurrent
execution of the SMV models. Inputs and outputs of the Stateflow feature model are
declared in the main SMV module, removing the declarations prefixed with the keywords
INPUT and OUTPUT in the two SMV feature modules8, and placing them in the main

SMV module (but without the keywords INPUT and OUTPUT). The declaration of input
and outputs is shown in lines 77-83 of Figure 4.14. In the main SMV module, input
variables are initialized by taking non-deterministically one of its allowed values given its
declaration, so all the possible combinations of input values can be verified by SMV, while
output variables are initialized to zero.

ON

OFF
HEAT

3
: t

(t <
t_want)

4
: t

(t ≥
t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER
(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want=t_want+1
t_want<40)/

OFF

IDLE

ON

(e=enter ∧

(t < 1))

1
: t

2
: t

(e=exit)

4
: t (t ≥ 1)

6
: t (e=exit)

5
: t (t < 1)

AC
(A)

(e=enter ∧

(t ≥ 1))

3
: t

t 7:
/set_therm=t-1

1

1

2

1

2

2

3

1

1

1

2

1
1

2

IDLE

Current state
of HEATER

Current state
of ON

Current state
of AC

Current state
of DO

i-th
SMV
step

(i+1)-th
SMV
step

ON

OFF
HEAT

3
: t

(t <
t_want)

4
: t

(t ≥
t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER
(H) 1 SET 2

t 5:
/set_therm=t+1

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want=t_want+1
t_want<40)/

OFF

STANDBY

ON

(e=enter ∧

(t < 1))

1
: t

2
: t

(e=exit)

6
: t (e=exit)

AC
(A)

(e=enter ∧

(temp ≥ 1))

3
: t

t 7:
/set_therm=t-1

1

1

2

1

2

2

3

1

1

1

2

1
1

2

IDLE

I D L I N G
(Retain AC's output)

ON

OFF
HEAT

3
: t

(t <
t_want)

4
: t

(t ≥
t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER
(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=t_want-1
t_want>0)/

6
: t (B_inc ∧

t_want=t_want+1
t_want<40)/

OFF

IDLE

ON

(e=enter ∧

(t < 1))

1
: t

2
: t

(e=exit)

6
: t (e=exit)

AC
(A)

(e=enter ∧

(t ≥ 1))

3
: t

t 7:
/set_therm=t-1

1

1

2

1

2

2

3

1

1

1

2

1
1

2

IDLE

(i+2)-th
SMV
step

new

inputs

same

inputs

new

inputs

4
: t (t ≥ 1)

4
: t (t ≥ 1)

5
: t (t < 1)

5
: t (t < 1)

Figure 4.13: Illustration of concurrent execution for AC and HEATER

8The SMV features modules of AC and HEATER do not show the declarations with the keywords INPUT
and OUTPUT because the SMV code is meant to show the already integrated model.

62

1 MODULE A (Ae, t, set_thermA, sys_stable) {

2 sA: {sOFF, sIDLE, sON}; /* main superstate AC */

3 TrA: {t0,tn,t1,t2,t3,t4,t5,t6,t7};

4 therm_req: boolean; /* change in temp request */

5 init(sA):=sOFF;

6 init(TrA):=t0;

7 init(therm_req):=0;

8 if (sys_stable) { -- otherwise IDLING

9 switch (sA) {

10 sOFF :

11 if ((Ae = enter) & (t < 1)) {

12 next(TrA):=t1;

13 next(set_thermA):=set_thermA;

14 next(therm_req):=(!sys_stable & therm_req);

15 next(sA):=sIDLE;

16 } else {

17 if ((Ae = enter) & (t >= 1)) {

18 next(TrA):=t3;

19 /* Same update as lines 13-14 */

20 next(sA):=sON;

21 } else {

22 next(TrA):=tn;

23 next(set_thermA):=set_thermA;

24 next(therm_req):=(!sys_stable & therm_req);

25 next(sA):=sOFF;

26 }

27 }

28 sIDLE :

29 if (Ae = exit) {

30 next(TrA):=t2;

31 /* Same update as lines 13-14 */

32 next(sA):=sOFF;

33 } else {

34 if (t >= 1) {

35 next(TrA):=t4;

36 /* Same update as lines 13-14 */

37 next(sA):=sON;

38 } else {

39 /* Same as tn transition in sOFF */

40 }

41 }

42 sON :

43 if (Ae = exit) {

44 next(TrA):=t6;

45 /* Same update as lines 13-14 */

46 next(sA):=sOFF;

47 } else {

48 if (t < 1) {

49 next(TrA):=t5;

50 /* Same update as lines 13-14 */

51 next(sA):=sIDLE;

52 } else {

53 if (t >= 1) {

54 next(TrA):=t7;

55 next(set_thermA):=(t - 1);

56 next(therm_req):=1;

57 next(sA):=sON;

58 } else {

59 /* Same as tn transition in sOFF */ }

60 }

61 }

62 }

63 } else { -- IDLING

64 next(TrA):=TrA;

65 next(set_thermA):=set_thermA;

66 next(therm_req):=(!sys_stable & therm_req);

67 next(sA):=sA;

68 }

69 DEFINE stable :=1;

70 }

71

72 MODULE H

73 (He, t, B_inc, B_dec, set_thermH, sys_stable) {

74 /* Refer to Figures 4.6 and 4.7 */ }

75

76 MODULE main () {

77 Ae :{enter, exit};

78 He :{enter, exit};

79 t :0..2;

80 B_inc :boolean;

81 B_dec :boolean;

82 set_thermA :0..2;

83 set_thermH :0..2;

84 init(set_thermA) :=0;

85 init(set_thermH) :=0;

86

87 DEFINE sys_stable:=Amodule.stable & Hmodule.stable;

88 if (next(sys_stable)) {

89 next(Cevents):={enter, exit};

90 next(He):={enter, exit};

91 next(t):=0..2;

92 next(B_inc):={1, 0};

93 next(B_dec):={1, 0};

94 } else {

95 next(Ae):=Ae;

96 next(He):=He;

97 next(t):=t;

98 next(B_inc):=B_inc;

99 next(B_dec):=B_dec;

100 }

101 Amodule:A(Ae, t, set_thermA, sys_stable);

102 Hmodule:H(He, t, B_inc, B_dec, set_thermH,

103 sys_stable);

104 }

Figure 4.14: SMV model of integrated AC and HEATER

63

To define the big-step boundary for an integrated set of features, the macro sys stable

is created as the conjunction of the stable macro definitions for each feature. The macro
sys stable (line 87 of Figure 4.14) is true when all features are ready to begin with new
inputs and have produced their outputs for the current set of inputs. To ensure that
inputs remain constant when a big-step in the integrated model is executing, a conditional
statement in the SMV main module is used. The if-then-else statement on lines 88–99
of Figure 4.14 forces inputs to stay the same while a big-step is executing and allows inputs
to change once the big-step is completed, using the condition next(sys stable)9.

A feature interaction should be checked when the sys stable macro is true, as this
is the point where a summary of the outputs for the big-step in the integrated model is
available. But to guarantee that the information about the outputs produced within the
big-step is available at sys stable, the feature models in the integrated model must do
the following:

1. Whenever a feature model with an ordered-composition is combined with a feature
model with fewer siblings in its ordered-composition or with no ordered-composition
operators, the latter feature model must idle maintaining the values of its outputs
while the former feature model finishes its sequential execution. For example, in
Figure 4.13, where AC and HEATER execute concurrently, a set of inputs is received
at step i, and HEATER will take two small-steps to process the input since it has
to check for transitions that can be taken in all of ON’s siblings. In contrast, AC
will only take one small-step to process the same input. Therefore, AC must keep
its outputs constant while waiting for HEATER to complete the steps of its ordered-
composition. AC can only begin executing again at the next big-step, i.e., when
HEATER is back in state DO of ON. At step i+2, which is a new big-step, both
features can process another set of inputs. Thus, the sys stable macro is used as
a condition to make a feature idle when another feature is still processing an input
following its ordered-composition, such as taking a transition in the first component of
the innermost ordered-composition operator in each feature (line 37 of Figure 4.11) or
taking any transition in a feature with no ordered-composition (line 8 of Figure 4.14).
If sys stable is not true, the value of a feature’s outputs are held constant (as in
lines 63–68 of Figure 4.14).

2. Because feature interactions are detected as contradictory output requests to actu-
ators, defined by parameterized events, from the features under consideration, the
Boolean variables associated to parameterized events must follow remainder se-
mantics [72]. Remainder semantics mean that the value of the event requested per-

9This aspect of our approach is similar to that used by Chan et al. [49] to model the semantics of
RSML, except that the definition of when the inputs are allowed to change is quite different.

64

sists throughout the big-step, so its value can be available at the big-step boundary.
The update of a parameterized event is as follows:

• If a request to an actuator is made as an action associated to the transition
taken at the current small-step, then the variable’s new value corresponds to
the feature’s request to the actuator, and the value of the Boolean is set to true,
i.e., set to 1. For instance, the Boolean variable therm req is set to 1 in line
56 of Figure 4.14 because its corresponding variable set thermA requests the
temperature to decrease by one in line 55.

• If no request to an actuator is made in the current transition taken, the value
of the variable retains its previous value, unless the current small-step is at
sys stable, where the Boolean’s value is reset to false, i.e., set to 0. This con-
dition is illustrated in line 14 of Figure 4.14. Because the result of the condition
is Boolean, it could be simply reduced to (!sys stable & therm req), which
is equivalent to the expression (sys stable ? 0 : therm req).

4.8 Related Work

This section describes related work on translating Stateflow to the input language of
formal analysis tools, as well as briefly describing other translators to SMV.

Banphawatthanarak and Krogh [18] translate Stateflow to SMV by creating an
SMV module per OR- and AND-state, plus a module to coordinate the status of AND-
states (i.e., ‘not-active’, ‘active-active’, or ‘active-wait’). The conditions for making tran-
sitions to each of these states are passed as parameters to the coordinator AND-state
module. Our solution is much simpler. In addition, they only support Boolean variables,
and do not support transition actions, needed in our features to model actuator request.
In [18], each feature is analyzed only in isolation so they did not consider the semantics of
the integration of features necessary to detect feature interactions.

Whalen et al. [181, 133] developed a framework to translate Stateflow into the in-
put language of various formal methods tools, with NuSMV [54] being one of them. This
translator framework, an in-house tool at Rockwell Collins [4], takes as input the specifica-
tion language Lustre [85], and therefore, a Stateflow model is first imported into Lustre
using the Esterel Technologies SCADE Suite [1] or the Reactis [3] tool. Once in Lustre,
several transformation passes are performed until a specification is sufficiently close to the
target language. However, there are no details as to how the elements of Stateflow are
mapped into SMV, and a comparison with mdl2smv is not straightforward. Nevertheless,
unlike this translator framework that depends on the SCADE suite or Reactis, mdl2smv
is a stand-alone tool. Also, their translator framework intends to produce models that are
analyzed in isolation, thus, not considering the semantics of the integration of models.

65

There have been several previous efforts to translate Stateflow to the input languages
of other model checkers. These efforts either (1) did not include a translation for State-
flow AND-states (e.g., Camera [46] – Stateflow to VHDL, Pingree and Mikk [145] –
Stateflow to Spin); or (2) mapped ordered-composition to the Statecharts semantics of
AND-states (e.g., Kalita and Khargonekar [106] – Stateflow to STeP); or (3) analyzed
features only in isolation and did not consider the semantics of the integration of features
necessary to detect feature interactions (e.g., Scaife et al. [157] – Stateflow to Lustre).
Agrawal et al. [12] use a graph rewriting approach to convert a subset of Stateflow
to Hybrid Automata. Their approach involves flattening to a much more primitive state
machine.

There have been other efforts to translate big-step languages into SMV. However, the
semantics of those big-step languages are different from the semantics of Stateflow.
Chan et al. [49] present the translation of the Requirements State Machine Language
(RSML) [123] into SMV. Lu et al. [127] describe how to use the semantic decomposition
provided by template semantics [137] to parameterize the translation from a requirements
notation to the input language of Cadence SMV and NuSMV.

4.9 Summary

This chapter described how to map models designed using a subset of Matlab’s State-
flow to the modelling notation of SMV, preserving the semantics of individual State-
flow models, and also preserving the concurrent behaviour of an integrated set of State-
flow features. The key aspects of the translation explained in this chapter are:

• The sequential execution of an ordered-composition modelled in SMV ensures that
(1) each sibling executes following a predefined order, one sibling per small-step, and
(2) the inputs are semi-controlled, so that all the siblings in an ordered-composition
react to the same set of inputs, using a macro stable per feature.

• The parallel execution of features in the integrated model modelled in SMV ensures
that (1) each feature follows its own execution constraints, such as sequential exe-
cution for ordered-compositions, (2) the inputs are semi-controlled, so all features
react to the same set of inputs using the macro sys stable to define when the inputs
can change, and (3) a feature that has fewer siblings in its ordered-composition or
contains no ordered-composition has to idle and hold its outputs constant while the
other features in the integrated model complete their execution, also with the help
of the macro sys stable.

• The use of parameterized events for output requests to actuators, thus, making the
request available and recognizable at the big-step boundary, defined by sys stable.

66

Chapter 5

Detecting and Representing all
Different Counterexamples to an
Invariant: Alfie

This chapter describes a novel method for generating a representation of the set of all
counterexamples to an invariant for an extended finite state machine (EFSM) model by
modifying the property being verified. Verification of invariants using model checking
can find errors in a model by generating a counterexample. But because the set of all
counterexamples is often too large to generate or comprehend, my method represents the
complete set of counterexamples using one representative from each of a set of equivalence
classes. These equivalence classes are based on the control states and transitions of the
EFSM. I define four different definitions of equivalence. I call these levels of counterexample
equivalence classes. This summarization of counterexamples is accomplished on-the-fly
during iterations of the model checker.

The present chapter is organized as follows. Section 5.1 provides motivation and an
overview of the process for finding all equivalence classes of counterexamples to an in-
variant for an EFSM. In Chapter 6, I extend this method to handle pairs of Stateflow
models to detect feature interactions. Section 5.2 defines the generic EFSM formalism used
and describes the paths generated by an EFSM. From these paths, the ones that fail an
invariant, i.e., the counterexamples, are defined in Section 5.3. A finite representation of
the set of counterexamples generated by an EFSM is defined in Section 5.4. Section 5.5
describes the levels of counterexample equivalence classes, while Section 5.6 shows how the
equivalence classes for each level can be represented in LTL on-the-fly. I demonstrate the
use of my methodology on four individual automotive feature design models (an EFSM
with hierarchy) in Section 5.7. Section 5.8 discusses related work.

67

5.1 Process Overview

An invariant is a property that must be true at all times during the execution of the
model. When the invariant fails, the model checker generates a counterexample, which is
a path showing a behaviour that fails the property. The traditional use of model checking
follows a cycle of find bug - fix bug - re-run model checker, until no more counterexamples
are found. It can be useful to find multiple or all bugs prior to fixing the model to help
isolate the cause of the error [17, 60, 84, 51], as one counterexample by itself may not
contain enough information to correctly fix the bug [60]. Moreover, seeing all bugs at
once rather than the user iterating over this cycle can improve the user’s experience of
model checking in a similar way that a compiler returns all (or multiple) errors in one
pass [17, 60, 51]. This process also likely reduces the amount of time it takes to create a
correct model.

There is no single definition of what a distinct bug in a model is. Complex systems
are often described using a form of state machine model because these languages match
the internal conceptual models that people use to understand such systems [122]. State
machines have explicit control states and transitions that manipulate data in triggers and
actions. States and transitions are how a user has partitioned the description of the
behaviour of a system. Therefore, the paths through a state machine provide a way of
differentiating one bug from another, as all paths through the same control states and
transitions are similar to a modeller despite data variations. I focus on extended finite
state machine (EFSM) [52] models as many commonly-used modelling languages are based
on EFSMs (e.g., Statecharts [89], Specification and Description Language (SDL) [7]). This
chapter presents a method to produce automatically one counterexample for each distinct
path of an EFSM that fails the invariant, i.e., has a bug.

Detecting multiple counterexamples requires either (1) a change to the model checking
engine (e.g., [93, 60, 98]) or (2) the creation of an automatic method that iteratively
changes either (a) the model or (b) the property, until a sufficient set of counterexamples
is generated. Some model checkers, such as SPIN [93], generate all counterexamples by
having the model checking algorithm continue to search the state space after finding a
counterexample until no more counterexamples exist. Yet, most of these counterexamples
are slight data variations of each other. Moreover, it can take a long time to generate all
counterexamples and the result is often too large to comprehend, providing little help in
isolating the actual bugs.

Ball et al. [17] follow the approach of modifying the model: they use a method that,
when a counterexample is generated, identifies a transition in the counterexample that
does not appear in the set of correct paths computed by their method so far. Then, the
identified transition is removed from the model and their method continues, searching
for another counterexample. By changing the model, they eliminate the possibility of

68

finding a different path that includes the removed transition and, therefore, the set of
counterexamples generated is not complete, i.e., it may not include a representative of all
distinct paths that fail the invariant. If the bug is actually caused by a combination of
factors along the path, an incorrect resolution may be chosen, thus, leaving the model still
susceptible to failures.

I propose a solution to the problem of generating all counterexamples based on the
third possible approach: automatically modifying the property. In contrast to modifying
the model checking engine or the model, our method can work with any linear temporal
logic (LTL) [128] model checker (explicit or symbolic) and it covers the complete set of
counterexamples to an invariant because the model is never changed during the process.
However, instead of generating all counterexamples (which can be a set too large to com-
prehend and generate), one counterexample per equivalence class is generated, returning
to the user a representative counterexample in each equivalence class. These equivalence
classes can be thought of as meaningful groupings of distinct errors in the model.

My method and tool, both called Alfie, work on-the-fly iterating the model checker:
after a counterexample describing a bug is produced, it forces the model checker to search
for a distinct EFSM path with a bug, thus, greatly reducing the number of iterations of the
model checker compared with approaches that generate all counterexamples (with all data
variations) and then summarize the results (e.g., [60]). It is fairly straightforward to create
a property that disallows a previously seen counterexample (disjunct the invariant with a
property describing the counterexample path seen), thus, the main contribution of my work
is the way we ensure that the property we add disallows any counterexample in the same
equivalence class to be generated. This “on-the-fly” summarization nature of my method
dramatically reduces the time it takes to produce a useful set of counterexamples. The
manageability and usefulness of the results generated by Alfie are discussed in Section 5.5,
where the reduction achieved by my method is illustrated, and in Chapter 7, where my
case study with automotive active safety features is described.

Alfie executes a cycle of (1) run model checker to find a counterexample, (2) find the
equivalence class of the counterexample according to the chosen level and represent it in
LTL, and (3) re-run model checker on the same model with the LTL property that rules out
all counterexamples within the same equivalence class. The idea of grouping paths based
on control states and transitions of the model’s EFSM can be instantiated several ways. I
define four different levels, each of which groups the complete set of counterexamples into
equivalence classes on-the-fly based on their properties in the EFSM. For example, one
level groups together all counterexamples that follow the same sequence of transitions in
the EFSM; or if a modeller wants less detail, then another level groups all counterexamples
that end at the same control state together. I describe how each level can be useful to
isolate the error at different times during the analysis process.

69

The main contributions of this chapter are:

• Several definitions of equivalence classes of counterexamples. Each definition offers an
idea of what is considered a distinct bug in a level, thus avoiding paths that are just
slight data variations of each other.
• Representation of these equivalence classes as LTL properties. These representations

were challenging to create because of the loops found both in Kripke structures and
EFSMs as we consider the infinite paths of a finite EFSM.

5.2 Extended Finite State Machines (EFSMs)

An EFSM is a model with a finite set of control states and labelled transitions, but extended
with variables [52]. These variables can be used in triggers or as part of the actions of the
transitions. An EFSM is used to describe paths in a system’s execution. I explain my
method using a generic flat EFSM, but it will be generalized to models with hierarchical
control states in Section 5.7. Figure 5.1 is an example of a simple EFSM. Graphically,
control states are represented as nodes with transitions as edges, and an initial control
state is designated with an edge that has no source control state.

A B

t
1
: (p ∧ q) / r=1

Figure 5.1: Example of simple EFSM

Definition 5.1 The syntax of an EFSM consists of a tuple

〈 CS, InitCS, V, InitV, T 〉
where

• CS is a finite set of control states.

• InitCS is a set of initial control states (InitCS ⊆ CS).

• V is a finite set of typed variables with

– V = IV ∪ OV ∪ LV, where IV is a set of input variables, OV is a set of output
(controlled) variables and LV is a set of local variables;

– The sets IV, OV and LV are disjoint.

• InitV is a set of sets of initial values for variables. Each set contains one pair for
each variable. The first component of the pair is a variable in V, and the second
component is the variable’s initial assignment drawn from the variable’s type.

70

• T is a finite set of progressing transitions. Each t ∈ T, with t = n : s
(c)/a−−−→ s′, has

– a name n, accessed by function name(t),

– a source control state s ∈ CS, accessed by function src(t),

– a destination control state s′ ∈ CS, accessed by function dst(t),

– a label of the form (c)/a, where (c) is an optional condition on the variables
in V called a guard, accessed by function guard(t), and a is an optional set
of assignments to variables in (OV ∪ LV) called actions, accessed by function
actions(t). There are never two assignments to the same variable in a set of
actions1.

Guards are specified in a language over variables in V that produces Boolean expres-
sions, whereas actions are written in a language over variables that produces assignments
to these variables. The particular selection of these languages is not further discussed as
my method is independent of these languages. Events, which are often present in EFSMs,
can be modelled as Boolean variables with values that do not persist.

Semantically, every control state implicitly has a single self-looping transition, which is
taken when no guard on any other transition exiting the state is satisfied. These transitions
are called non-progressing and have no actions associated with them, but input changes
may occur. Non-progressing transitions have no effect on control states and output vari-
ables, and every control state has one such transition, thus, tn is used as the transition
name for all non-progressing transitions in the EFSM. A self-looping progressing transition
in T with no guard or actions implicitly has the guard true, unlike a non-progressing tran-
sition, whose guard is the conjunction of the negation of the guards of any other transition
exiting the state. Non-progressing transitions ensure that at every configuration there is a
next configuration. In this dissertation, I use the name of the transition when referring to
the transition itself. Therefore, I use the phrase “the transition t1” to mean “the transition
with name t1”.

To define the behaviour of an EFSM formally, let’s first define a configuration of an
EFSM as follows to represent a moment in the execution of an EFSM.

Definition 5.2 A configuration σ of an EFSM is a triple 〈s, n, val〉 that consists of

• s, a control state in CS,

• n, the name of the last transition taken, with value tn for non-progressing transitions
or name(t) for progressing transition t in T,

• val, a set of pairs, where the first component of each pair is a variable in V, and the
second component is the variable’s assignment from the variable’s finite type.

1This restriction is to avoid race conditions in this simple model.

71

There is a finite number of possible configurations, although they might not all be reachable.

Definition 5.3 The set of initial configurations σinit of an EFSM consists of triples
〈sinit, ninit, valinit〉, where

• sinit ∈ InitCS,

• ninit ∈ (T ∪ {tn}) (no restriction on transitions taken),

• valinit ∈ InitV, a set of initial assignments to variables.

To define the next configuration during the execution of a model, the next step relation is
introduced.

Definition 5.4 The step relation δ defines the next step of the model’s execution as
δ(σX , σY), with σX = 〈sX , nX , valX〉 and σY = 〈sY , nY , valY 〉, where

for a progressing transition, t ∈ T |
• nY = name(t),

• sX = src(t),

• sY = dst(t),

• valX ∈ V is a set of assignments to variables satisfying the conditions in guard(t),

• valY is a set of assignments to variables, where the assignment of local and
output variables to values are defined by actions(t) using the values of valX .
Any local or output variable that is not assigned explicitly a value in actions(t)
keeps its value in valX . Inputs may change their values non-deterministically.

or

for a non-progressing transition, nY = tn |
• sX = sY

• ∀ t ∈ T • (sX = src(t)) ⇒ valX does not satisfy conditions in guard(t),

• valY is a set of assignments to variables, where the assignment to local and
output variables are the same as in valX , while input variables may change
their values non-deterministically.

Example: For the model in Figure 5.1, a step of execution occurs when the model is
in source control state A and the input variables p and q have the value true. Then,
transition t1 is taken, leading the model to control state B, and changing the value of
the controlled variable r to 1.

72

Definition 5.5 The set of paths of an EFSM is called AllPaths and defined as:

AllPaths = { 〈σ0, σ1, · · · , σn, · · · 〉 | σ0 ∈ σinit ∧ ∀i ≥ 0 • δ(σi, σi+1) }

Even though there is a finite number of configurations (because the number of states and
transitions is finite and the domains from which the variables take values are finite), a single
path is infinite because every configuration always has a next configuration. Moreover, the
set of all paths in the EFSM can have an infinite number of elements since there can be
an infinite number of iterations of the loops that are part of the model.

For the flawed model of an air conditioning (AC) system in Figure 5.2 (introduced in
Chapter 1 and repeated here for convenience), some examples of paths in AllPaths are
shown in Table 5.1, with loops indicated by a bar at the left.

OFF IDLE ON

(e=enter∧ t ≤ 1) /
1
: t

pt=t

4
: t (t ≥ 1) / pt=t

2
: t (e=exit) / pt=t

5
: t (t ≤ 2) / pt=t

6
: t (e=exit) / pt=t

(e=enter ∧ t > 1) /
3
: t pt=t

AC

Figure 5.2: Example EFSM of a flawed air conditioning (AC) model

path p 1 path p 2 path p 3
〈(OFF, tn, e=exit, t=0, pt=0), 〈(OFF, tn, e=enter, t=0, pt=0), 〈(OFF, tn, e=enter, t=1, pt=0),
(OFF, tn, e=enter, t=1, pt=0), (IDLE, t1, e=exit, t=1, pt=0), (IDLE, t1, e=enter, t=1, pt=1),
(IDLE, t1, e=exit, t=0, pt=1), (OFF, t2, e=enter, t=0, pt=1), (ON, t4, e=exit, t=1, pt=1),
(OFF, t2, e=enter, t=1, pt=0), (IDLE, t1, e=exit, t=1, pt=0), (OFF, t6, e=enter, t=0, pt=1),
· · · 〉, (OFF, t2, e=exit, t=0, pt=1), · · · 〉,

· · · 〉,
path p 4 path p 5 path p 6

〈(OFF, tn, e=enter, t=1, pt=0), 〈(OFF, tn, e=enter, t=2, pt=0), 〈(OFF, tn, e=enter, t=2, pt=0),
(IDLE, t1, e=enter, t=1, pt=1), (ON, t3, e=enter, t=2, pt=2), (ON, t3, e=enter, t=2, pt=2),
(ON, t4, e=enter, t=1, pt=1), (IDLE, t5, e=enter, t=1, pt=2), (IDLE, t5, e=enter, t=2, pt=2),
(IDLE, t5, e=enter, t=1, pt=1), (ON, t4, e=exit, t=0, pt=1), (ON, t4, e=enter, t=1, pt=2),
(ON, t4, e=enter, t=1, pt=1), · · · 〉, · · · 〉,
· · · 〉,

path p 7 path p 8
〈(OFF, tn, e=enter, t=0, pt=0), 〈(OFF, tn, e=enter, t=2, pt=0),
(IDLE, t1, e=enter, t=2, pt=0), (ON, t3, e=enter, t=0, pt=2),
(ON, t4, e=enter, t=2, pt=2), (IDLE, t5, e=enter, t=1, pt=0),
(IDLE, t5, e=exit, t=1, pt=2), (ON, t4, e=enter, t=0, pt=1),
(OFF, t2, e=enter, t=0, pt=1), (IDLE, t5, e=enter, t=1, pt=0),
· · · 〉, · · · 〉,

Table 5.1: Example of paths in AllPaths for AC shown in Figure 5.2

73

5.2.1 EFSM as Kripke Structure (KS)

The meaning of an EFSM can be described in a Kripke structure (KS). A KS is the
model usually used to represent a system for a model checking algorithm. Each KS state
represents a configuration of the model, as a σ in Definition 5.2. In a KS, the control
states of an EFSM are typically modelled as a variable with the control state names as
values. The other EFSM variables are modelled as KS variables of appropriate finite types.
Figure 5.32 shows the KS for the EFSM in Figure 5.1, repeated here for convenience. In
this example, the EFSM has two control states, whereas the Kripke structure has 8 KS
states. Transition t1 in Figure 5.1 corresponds to four transitions in the KS. One can see
that the control states of the EFSM are abstractions created by the modeller to group
together a set of past behaviours that have the same set of possible future behaviours. The
KS state space is the reachable set of KS states within the cross product of the possible
values of all the KS variables. The KS state space is usually significantly larger than the
set of control states of the EFSM.

B, ,q,r=1,t
1
 B,p, ,r=1,t

1
B,p,q,r=1,t

1

A,p,q,r=0,t
n

p qB, , ,r=1,t
1
 p q

A,p, ,r=0,t
n

A, ,q,r=0,t
n

A, , ,r=0,t
n

p

q qp

1 MODULE main() {

2 tr : {tn, t1};

3 cs : {A, B};

4 p, q, r : boolean;

5 init(tr) := tn;

6 init(cs) := A;

7 init(r) := 0;

8

9 switch(cs){

10 A: if (p & q) {

11 next(tr):=t1;

12 next(cs):=B;

13 next(r)=1;

14 } else {

15 next(tr):=tn;

16 next(cs):=cs;

17 next(r)=r;

18 }

19

20 B: {

21 next(tr):=tn;

22 next(cs):=cs;

23 next(r)=r;

24 }

25

26 }

Figure 5.3: Kripke structure and SMV model for EFSM in Figure 5.1

A B

t
1
: (p ∧ q) / r=1

Figure 5.1: Example of simple EFSM (from page 70)

A KS is the underlying structure of a SMV model. Figure 5.3 also shows an SMV
model of the KS of Figure 5.1. In the SMV model, the variable name cs has the value of
the current control state of the configuration. The variable tr has the value of the name of

2I use p̄ to mean p=0, i.e., p is false.

74

the last transition taken in the model3. To facilitate the representation of configurations
and to make LTL properties easier to understand in this dissertation, in the text I use
directly the values of the control states and the names of the transitions instead of relating
them to their variable names cs and tr, i.e., instead of tr= t1, I will write t1. In the SMV
model of Figure 5.3, the variables p and q are input to the model and they are allowed to
change non-deterministically at each step in the model’s execution (i.e., there are no next
statements for these variables), whereas r is a controlled variable. The step relation δ is
implemented in SMV by the next statements that are part of the model. LTL properties
for a model checker are written in terms of KS variables. The counterexamples generated
by SMV are in terms of configurations (i.e., KS states).

5.3 Counterexample Paths

From all the paths of an EFSM, I am interested in the paths in which an invariant property
fails. An invariant (inv) is a predicate on configurations, which should be true in all
configurations of all paths. If an invariant fails, then an error must have occurred. A
counterexample is any path of the model that contains a configuration σk, for some k, in
which the invariant fails. The set CE is defined as:

CE = { 〈σ0, σ1, · · · , σk, · · · 〉 | 〈σ0, σ1, · · · , σk, · · · 〉 ∈ AllPaths ∧ ¬inv(σk)}
As explained in Section 2.3, a model checker can return as a counterexample: 1) a finite

prefix of a path in CE or 2) a finite prefix with a cycle at the end.

Example: For model AC in Figure 5.2, an invariant property to check is that ‘the previous
temperature has to be less than or equal to 1 for AC to be in IDLE, unless AC is in control
state OFF’, formally described in LTL as: inv = (((pt ≤ 1) ↔ IDLE) ∨ OFF). However,
for the property G(inv), several counterexamples can be generated by a model checker,
which the modeller can think of as distinct errors. Two of these counterexamples for AC
are shown next, which refer to the paths shown in Figure 5.1 and are marked in the AC
model in Figure 5.4. In Section 5.5, I will introduce a method to generate and represent
all the distinct errors in a model.

(1) Path p 3 has ¬inv(σ2) where σ2=(ON,t4,e=exit,t=1,pt=1), thus, it reports an error that
occurs when reaching ON while previous temperature is 1 because the condition on
transition t4 is ≥ instead of >;

3 The transition name may not be necessary for the computation of the counterexamples. However,
because I make use of them in the on-the-fly grouping method presented in Section 5.6, I include them
in the model. They cannot be implemented as a macro because, in Cadence SMV, the macro may not
appear in counterexamples due to cone of influence reduction.

75

(2) Path p 5 has ¬inv(σ3) where σ3=(IDLE,t5,e=enter,t=1,pt=2), thus, it shows an error that
occurs when reaching IDLE while previous temperature is 2 because the condition on
the transition t5 is set to 2 instead of 1.

OFF IDLE ON

(e=enter∧ t ≤ 1) /
1
: t

pt=t

4
: t (t ≥ 1) / pt=t

2
: t (e=exit) / pt=t

5
: t (t ≤ 2) / pt=t

6
: t (e=exit) / pt=t

(e=enter ∧ t > 1) /
3
: t pt=t

AC

(2)

(1)

Figure 5.4: Example EFSM of an air conditioning (AC) model

5.4 Failed Invariant Paths (FIPaths)

A counterexample returned by the model checker is a finite path (represented as a finite
prefix with a cycle at the end, as described in Chapter 2). However, for generality, I
consider the whole set CE of infinite paths when defining my equivalence classes because,
when asking for another counterexample, the model checker can generate one seen before
with the same loop iterated. Therefore, I define the levels of equivalence classes in terms
of the set FIPaths (failed invariant paths), a finite representation of CE. FIPaths is a
finite set of finite paths. FIPaths is defined as follows, with every function of the definition
illustrated in Figure 5.5:

FIPaths = {q | ∃c ∈ CE •
q = reduce vals(reduce init config(reduce config loops(trunc(progress(c))))}4

where:

• progress(c): Removes all non-progressing transitions from c to avoid stuttering, ex-
cept for a constant loop of non-progressing transitions that might appear at the end
of the path if the model reaches a final control state. The inputs in the last con-
figuration of a sequence of non-progressing transitions are the only ones that might
cause the error and these are copied back to the configuration with the progress-
ing transition just before the sequence begins. For example, the configurations σ10
and σ11 in path c of Figure 5.5 contain non-progressing transitions, and therefore,
they are eliminated from the path by progress, and the inputs of σ11 are copied to
configuration σ9.

4It might appear easier to swap functions trunc and progress in the definition to avoid dealing with loops
at the end. However, as it will be seen in Section 5.6, this order is more convenient for implementation.

76

• trunc(c): Creates the subpath of c that ends in the first configuration that fails the
invariant. My analysis concentrates on paths to the first configuration where the
invariant fails because any other configuration that fails the invariant after the first
one could have been caused by the first error. For example, path c in Figure 5.5
is truncated at configuration σ8, which is the first configuration in c that fails the
invariant.

• reduce config loops(c): Removes all configuration loops from c. A configuration
loop is one that reaches the same configuration more than once in c. These loops
are unnecessary because the path without these loops has all the steps that cause
the error. For example, the configuration loop 〈σ1,σ2,σ3〉 is the same as the config-
uration loop 〈σ3,σ4,σ5〉, therefore, the loops are removed as the path does not lose
any information to reach a failed invariant.

• reduce init config(c): Removes from c a loop that starts at an initial configuration
and reaches another initial configuration, where an initial configuration is described
in Definition 5.3. This loop contains excessive information because the bug can be
reached without traversing this loop. For example, reaching a second initial config-
uration like σ2 does not contribute to finding a bug in the model, and therefore, the
initial configuration loop 〈σ1,σ2〉 is eliminated.

• reduce vals(c): Removes from c: (1) the value of the transition name in the first
configuration and (2) the input variables in the final configuration of the path. The
transition name contains the last transition taken and the inputs to the model are
used to calculate the next configuration (not the current configuration) and therefore
neither values contribute to the computation that fails the invariant.

I also use FIPaths as a function that takes an element of CE and maps it to an element
of FIPaths, i.e., FIPaths(c) produces the element of FIPaths that c maps to.

More concretely, I illustrate the use of the definition with the following counterexample
for model AC in Figure 5.2:

〈(OFF, tn, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=0, pt=1),
(IDLE, tn, e=enter, t=0, pt=0),
(IDLE, tn, e=enter, t=1, pt=0),
(ON, t4, e=exit, t=2, pt=1),
(OFF, t6, e=enter, t=1, pt=2),
· · · 〉

with (a) a loop of non-progressing transitions indicated by a bar at the left, eliminated
by progress, (b) the configuration that fails the invariant in bold, with any configuration
after that one truncated by trunc, and (c) the application of reduce vals to the resulting
subpath, therefore generating the following element of FIPaths (where reduce config loops
and reduce init config had no effect on this path):

77

〈(OFF, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=0),
(ON, t4, pt=1)〉.

!
tn tn

(1) progress:

(2) trunc:

A path with non-progressing loops is
represented by a path without those loops

A path to the first configuration that fails
the invariant is represented by a path

without the rest of the path's configurations
(3) reduce_config_loops:

A path with multiple loops that reach the same
configuration is represented by a path without

such configuration loops

FIPath from c:

c:

(5) reduce_vals:

A path without the transition name in the first
configuration and without the input values in the

last configuration is represented by a path without
this information

σ
0

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
7

σ
8

σ
9

σ
10

σ
11

σ
12

σ
13

σ
14

!

σ
0

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
7

σ
8

σ
9

σ
12

σ
13 σ

14

σ
0

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
7

σ
8

(4) reduce_init_config:

A path that reaches another initial configuration
after the first one is represented by a path without

that loop

σ
0

σ
1

σ
2

σ
3

σ
6

σ
7

σ
8

σ
3

σ
6

σ
7

σ
8'

σinit σinit

¬inv(σ8)

σ
1

〈 ,σ
2
,σ
3〉= σ

3
〈 ,σ

4
,σ
5〉

σ
0'

A B C B C B D E F

Figure 5.5: Paths in CE are represented by elements of FIPaths

The set of configurations is finite because the number of states and transitions is finite
plus the domains from which the variables can take values are also finite. The elements of
FIPaths are finite sequences of configurations because paths end at the first configuration

78

that fails the invariant and contain only one instance of any configuration loop. The set
FIPaths is finite because a path is truncated and any instance of a configuration loop is
removed.

One element of FIPaths is generated from every path in CE. Figure 5.6 illustrates the
mapping of elements of CE to elements of FIPaths with respect to the paths shown in
Figure 5.1, where configurations that fail the invariant are in bold.

p_3

FIPath_1

p_5

FIPath_2

p_4

p_6

〈(OFF, tn, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=1),
(ON, t4, e=exit, t=1, pt=1),
(OFF, t6, e=enter, t=0, pt=1), · · · 〉

〈(OFF, tn, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=1),
(ON, t4, e=enter, t=1, pt=1),
(IDLE, t5, e=enter, t=1, pt=1), · · · 〉

〈(OFF, tn, e=enter, t=2, pt=0),
(ON, t3, e=enter, t=2, pt=2),
(IDLE, t5, e=enter, t=1, pt=2),
(ON, t4, e=exit, t=0, pt=1), · · · 〉

〈(OFF, tn, e=enter, t=2, pt=0),
(ON, t3, e=enter, t=2, pt=2),
(IDLE, t5, e=enter, t=2, pt=2),
(ON, t4, e=enter, t=1, pt=2), · · · 〉

〈(OFF, e=enter, t=2, pt=0),
(ON, t3, e=enter, t=2, pt=2),
(IDLE, t5, pt=2)〉

〈(OFF, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=1),
(ON, t4, pt=1)〉

Figure 5.6: Paths in CE that become elements of FIPaths

5.5 Counterexample Equivalence Classes

Within the general idea of grouping counterexamples based on control states and transi-
tions, there are more precise groupings that may be useful at different times during the
analysis process. These groupings define what one can consider to be distinct bugs. I chose
these levels of counterexample equivalence classes based on what is deemed as relevant and
useful in the literature and my case studies, but other levels could be defined.

The following notation is used to describe the levels of equivalence classes, where by
definition, if p = 〈σ0,· · · ,σk〉 ∈ FIPaths then it is always holds that ¬inv(σk):

• FICS : The set of control states that are in a reachable configuration in which the
invariant fails.

79

FICS={ sk | ∃ p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σk = 〈sk, nk, valk〉 }

• FIT : The set of transitions that are in a reachable configuration in which the invariant
fails, which are the transitions that lead to a state in FICS.

FIT ={ nk | ∃ p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σk = 〈sk, nk, valk〉 }

• fst cs(p): The control state of the first configuration in path p.

fst cs(p)=s0 if p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σ0 = 〈s0, n0, val0〉

• lst cs(p): The control state of the last configuration in path p.

lst cs(p)=sk if p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σk = 〈sk, nk, valk〉
By definition, lst cs(p) ∈ FICS.

• lst trans(p): The last transition taken in path p.

lst trans(p)=nk if p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σk=〈sk, nk, valk〉
By definition, lst trans(p) ∈ FIT.

• trans seq(p): The finite sequence of transitions taken in path p.

trans seq(p)=n0,..,nk if p = 〈σ0,· · · ,σk〉 ∈ FIPaths ∧ σi=〈si, ni, vali〉|0≤i≤k

• all but last(p): The finite sequence of configurations in path p except for the last one.

all but last(p)=σ0,· · · ,σk−1 if p = 〈σ0, · · · , σk〉 ∈ FIPaths

• reduceEFSM (p): Removes EFSM loops from path p. An EFSM loop is one that
reaches the same control state in p more than once.

reduceEFSM (p)=〈σ0,· · · ,σi,· · · ,σk〉 if p = 〈σ0,· · · ,σi,· · · ,σj,· · · ,σk〉 ∈ FIPaths |
∀i, j • σi=〈si, ni, vali〉 ∧ σj=〈sj, nj, valj〉 ∧ si = sj ∧ i 6= j

The notation [x] is used for the equivalence class of x, which consists of the set of equivalent
elements of FIPaths in the class x. x may be a control state, a path, or a transition, etc.

I present my levels of equivalence classes defined over the set FIPaths in order from
the most detailed to the least detailed. I use the model AC in Figure 5.2 to present
the counterexample equivalence classes created by each of the levels, which are shown in
Table 5.2. The number beside an equivalence class in Table 5.2 indicates the elements
of FIPaths in the class, illustrating the reduction achieved by my method since only one
representative counterexample is presented to the user for each equivalence class. The
total number of elements of FIPaths for the model is 45, with some of these elements
shown in Table 5.3. The calculation of the number of elements of FIPaths is described in
Section 5.6.5.

80

Level 1 Level 2 Level 3 Level 4
[〈t1, t4〉] – 18

[t4] – 30 [OFF,ON] – 30 [ON] – 30
[〈t3, t5, t4〉] – 12

[〈t3, t5〉] – 9
[t5] – 15 [OFF,IDLE] – 15 [IDLE] – 15

[〈t1, t4, t5〉] – 6

Table 5.2: Counterexample equivalence classes for Figure 5.2.
The total number of elements of FIPaths is 45.

5.5.1 Level 1: Distinct Paths

I expect Level 1 to be the most commonly chosen level for analysis as it captures one rep-
resentative of each distinct path through the EFSM that contains an error. My definition
groups paths with multiple iterations of an EFSM loop together because they may seem
the same from the user’s perspective, not adding information as to the cause of the error.
For example, the path of the model AC in Figure 5.2, with ON in FICS

〈OFF-t1-IDLE-t2-OFF-t1-IDLE-t4-ON〉
shows the same error information, from the user’s perspective, as the EFSM path

〈OFF-t1-IDLE-t2-OFF-t1-IDLE-t2-OFF-t1-IDLE-t4-ON〉
and also the same information regarding the error as the path without EFSM loops

〈OFF-t1-IDLE-t4-ON〉.
In this case, the user would rather see another path that shows a different kind of error!
Thus, I consider all paths with iterations of an EFSM loop to be equivalent to one without
such loops, using reduceEFSM in the definition of Level 1.

However, EFSM loops that end in the configuration that fails the invariant cannot
be eliminated without losing too much information because the actions on the transition
leading to the failed configuration might be needed to help identify the cause of the error.
Therefore, I make Level 1 differentiate paths by their last transition because these paths
share the same potential error cause regardless of any EFSM loops in the rest of the path.
The immediate cause of the failure (though not necessarily the bug in the model) can then
be found by analyzing the guard or the actions of this transition. In Figure 5.7, bugs are
differentiated by their last transition, otherwise, path 〈t1, t2, t2〉 and path 〈t1, t3, t3〉 would
both be reduced to 〈t1〉 by reduceEFSM with respect to C. Instead, Level 1 generates the
equivalence classes [〈t1, t2〉] and [〈t1, t3〉].

81

〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=2, pt=2), (IDLE, t1, e=enter, t=1, pt=1), (IDLE, t1, e=enter, t=1, pt=0),
(IDLE, t5, pt=2)〉 (ON, t4, pt=1)〉 (ON, t4, pt=1)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=0, pt=2), (IDLE, t1, e=enter, t=2, pt=1), (IDLE, t1, e=enter, t=2, pt=0),
(IDLE, t5, e=enter, t=1, pt=0), (ON, t4, e=enter, t=2, pt=2), (ON, t4, e=enter, t=0, pt=2),
(ON, t4, pt=1)〉 (IDLE, t5, pt=2)〉 (IDLE, t5, pt=2)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=0, pt=2), (IDLE, t1, e=enter, t=2, pt=1), (IDLE, t1, e=enter, t=2, pt=0),
(IDLE, t5, e=enter, t=2, pt=0), (ON, t4, e=enter, t=0, pt=2), (ON, t4, e=enter, t=0, pt=2),
(ON, t4, e=enter, t=2, pt=2), (IDLE, t5, e=enter, t=1, pt=0), (IDLE, t5, e=enter, t=1, pt=0),
(IDLE, t5, pt=2)〉 (ON, t4, pt=1)〉 (ON, t4, pt=1)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=1, pt=0), (ON, t3, e=enter, t=2, pt=2), (ON, t3, e=enter, t=2, pt=2),
(ON, t4, pt=1)〉 (IDLE, t5, pt=2)〉 (IDLE, t5, pt=2)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=2, pt=0), (ON, t3, e=enter, t=1, pt=2), (IDLE, t1, e=enter, t=2, pt=1),
(ON, t4, e=enter, t=2, pt=2), (IDLE, t5, e=enter, t=1, pt=1), (ON, t4, e=enter, t=2, pt=2),
(IDLE, t5, pt=2)〉 (ON, t4, pt=1)〉 (IDLE, t5, pt=2)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=1, pt=2), (ON, t3, e=enter, t=0, pt=2), (ON, t3, e=enter, t=0, pt=2),
(IDLE, t5, e=enter, t=2, pt=1), (IDLE, t5, e=enter, t=2, pt=0), (IDLE, t5, e=enter, t=2, pt=0),
(ON, t4, e=enter, t=2, pt=2), (ON, t4, e=enter, t=2, pt=2), (ON, t4, e=enter, t=2, pt=2),
(IDLE, t5, pt=2)〉 (IDLE, t5, pt=2)〉 (IDLE, t5, pt=2)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=0, pt=2), (ON, t3, e=enter, t=0, pt=2), (ON, t3, e=enter, t=0, pt=2),
(IDLE, t5, e=enter, t=2, pt=0), (IDLE, t5, e=enter, t=2, pt=0), (IDLE, t5, e=enter, t=2, pt=0),
(ON, t4, e=enter, t=1, pt=2), (ON, t4, e=enter, t=1, pt=2), (ON, t4, e=enter, t=1, pt=2),
(IDLE, t5, e=enter, t=1, pt=1), (IDLE, t5, e=enter, t=1, pt=1), (IDLE, t5, e=enter, t=1, pt=1),
(ON, t4, pt=1)〉 (ON, t4, pt=1)〉 (ON, t4, pt=1)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=2, pt=0), (IDLE, t1, e=enter, t=2, pt=0), (IDLE, t1, e=enter, t=2, pt=1),
(ON, t4, e=enter, t=0, pt=2), (ON, t4, e=enter, t=0, pt=2), (ON, t4, e=enter, t=0, pt=2),
(IDLE, t5, e=enter, t=1, pt=0), (IDLE, t5, e=enter, t=1, pt=0), (IDLE, t5, e=enter, t=1, pt=0),
(ON, t4, pt=1)〉 (ON, t4, pt=1)〉 (ON, t4, pt=1)〉
〈(OFF, e=enter, t=2, pt=0), 〈(OFF, e=enter, t=1, pt=0), 〈(OFF, e=enter, t=0, pt=0),
(ON, t3, e=enter, t=1, pt=2), (ON, t3, e=enter, t=1, pt=2), (ON, t3, e=enter, t=1, pt=2),
(IDLE, t5, e=enter, t=2, pt=1), (IDLE, t5, e=enter, t=2, pt=1), (IDLE, t5, e=enter, t=2, pt=1),
(ON, t4, e=enter, t=0, pt=2), (ON, t4, e=enter, t=0, pt=2), (ON, t4, e=enter, t=0, pt=2),
(IDLE, t5, e=enter, t=1, pt=0), (IDLE, t5, e=enter, t=1, pt=0), (IDLE, t5, e=enter, t=1, pt=0),
(ON, t4, pt=1)〉 (ON, t4, pt=1)〉 (ON, t4, pt=1)〉

Table 5.3: Example of elements in FIPaths for model AC shown in Figure 5.2.
The total number of elements of FIPaths is 45.

82

A
1t

C

FI

state

inv = (x=10)

/ x=?

2t : z / x++

3t : y / x++

Figure 5.7: Counterexample differentiated by last transition

Note that a representative counterexample is presented to the user for each equivalence
class. Thus, even though EFSM loops are removed to define the equivalence class, if an
EFSM loop is needed to fail the invariant (because of data changes, such as an EFSM
loop for a counter), this loop will be present in what the user receives. For instance, in
the model of Figure 5.8 (a), transition t4 needs to be taken at least once for the invariant
to fail, therefore, the EFSM loop is necessary. Some paths containing necessary EFSM
loops with t2 and t4 are illustrated in Figure 5.8 (b). The equivalence class generated
for these paths is [〈t1, t3〉] because it summarizes the information to recognize the error,
differentiated by its last transition, without the need to record and look at all paths with
various combinations of the EFSM loops.

A B
1t 3t

C

FI
state

2t

4t

: / x++

: / y++

/ x=1,
y=0

: (x=y)

inv = (x=y)

(a)

EFSM loop

B

4t 4t 3t
B C

all_but_last(p) last_trans(p)
Equivalence

class:

[〈t1, t3〉]
1t

BA

p2:

3t
C

all_but_last(p) last_trans(p)

1t
BA

p1:

(b)

4t
B

EFSM loop

2t
B

EFSM loop

B

2t 4t 3t
B C

all_but_last(p) last_trans(p)

1t
BA

p3: 4t
B

Figure 5.8: EFSM loops due to counters are eliminated by reduceEFSM

A limitation of using the reduction of EFSM loops in Level 1 is that Alfie could miss
some distinct bugs, for instance, in the case of two self-looping transitions that both have
errors, such as self-looping transitions t2 and t4 in Figure 5.8. However, I made the design
decision of reducing EFSM loops to make the verification more efficient because, even with
the reduction of EFSM loops, some models can generate a large number of equivalence
classes for Level 1. Including even one instance of each different EFSM loop would make
the problem of generating all equivalence classes of counterexamples for Level 1 even harder,
based on my observation while experimenting with this idea.

83

Level 1 considers as equivalent all the paths that end in the same transition and that
have the same sequence of transitions after removing EFSM loops in the rest of the path5.

Definition 1: ∀p ∈ FIPaths •
[p] = {q ∈ FIPaths |

lst trans(q) = lst trans(p)∧
trans seq(reduceEFSM(all but last(p))) = trans seq(reduceEFSM(all but last(q)))}

There are four equivalence classes at Level 1 for the EFSM AC in Figure 5.2. For example,
the data variations of path 〈OFF-t1-IDLE-t4-ON-t5-IDLE-t4-ON〉 are all part of the equiv-
alence class [〈t1, t4〉] after removing the EFSM loop with respect to control state IDLE.
Four distinct counterexamples represent these four equivalence classes. Two of them were
described in Section 5.3 (〈t1, t4〉 and 〈t3, t5〉) and the other two counterexamples are the
following:
(3) The counterexample path p 7

〈(OFF, tn, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=2, pt=0),
(ON, t4, e=enter, t=2, pt=2),
(IDLE, t5, e=exit, t=1, pt=2),
· · · 〉,

is an instance of the EFSM path 〈OFF-t1-IDLE-t4-ON-t5-IDLE〉;
(4) The counterexample path p 8

〈(OFF, tn, e=enter, t=2, pt=0),
(ON, t3, e=enter, t=0, pt=2),
(IDLE, t5, e=enter, t=1, pt=0),
(ON, t4, e=exit, t=0, pt=1),
· · · 〉,

is an instance of the EFSM path 〈OFF-t3-ON-t5-IDLE-t4-ON〉.

These last two are distinct EFMS paths, but the bugs in the model illustrated by these
counterexamples are the same as the ones found by the first two distinct counterexamples.
In another model, it might not be the case that two distinct EFSM paths have the same
error cause.

5.5.2 Level 2: Distinct Last Transitions

All the paths that have the same last transition are considered equivalent.

Definition 2: ∀t ∈ FIT • [t] = {p ∈ FIPaths | lst trans(p) = t}
There are two equivalence classes at Level 2 for the EFSM AC in Figure 5.2. For example,
the path 〈OFF-t1-IDLE-t4-ON-t5-IDLE-t4-ON〉 is part of the equivalence class [t4].

5For Levels 1-2, the counterexample path must be of length at least one.

84

5.5.3 Level 3: Distinct Initial and Final States

All the paths that have the same initial control state and final control state are considered
equivalent.

Definition 3: ∀i ∈ InitCS,∀s ∈ FICS •
[i, s] = {p ∈ FIPaths | fst cs(p) = i ∧ lst cs(p) = s}

An equivalence class is empty if an initial control state is not the first state on a path
in FIPaths. There are two non-empty equivalence classes at Level 3 for the EFSM AC
in Figure 5.2. For example, the path 〈OFF-t1-IDLE-t4-ON-t5-IDLE-t4-ON〉 is part of the
equivalence class [OFF,ON].

Level 3 can be used as a preliminary check to examine conditions on the initial control
states and variable values that lead to an error in order to find bugs in the specification of
possible initial values.

5.5.4 Level 4: Distinct Final States

All the paths that lead to the same final control state are considered equivalent.

Definition 4: ∀s ∈ FICS •
[s] = {p ∈ FIPaths | lst cs(p) = s}

There are two equivalence classes at Level 4 for the EFSM AC in Figure 5.2. For example,
the path 〈OFF-t1-IDLE-t4-ON-t5-IDLE-t4-ON〉 is part of the equivalence class [ON].

Chechik and Gurfinkel say that a level like this one is important to quickly find errors
in initial states when the very first state fails the invariant [51]. This level might also be
useful in choosing a resolution: e.g., a sink/error state could be added to the model from
these states upon discovery by a counterexample.

5.5.5 Discussion

A counterexample in which a second error in the model can only be reached by going
through an earlier configuration that failed the invariant falls into the equivalence class of
the path to the first error, and therefore, it is not distinguished from it, as illustrated in
Figure 5.9 where the equivalence class is chosen with respect to control state Y. My method
distinguishes counterexamples with respect to the first error on the path only. However,
if there is a path that reaches the second error passing through the control state where a
previous bug was recognized but without failing the invariant there this time (e.g., control
state Y in Figure 5.9), this path would be in a different equivalence class (e.g., a bug with
respect to control state Z).

85

1 4t t
A V Y

FI

state

6 7t t
W Z

FI

state

Figure 5.9: Counterexample path with multiple failed invariants

5.6 On-the-fly LTL Counterexample Grouping

This section describes how my method uses a model checker to implement the definitions
introduced in Section 5.5. My method and tool, both called Alfie, represent the levels of
equivalence classes on-the-fly using LTL properties. In related work [60], the user first
generates all counterexamples by iterating the model checker and then groups them into
equivalence classes. In my method, by ruling out all equivalent counterexamples on-the-fly,
there is no need to generate all counterexamples, which substantially reduces the number
of iterations of the model checker. An LTL property describes all paths in an equivalence
class of a counterexample rather than the complete list of counterexamples.

My on-the-fly grouping method and tool Alfie is illustrated in Figure 5.10. My tool
Alfie iteratively (1) asks SMV to generate a counterexample, (2) creates the equivalence
class from the the counterexample for the desired level, (3) represents this equivalence
class as an LTL expression, (4) creates a new property that is the disjunction of this LTL
expression with the invariant and the LTL expressions representing previously generated
counterexamples, and (5) repeats the process by re-running the model checker on the same
model with the new property. By disjuncting an LTL expression of the equivalence class
with the property, Alfie disallows the generation of any more counterexamples in that
equivalence class. The output of my method is one representative counterexample per
equivalence class. I call this set of representative counterexamples CErep. This iterative
process runs automatically via scripts, and it is repeated until no more counterexamples
are found. Alfie does not rely on the order in which the counterexamples are generated
(such as generation of the shortest one first). This process terminates because the set of
FIPaths is finite and a different element is generated at each iteration of my method.

The model input to Alfie must contain the following:

inv: Macro specifying the criteria to identify an error in the model, i.e., the invariant
predicate inv, defined over the KS variables.

progress: Macro specifying (X(¬(tn)) ∨ final states). This condition forces the model checker
to only produce counterexamples with progressing transitions unless the model reaches
a final control state (i.e., a state that is not a source of any progressing transition).
If not explicitly defined, Alfie can identify the final states in the model and include
this information in the macro progress.

86

Automatic Failed Invariant Detection

Create
equivalence
class for c/e

if (c/e)

model +
new_property

SMV
Model

Checking
if ¬(c/e)

level

• progress
• inv

model one representative c/e

per equivalence class

in the model
All errors
CErep ⬋⬊

Figure 5.10: On-the-fly grouping level process

To generate the equivalence class of a counterexample, c, my method first calculates
the element of FIPaths, q, associated with c. But by incorporating parts of the definition of
FIPaths into the LTL property to be checked, I can limit the model checking exploration.
Therefore, for every level of equivalence classes, my method begins by checking the property

prop: G(progress) → G(inv)

to generate the first counterexample. The macro progress included in the property imple-
ments the definition of the function progress in Section 5.4, ensuring that the counterex-
ample c returned by the model checker only contains progressing transitions. Then, my
method applies to c the rest of the definition of FIPaths, described in Section 5.4, thus
generating the element q. First, the function trunc creates a subpath of c ending in the
first configuration that fails the invariant, followed by the application of the functions re-
duce config loops, reduce init config and reduce vals to the subpath returned by trunc. For
the element q of FIPaths, Alfie creates an LTL expression L according to the desired level
that is added to the invariant as a disjunction, creating the property to check next

prop L: G(progress) → ((G(inv)) ∨ L).

The iterative process that Alfie follows is summarized by Algorithm 2, where the
function mk ltl expr creates the LTL property, and comments are preceded by the symbol
.. Figure 5.11 illustrates the relationship between counterexamples, elements of FIPaths,
and LTL properties representing equivalence classes.

CErep
(Subset
of CE)

FIPaths Equivalence
Classes

(per Level)

LTL
Expressions
(per Level)q1

qi

qj

qk

...
...

[q
i
]

[q
j
]

...

L

L

...

CE

c1

ci

cj

ck

...
...

c0

...

ci+1

ck+1...

cn

{

...

[q
i
]

[q
j
]
}prop_L

(including
inv)

Figure 5.11: Relationship between CE, CErep, FIPaths and LTL properties
representing equivalence classes

87

Algorithm 2 – alfie(model, level)

Input: model (containing macros inv, and progress), level
Output: CErep (set of representative counterexamples, one per equivalence class)

1: CErep ← ∅
2: prop L ← prop
3: run smv(model, prop L)
4: while (counterexample c generated) do
5: . Create LTL expression for c according to desired level
6: L ← mk ltl expr(c, level)
7: prop L ← prop L + L . Add L as disjunction with the invariant
8: CErep ← CErep ∪ c . Add counterexample c to set CErep
9: run smv(model, prop L)

10: end while
11: return CErep

The loop invariant that holds after each iteration of Alfie is:

Alfie loop-invariant: ∀p ∈ CE • (p |= prop L⇔ ∃c ∈ CErep • p ∈ [c])

meaning that prop L exactly matches the equivalence classes for the counterexamples seen
so far in the process. Note that p ∈ (AllPaths–CE) also satisfies prop L because these
paths are not counterexamples. From this loop-invariant, it can be concluded that the
number of iterations of Alfie is always equal to the number of equivalence classes. Because
the LTL expression representing an equivalence class is always added as a disjunction, the
set of possible counterexamples in the next iteration is strictly reduced, i.e., the change
in the property cannot result in any additions to the set CE. In the following sections,
I justify per level that the property exactly represents the counterexamples equivalent to
those in CErep.

A corollary of the loop-invariant is:

CErep uniqueness: ∀c1, c2 ∈ CErep • c1 6= c2 ⇒ [c1] 6= [c2]

Justification of corollary of Alfie loop-invariant :

The loop-invariant says that the LTL property exactly represents the set of equivalence
classes seen so far in the process. If c1 6= c2, with c1, c2 ∈ CErep, then there would have
been an iteration of Alfie in which c1 was already part of CErep and c2 was generated
by Alfie. So, for c2 to be generated at that iteration, c2 could not have been part of an
equivalence class already represented in CErep, and therefore, [c1] 6= [c2]. �

88

The incorporation of progress, which is part of the definition of FIPaths, to the property
checked by my method is beneficial to reduce the model checking effort. However, the
property to check, e.g., either prop or prop L, then becomes an implication, and care must
be taken that this property is not vacuously satisfied when the antecedent of the implication
is false. Therefore, before attempting to generate results for any level of counterexample
equivalence classes, Alfie verifies the property EG progress to ensure that it is possible for
the model to take progressing transitions, and thus, that the antecedent of the property is
not trivially satisfied.

Next, I explain in order from least complex to most complex (reverse order of Sec-
tion 5.5) the LTL expression that represents an equivalence class of elements of FIPaths
according to the desired level. The LTL expressions for a counterexample from model AC
of Figure 5.2, are summarized in Table 5.4, where the LTL expression L added per level
is highlighted. For each level of equivalence classes, the loop invariant that must hold for
each iteration of Alfie will be briefly justified. In the rest of this section, I will use only
control states and transitions to describe a path instead of listing all the configurations
forming the path, thus simplifying the explanations.

Level LTL property

4 (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ ON)))

3 (G (progress)) → ((G (inv)) ∨ (OFF ∧ (inv U (¬inv ∧ ON))))

2 (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ t4)))

1 (G (progress)) → ((G (inv)) ∨ (OFF ∧ (inv U (t1 ∧ (inv U (¬inv ∧ t4))))))

Table 5.4: LTL properties per level of equivalence classes for counterexample
path p 3, 〈OFF-t1-IDLE-t4-ON〉, from model AC of Figure 5.2

5.6.1 Level 4: Distinct Final States

For a path q ∈ FIPaths, in Level 4 Alfie adds to the invariant a disjunction with an LTL
expression L that has the value of the control state in the last configuration of q (which is
an element of FICS), generating the following property with L highlighted:

prop L4: (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ lst cs(q))))6.

prop L4 forces the model checker to find a counterexample in which the first control state
to fail inv is different from lst cs(q).

6Recall that lst cs(q) is shorthand for cs=lst cs(q)

89

Expression L in prop L4 includes ¬inv as a conjunction with lst cs(q) because another
counterexample may have a prefix with lst cs(q) in it, but the invariant does not fail in that
instance of lst cs(q), and this counterexample is in a distinct equivalence class, as illustrated
by Figure 5.12. In Figure 5.12, path p 3 maps to FIPath 1, so property prop L41 would
be generated by Alfie for Level 4 if ¬inv was excluded from the LTL expression L. However,
the element of FIPaths generated from p 7 would also satisfy property prop L41, and p 7
would not be produced by SMV in another iteration. Therefore, the inclusion of ¬inv to
expression L in property prop L41 is necessary, as indicated in Figure 5.12. A similar
justification of the need of ¬inv in expression L follows for Level 3 and for Level 2.

p_3
〈(OFF, tn, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=1),
(ON, t4, e=exit, t=1, pt=1),
(OFF, t3, e=enter, t=0, pt=1),
· · · 〉,

〈(OFF, tn, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=2, pt=0),
(ON, t4, e=enter, t=2, pt=2),
(IDLE, t5, e=exit, t=1, pt=2),
(OFF, t2, e=enter, t=0, pt=1),
· · · 〉,

p_7

FIPath_1

〈(OFF, e=enter, t=1, pt=0),
(IDLE, t1, e=enter, t=1, pt=1),
(ON, t4, pt=1)〉

〈(OFF, e=enter, t=0, pt=0),
(IDLE, t1, e=enter, t=2, pt=0),
(ON, t4, e=enter, t=2, pt=2),
(IDLE, t5, pt=2)〉

FIPath_2

prop L41: (G (progress)) → ((G (inv)) ∨ (inv U (ON)))

(inv U (¬inv ∧ ON))

(inv U (¬inv ∧ IDLE))

Does not fail inv

Figure 5.12: Counterexample path missed by property prop L4 if ¬inv is excluded

In the rest of the section, I will justify that the loop invariant for Alfie holds with
respect to property prop L4 for Level 4.

Justification of Alfie loop-invariant :

(⇒) ∀p ∈ CE • (p |= prop L4⇒ ∃c ∈ CErep • p ∈ [c])

For Level 4, property prop L4 has the form
(G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ FI 1))

· · ·
∨ (inv U (¬inv ∧ FI k)))

where {FI 1,· · · ,FI k}= {lst cs(FIPaths(c1)),· · · ,lst cs(FIPaths(ck)) | c1,..,ck ∈ CErep}.
In the justification, because the antecedent G(progress) does not change, I concentrate
only on the consequent.

90

If p ∈ AllPaths satisfies prop L4, then p must be of one of two forms:

... ...

inv

¬ inv ⋀ FI
i

... ...

inv

(a)

(b)

or

For case (a), p is not in CE. For case (b), a path p has as the first control state that
fails the invariant an element FI i, returned by lst cs(FIPaths(ci)). Therefore, p ∈
[ci] for a ci ∈ CErep. �

(⇐) ∀p ∈ CE • ((∃c ∈ CErep • p ∈ [c])⇒ p |= prop L4)

Let path p be a member of an equivalence class of c1 in CErep. By Algorithm 2 for
Level 4, when c1 was generated by the model checker, property prop L4 included the
LTL expression (inv U (¬inv ∧ lst cs(FIPaths(c1)))), disjuncted with the invariant.

If p ∈ [c1], p must have the form:

¬ inv ⋀

lst_cs(FIPaths(c
1
))

... ...

inv

Therefore, path p satisfies property prop L4.

�

5.6.2 Level 3: Distinct Initial and Final States

For a path q ∈ FIPaths, in Level 3 Alfie adds to the invariant a disjunction with an LTL
expression L describing the initial control state of q (which must be an element of InitCS),
and the last control state in q (which must be an element of FICS), generating the following
property with L highlighted:

prop L3: (G (progress)) → ((G (inv)) ∨ (fst cs(q) ∧ (inv U (¬inv ∧ lst cs(q))))).

prop L3 forces the model checker to search for a counterexample that either starts with
the same initial control state, but ends at a different control state that fails the invariant,
or starts with a different initial control state and ends at a control state where the invariant
fails. Over multiple paths, all final control states are grouped with the same initial control
state together in a disjunction with the invariant for brevity of the LTL expression. In the
rest of the section, I will justify the loop invariant for Alfie with respect to Level 3.

91

Justification of Alfie loop-invariant :

(⇒) ∀p ∈ CE • (p |= prop L3⇒ ∃c ∈ CErep • p ∈ [c])

Let CErep be partitioned by the set I = {I1,...,Ik} of initial control states into subsets
such that CErep = C1 ∪ C2 ∪ · · · ∪ Ck, where ∀i : 0..k, ∀c ∈ Ci • fst cs(c)=Ii.

For Level 3, property prop L3 has the form
(G (progress)) → ((G (inv))

∨ (I1 ∧ (inv U (¬inv ∧ (
∨
c∈C1

lst cs(c)))))

· · ·
∨ (Ik ∧ (inv U (¬inv ∧ (

∨
c∈Ck

lst cs(c)))))).

In the justification, because the antecedent G(progress) does not change, I concentrate
only on the consequent.

If p ∈ AllPaths satisfies prop L3, then p must be of one of two forms:

... ...

inv

¬ inv ⋀

lst_cs(FIPaths(c)) for c !"Ci

... ...

inv

(a)

(b)

or

Ii

For case (a), p is not in CE. For case (b), a path p has as its initial control state
I i, returned by fst cs(FIPaths(c)), ∀c ∈ Ci (because all counterexamples in partition
Ci start with the same initial state), and path p has as the first control state that
fails the invariant lst cs(FIPaths(c)) for some c ∈ Ci (because each counterexample
in partition Ci ends with a different final state). Therefore, p ∈ [c] for c ∈ Ci and
Ci ⊆ CErep. �

(⇐) ∀p ∈ CE • (∃c ∈ CErep • p ∈ [c]⇒ p |= prop L3)

Let path p be a member of the equivalence class of c1 ∈ Ci and Ci ⊆ CErep. By
Algorithm 2 for Level 3, when c1 was generated by the model checker, property
prop L3 included the LTL expression

(fst cs(FIPaths(c1)) ∧ (inv U (¬inv ∧ (· · · ∨ lst cs(FIPaths(c1)) ∨ · · ·))),
disjuncted with the invariant.

92

If p ∈ [c1], p must have the form:

¬ inv ⋀

lst_cs(FIPaths(c
1
)) for c !"C

i

... ...

inv

lst_cs(FIPaths(c))

∀c
1
 !"C

i

Therefore, path p satisfies property prop L3. �

5.6.3 Level 2: Distinct Last Transitions

For a path q ∈ FIPaths, in Level 2 Alfie adds to the invariant a disjunction with an LTL
expression L that has the value of the last transition taken in q (which must lead to a
control state in FICS and therefore be part of FIT), generating the following property
with L highlighted:

prop L2: (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ lst trans(q)))),

prop L2 forces the model checker to find a counterexample in which the transition that
leads to the first control state that fails the invariant is different from the one described by
lst trans(q). In the rest of the section, I will justify the loop invariant for Alfie regarding
Level 2.

Justification of Alfie loop-invariant :

(⇒) ∀p ∈ CE • (p |= prop L2⇒ ∃c ∈ CErep • p ∈ [c])

For Level 2, property prop L2 has the form
(G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ tr1))

· · ·
∨ (inv U (¬inv ∧ trk)))

where {tr1,· · · ,trk}= {lst trans(FIPaths(c1)),· · · ,lst cs(FIPaths(ck)) | c1,..,ck ∈ CErep}.
If p ∈ AllPaths satisfies prop L2, then p must be of one of two forms:

... ...

inv

¬ inv ⋀ tr
i

... ...

inv

(a)

(b)

or

For case (a), p is not in CE. For case (b), a path p has tri as the transition that leads
to the first control state that fails the invariant, which is equal to lst trans(FIPaths(ci)).
Therefore, p ∈ [ci] for ci ∈ CErep. �

93

(⇐) ∀p ∈ CE • (∃c ∈ CErep • p ∈ [c]⇒ p |= prop L2)

Let path p be a member of the equivalence class of c1 in CErep. By Algorithm 2 for
Level 2, when c1 was generated by the model checker, property prop L2 included the
LTL expression (inv U (¬inv ∧ lst trans(FIPaths(c1)))), disjuncted with the invariant.

If p ∈ [c1], p must have the form:

¬ inv ⋀

lst_trans(FIPaths(c
1
))

... ...

inv

Therefore, path p satisfies property prop L2. �

5.6.4 Level 1: Distinct Paths

For a path q ∈ FIPaths, in Level 1 Alfie adds to the property a disjunction with an LTL
expression L that makes the model checker accept any path with the same sequence of
transitions as q, and all EFSM looping variations of this path, except that the transition
entering the last state where the invariant fails must be the same on all paths. A looping
variant is any path that reaches that same control state two or more times in the path
as illustrated in Figure 5.13. By including the looping variations, the model checker will
not report them separately. The EFSM loops in the looping variations of a path must not
contain states that fail the invariant. My method forces counterexamples with different final
transitions to be in distinct equivalence classes because the actions of the last transition
might have caused the invariant to fail.

A B C
1 2t t

D
3
t

all_but_last(p)

Figure 5.13: Looping variations of path 〈t1, t2, t3〉

Level 1 was the most difficult level to express correctly in LTL. For the benefit of the
reader, next I will describe step by step the various options that lead me to the correct
LTL expression L for Level 1, using the AC model in Figure 5.2 with the counterexample
path p 3, 〈OFF-t1-IDLE-t4-ON〉, to illustrate each option. Then, I will justify that the loop
invariant for Alfie holds after each iteration for Level 1.

Option 1: If a model checker returns as a counterexample the path p 3 for model AC,
the element of FIPaths generated from it is q1: 〈t1, t4〉. The most natural LTL expression
to describe a sequence including looping variants, and to be used as a disjunction with the
invariant is (where A is the initial state in the path):

94

A ∧ (F t1 ∧ (F t4)) (L a)

However, expression (L a) allows looping variants of path q1 that contain configurations
that fail the invariant to be part of the same equivalence class, which is incorrect because
the process must only group together paths that have the same sequence of transitions and
whose last transition leads to the first configuration in the path that fails the invariant.

Option 2: The reasoning above lead me to consider an expression with the operator
Until. Through the use of the Until operator, the LTL expression allows paths with EFSM
loops whose states all satisfy the invariant to be included in the same equivalence class.
Moreover, the expression with the Until operator fails when an EFSM loop contains states
that fail the invariant. The new LTL expression for path q1 in model AC is expressed as:

A ∧ (inv U (t1 ∧ (inv U (t4)))) (L b)

Expression (L b) is not yet entirely correct, as it would allow paths that have the
sequence described as a subpath of another path. For instance, given expression (L b),
the equivalence class [〈t1, t4, t5〉] from counterexample path p 7 would not be generated.
In this case, expression (L b) is describing the counterexample path p 3, with sequence of
transitions t1-t4, which happens to be a subpath from the element of FIPaths q2: 〈t1, t4, t5〉,
generated from counterexample path p 7. However, in path p 7, t4 does not reach a
configuration that fails the invariant as it did in path p 3, but instead, t5 does.

Option 3: The LTL expression for q1 must explicitly include the condition that indicates
that the invariant does not hold when taking the transition to the failed invariant, which
is the last transition of the path, such as t4 in q1 i.e., (¬inv ∧ t4) The new LTL expression
for q1 (generated from path p 3) is:

A ∧ (inv U (t1 ∧ (inv U (¬inv ∧ t4)))) (L c)

In contrast, the LTL expression for q2 (generated from path p 7) is:

A ∧ (inv U (t1 ∧ (inv U (t4 ∧ (inv U (¬inv ∧ t5)))))) (L d)

Therefore, the new LTL formalization shown by (L c) and (L d) allows my method to
follow the definition of Level 1, thus generating the following property with L highlighted:

prop L1: (G (progress)) → ((G (inv)) ∨
(I ∧ (inv U (t1 ∧ (inv U (t2 ∧ · · · (inv U (tk−1 ∧ (inv U (¬inv ∧ tk)))))))))),

where tk is in FIT. In the rest of the section, I will justify that the loop invariant for Alfie
holds with respect to Level 1.

95

Justification of Alfie loop-invariant :

(⇒) ∀p ∈ CE • (p |= prop L1⇒ ∃c ∈ CErep • p ∈ [c])

For Level 1, property prop L1 has the form:
(G (progress)) → ((G (inv))

∨ (I1 ∧ (inv U (t11 ∧ · · · (inv U (t1last−1 ∧
(inv U (¬inv ∧ t1last)))))))
· · ·

∨ (Ik ∧ (inv U (tk1 ∧ · · · (inv U (tklast−1 ∧
(inv U (¬inv ∧ tklast))))))))

where
{ 〈ti1,· · · ,tilast〉 | ∃ ci ∈ CErep •

〈ti1,· · · ,tilast−1〉 = trans seq(reduceEFSM(all but last(FIPaths(ci)))) and
tilast = lst trans(FIPaths(ci)) }.

If p ∈ AllPaths satisfies prop L1, then p must be of one of two forms:

... ...

inv

... ...

inv

(a)

(b)

or

ti1 tilast−1 tilast

¬ inv ⋀ tilast

For case (a), p is not in CE. For case (b), path p has 〈ti1, ..., tilast−1〉 as the sequence
of transitions resulting after removing any EFSM loops from the element of FIPaths
of p, returned by trans seq(reduceEFSM(all but last(FIPaths(ci)))), and tilast as the
transition that leads to the first control state that fails the invariant, returned by
lst trans(FIPaths(ci)). Therefore, p ∈ [ci] for ci ∈ CErep. �

(⇐) ∀p ∈ CE • (∃c ∈ CErep • p ∈ [c]⇒ p |= prop L1)

Let path p be a member of the equivalence class of c1 in CErep. By Algorithm 2 for
Level 1, when c1 was generated by the model checker, property prop L1 included
the LTL expression

(I1 ∧ (inv U (t11 ∧ (inv U (t12 ∧ · · · (inv U (¬inv ∧ lst trans(FIPaths(c1)))))))))

disjuncted with the invariant.

96

If p ∈ [c1], p must have the form:

... ...

¬ inv ⋀

lst_trans(FIPaths(c
1
))

inv ⋀

trans_seq(reduceEFSM(all_but_last(FIPaths(c
1
))))

t11 tilast−1 tilast

Therefore, path p satisfies property prop L1. �

5.6.5 FIPaths

There are a variety of methods for generating the set of all counterexamples (e.g., use of
SPIN [93], proof strategies to guide the search [51]). However, the set FIPaths is often
too large to generate and comprehend given the data variations. To give a measure of the
reduction achieved by my method, I used Alfie to generate the elements of FIPaths for the
model AC in Figure 5.2 via an approach similar to that of Level 1, but with configurations
rather than just control states and transitions. Alfie iteratively disjuncts the invariant
with an LTL expression representing the element of FIPaths. My method, however, never
expects the user to ask for the elements of FIPaths. The generation of all elements of
FIPaths is practical only for tiny examples because the complexity of LTL model checking
depends on the size of the property, as well as on the size of the model [57].

Table 5.5 shows the number of cycle iterations, the number of equivalence classes per
level, the maximum BDD size for all cycles, and the total time for all iterations of the
analysis of model AC in Figure 5.2. The BDD nodes reported is a useful measure of the
size of the problem that usually goes up as complexity of the problem increases, but not
necessarily. The number of equivalence classes matches Table 5.2. In this dissertation,
the model checking verification runs were performed on a 2.8 GHz AMD Opteron CPU
with 32 GB of RAM, using the Cadence SMV options -f (to compute the reachable states
by forward search, restricting model checking to these states) and -sift (to use sifting,
attempting to improve the variable order).

5.7 Case study with Automotive Features

This section shows how my method and tool Alfie is used to check for errors in the func-
tional requirements of four of my non-proprietary automotive feature models, Collision
Avoidance (CA), Emergency Vehicle Avoidance (EVA), Parking Space Centering (PSC),

97

Level Iterations Equiv. Classes BDD Nodes Total Time
4 2 2 1025 2.28s
3 2 2 1030 2.27s
2 2 2 1099 2.27s
1 4 4 10002 2.57s

FIPaths # Elements: 45 136628 27.34s

Table 5.5: Statistics for the analysis of model AC in Figure 5.2

and Reversing Assistance (RA) [102]. These features are known as “Active Safety Sys-
tems” because they use sensors, cameras, and radar to help the driver control the vehicle.
CA helps to prevent or mitigate collisions when driving forward. EVA pulls the vehicle
over when an emergency vehicle needs the road to be cleared. PSC assists during perpen-
dicular parking. RA helps prevent or mitigate collisions when reversing. These automotive
features are representative in type and complexity of models that I have seen developed in
industrial practice [99], but do not include failure modes (e.g., fail-safe states for degraded
modes of operation).

Chapter 4 describes how to translate these feature models created in Matlab’s State-
flow to SMV. In Stateflow, features are hierarchical state machines. Thus, my trans-
lation creates one state name variable per hierarchy level of the EFSM in the SMV model.
In this case, the constraints on cs are expressed over the values of control states at all levels
in the hierarchy. No other changes in the definitions for Alfie are required. Also, automo-
tive features have only one initial state, because Stateflow does not allow multiple initial
states. Therefore, Level 3 has the same result as Level 4. Table 5.6 contains information
on the size of the translated models in SMV, including history variables needed to verify
the invariant property of interest.

Reachable # # Max. Vars. # Basic
State Space Trans. Vars. range Control States

CA 8.24241e+07 26 25 100 9
EVA 1.64848e+08 19 34 100 8
PSC 2.74266e+10 18 34 100 12
RA 6.18181e+07 18 24 100 8

Table 5.6: Information on the size of CA, EVA, PSC and RA

For CA, EVA, PSC and RA, the property checked is that a feature remains disengaged
when intended, as specified in each feature’s functional requirements. For this analysis,

98

I seeded errors in the feature models 7. The results of the analysis are summarized in
Table 5.7, showing the number of iterations of the model checker, the maximum BDD nodes
for all iterations and the time taken to complete all iterations of the analysis. The number
of equivalence classes equals the number of iterations for all levels, as Alfie generates one
equivalence class per iteration.

CA EVA

Level
Iterations / BDD Total Iterations / BDD Total

Equiv. Classes Nodes Time Equiv. Classes Nodes Time
4 2 / 2 452147 4.4s 2 / 2 36053 3.4s
3 2 / 2 452147 4.4s 2 / 2 36053 3.4s
2 2 / 2 453186 4.6s 2 / 2 39991 3.5s
1 2 / 2 465399 5.1s 2 / 2 17857 3.8s

PSC RA

Level
Iterations / BDD Total Iterations / BDD Total

Equiv. Classes Nodes Time Equiv. Classes Nodes Time
4 2 / 2 24220 3.4s 2 / 2 452178 5.0s
3 2 / 2 24220 3.4s 2 / 2 452178 5.0s
2 2 / 2 39329 3.5s 2 / 2 453022 4.5s
1 2 / 2 31507 4.6s 2 / 2 465797 4.9s

Table 5.7: Case study results per level of counterexample equivalence classes

The results from the analysis by level are described in detail for CA, where the invariant
checked is that CA remains disengaged when intended. Figure 5.14 illustrates the two errors
in the model uncovered by Alfie, which generated two distinct counterexamples at all levels
exactly matching these two bugs. Consider the information provided per level:

• Level 4 (Distinct Final States), and Level 3 (Distinct Initial and Final States) both
generate two distinct counterexamples (two equivalence classes) for CA because there
is only one initial state in models generated from Stateflow features. Considering
the distinct final control states found, one can learn:

– [(sCA=sENABLED, sENABLED=sENGAGED,sENGAGED=sIDLE)]:
This counterexample lets the modeller observe that CA becomes engaged

when it is meant to be disengaged. Because CA has only one transition leading
to the state ENGAGED, the modeller can identify that the error occurs because
the condition on t16 checks (Speed ≥ 25) when it should be (Speed > 25).

7 The models used in my case study, reported in Chapter 7, contain no errors.

99

ENABLED DISENGAGED

ENGAGED

IDLE

WARN

MITIGATEAVOID

HALT

DISABLED

OVERRIDE

FAIL

[CA_Enabled]/
CA_HVI= 1;

[!CA_Enabled]/
CA_HVI= 0;
Warning=0;

3

[!CA_Enabled]/
CA_HVI= 0;
Warning=0;

3

[AccelPedal>= 75]/
CA_HVI= 4;
Warning=0;

2

[AccelPedal<75]/
CA_HVI= 1;

2

Error /
CA_HVI= 3;

1

Error/
CA_HVI= 3;
Warning=0;

1

[(BrakePedal> 10)]/
CA_HVI= 1;
Warning= 0;

[(Speed> 0&&Speed<= 25)||PRNDL_In!= 3]/
CA_HVI= 1; Warning= 0;

1

[Speed>= 25&&PRNDL_In== 3]/
CA_HVI= 2;

[Speed== 0]/
CA_HVI= 1; Warning= 4;

2

[ThreatCA== 0]/
Warning=0;

3

[ThreatCA== 0]/
Warning= 0;

3

[ThreatCA== 2]/
Warning=2;
set_Brake= 30;

2

[ThreatCA== 3]/
Warning=3;
set_Brake= 80 ;

1

[(ThreatCA== 0)]/
Warning= 0;

3

[(ThreatCA== 1)]/
Warning= 1;

3

[ThreatCA== 1]/
Warning=1;

2

[ThreatCA== 1]/
Warning= 1;

2

[ThreatCA== 3]/
Warning=3;
set_Brake= 80;

1

[ThreatCA== 2]/
Warning= 2;
set_Brake= 30;

2

[ThreatCA== 3]/
Warning=3; set_Brake = 80 ;1

[ThreatCA== 2]/
Warning=2; set_Brake= 30; 1

t14

t27

t36

t15

t16

t24

t37

t33

t19

t38

t20

t30

t35

t31

t21 t29

t22

t17

t25

t32

t34t23

t39

Figure 5.14: Errors in feature CA uncovered by Alfie

– [(sCA=sENABLED, sENABLED=sDISENGAGED,sENGAGED=sIDLE)]:
This counterexample lets the modeller observe that CA must be disengaged

but with the wrong conditions, although it is not straightforward to isolate the
cause because there are several transitions that lead to state ENABLE while
being disengaged. Close inspection and analysis of the counterexample could
let the modeller identify that the error occurs when transition t37 is taken. The
error occurs because transition t37 does not check if variable CA Enabled is true,
which is necessary for CA to be disengaged.

• Level 2 (Distinct Last Transitions), reports 2 distinct counterexamples for CA. Con-
sidering the distinct last transitions, one can learn:

– [t16]:
This counterexample shows the last transition taken for CA to become en-

gaged when it is meant to be disengaged. The error occurs because of the
condition on t16, as explained above.

100

– [t37]:
This counterexample shows the last transition taken for CA to be disengaged

but with the wrong conditions. Same error found for counterexample c2 above.

• Level 1 (Distinct Paths), reports 2 distinct counterexamples for CA. Consider the
information provided by Level 1:

– [〈t14, t16〉]:
This counterexample lets the modeller observe the sequence of transitions

that lead CA become engaged when it should be disengaged. The error occurs
because of the condition on t16, as explained above.

– [〈t14, t36, t37〉]:
This counterexample lets the modeller observe the sequence of transitions

that lead CA to be disengaged when it should not be. The error occurs because
transition t36 can be taken regardless of the enabledness of CA. However, t37
should check if variable CA Enabled is true, which is a necessary condition for
CA to be disengaged.

While all the levels provided the same number of distinct counterexamples in this case
study, Level 1 gives the highest confidence that we have isolated the distinct bugs in the
model. Level 1 is the only level that differentiates errors that are not in the last transition.
For example, for the bug isolated by the second counterexample above, an alternative
correction might be to change t36. If there were multiple transitions besides t36 entering
state OVERRIDE, there could be multiple distinct bugs to isolate, which would be captured
by Level 1. We anticipate that a user is likely to either focus on Level 1 to gain as much
information as possible about the complete set of bugs or incrementally progress through
the levels to see if a higher level produces any additional useful information.

In general, it is not possible to generate a finite set of FIPaths because this set is too
big and the size of the LTL property becomes so large that the model checker would not
terminate. My method allows users to have useful information about the complete set of
counterexamples without having to generate all counterexamples, a process that may not
be possible, or if possible, take a long time. For example, to know in which control states
an error occurs, one consults the results of Level 4; while to know which paths lead to
the error, one checks for the results of Level 1. More concretely, to show the reduction
that my method accomplishes, I explain how many data variant paths are represented
by the equivalence class p=〈t14, t16〉 reported by Level 1 for model CA, and illustrated
in Figure 5.15. The input variables used as triggering conditions in transitions restrict
the values that these variables can take. However, the input variables in CA have very
large range values, e.g., Speed, ranging from 0 to 100 as one can expect (in a slow car).
Therefore, the number of ways the input values can vary is really large, as shown in the

101

numbers on top of the circles in Figure 5.15. These numbers are the data variations allowed
at each step of path p. The total number of data variant counterexample paths for the
equivalence class p is 7.822 × 1021, which does not include looping variants of path p. Even
though some model checkers are able to detect irrelevant variables using techniques such
as cone of influence reduction, having variables like Speed, as shown in this example, would
still produce a great number of counterexamples.

t
14
: (CA_Enabled) t

16
: (Speed>=25 ∧
PRNDL==3)

41,212,040 2,302,800 82,424,080

Figure 5.15: Number of data variant paths in equivalence class [〈t14, t16〉]

5.8 Related Work

To the best of my knowledge, my approach is the first to generate and summarize the
set of all counterexamples on-the-fly by modifying the property. Some approaches use a
modified version of a model checking algorithm to generate all counterexamples. In addition
to SPIN [93], which can generate all counterexamples by continuing the state space search
after the property fails, Copty et al. create a model checking engine that generates a BDD
representing all counterexamples of a given length, and in a post-processing step, annotate
these counterexamples to help diagnose and fix a reported failure [60].

Many approaches do not necessarily generate all counterexamples while attempting
to isolate the cause of an error. Jin et al. created a model checking algorithm variation
that creates annotated counterexamples with events describing fate (inevitability towards
the error) or free will (attempt to avoid the error) [98]. Groce and Visser describe an
algorithm to find traces that are data variations of a counterexample for Java programs,
then process this set of traces to find differences between counterexamples and traces with
no error [84]. Sharygina and Peled use a testing tool to generate traces that are related to
a counterexample for a software program, where the generated traces or neighbourhood of
a counterexample might help understand the cause of the error [159]. The neighbourhood
of a counterexample may contain traces with no error as well as other counterexamples,
but no automatic analysis is done to group or classify counterexamples (if more than
one exist). Chechik and Gurfinkel use a modified model checker that generates multiple
counterexamples to a property and then in post-processing create a proof-like tree to
summarize the data variations from the counterexamples generated [51].

102

Ball et al. modify the model by removing the transition in the counterexample that does
not appear in any correct trace so far and then look for another counterexample [17]. This
method makes the assumption that the cause of a failure is a single transition. Therefore,
all counterexamples that include this transition are in the same group even ones that result
in a different failure and the equivalence class of a counterexample is not precisely defined
because it depends on the order the traces are explored. By changing the model, they
eliminate the possibility of finding a different counterexample that includes the removed
transition and therefore, the set of counterexamples generated is not complete.

My work bares some resemblance to the use of model checking to generate test cases
of a model that satisfy certain coverage criteria (e.g., [14], [90], [71], [95]). However,
in these approaches, one witness (test case) is found for each property and then a new
property is created to generate another witness until the coverage criteria is satisfied.
some testing approaches use a structural coverage criteria for EFSM-based models. For
example, Geist, Hartman et al. developed the tool GOTCHA for state and transition
coverage [20], [76], while Gargantini and Heitmeyer construct properties from an SCR
specification for structural coverage based on guards of a transition [79].

My work might remind the reader of work by Kroening and Weissenbacher to reduce the
number of spurious counterexamples (ones that are not real paths in the concrete model)
generated as a result of model checking an abstract model using predicate abstraction
on loop conditions [117]. Potential looping paths in the counterexample from the abstract
model are symbolically unrolled until a “real” path in the concrete model is detected. In my
Level 2 (distinct paths), I deem equivalent all EFSM looping variants of a counterexample
and do not allow these to be generated again via an LTL property. Because I deal with
concrete models, all counterexamples generated by the model checker are real. I do not use
predicate abstraction and therefore no refinement/simulation of counterexamples is needed.
The grouping I perform is for the sake of eliminating related, real counterexamples from
the set of all real counterexamples that are returned to the modeller.

5.9 Summary

In this chapter, I defined a series of levels of equivalence classes that represent the complete
set of counterexamples to an invariant in a representative set of counterexamples. This
reduced set of equivalence classes is easier to generate and comprehend than the whole
set of counterexamples. I have shown how to represent these equivalence classes on-the-fly
as LTL properties to be used by a model checker. The equivalence classes I defined are
based on the control states and transitions of an extended finite state machine (EFSM).
These equivalence classes of counterexamples and their representation as LTL properties
can be used for any model that is expressed as an EFSM and that would benefit from a

103

more abstract representation of counterexamples. I demonstrated the reduction produced
by my proposed levels of equivalence classes of counterexamples in the verification of an
invariant for four automotive feature design models. The strengths of my approach are
that it can be used with any LTL model checker, it generates a representation of the
complete set of counterexamples, and the summarization of counterexamples occurs on-the-
fly meaning that all counterexamples are never generated. The weakness of my approach
is that the model checker will repeat work as it analyzes the model again in each iteration
of my method, however the number of cycles is often quite small because each of the LTL
properties represents a set of counterexamples. Also, my method only reports paths that
end in the first configuration that fails the invariant, thus ignoring other potential bugs
after the first one. However, this might be enough information to recognize all distinct
bugs in a model represented as an EFSM, since the bugs after the first one in the path
might be repeats from the ones already recognized, for instance, in cases where the model
is allowed to go back to its initial state.

104

Chapter 6

Detecting and Representing all
Different Feature Interactions in
Concurrent Features: Generalization
of Alfie

This chapter describes how to generalize the levels of counterexample equivalence classes
as well as the on-the-fly LTL grouping method, presented in Chapter 5, to find a set of
counterexamples that is representative of the set of all feature interactions for a pair of
concurrent automotive active safety features, without flattening the model. These auto-
motive features are Stateflow models, which, unlike an EFSM, can contain composite
states (i.e., ordered-compositions). These composite states make a Stateflow model
respond to an input as a big-step, that is, a sequence of transitions within the components
of the feature. Moreover, the pair of Stateflow models representing the features must
execute concurrently. Therefore, a feature interaction must be detected within the big-step
of the combined model, and my definitions and method described in Chapter 5 need to be
generalized to achieve this goal.

The present chapter is organized as follows. Section 6.1 provides an overview of the
process for finding a set of counterexamples that is representative of the set of all feature
interactions for each pair of Stateflow models. In this section, I explain both, (1) how
to set up the model checking verification to detect a feature interaction when two State-
flow models run concurrently, and (2) the changes required to generalize my method and
tool Alfie so that a set of counterexamples that is representative of the set of all feature
interactions for pairs of Stateflow models can be automatically generated. Section 6.2
defines the formalism of a Stateflow model. The details of the generalization of my
method to detect all equivalence classes of feature interactions is described in Section 6.3,

105

while the representation in LTL of the equivalence classes of counterexamples for two con-
current Stateflow models (without calculating the flattened cross product of the two
models) is given Section 6.4. Section 6.5 considers related work.

6.1 Overview of Generalization

This section starts by reminding the reader of the elements of Stateflow models that are
different from EFSMs. Then, I re-introduce two Stateflow models that help illustrate
the concepts related to detection of feature interactions when two models run concurrently:
the Stateflow model of an air conditioning (AC) system and the Stateflow model of
a heater (HEATER) system. The rest of the section describes the changes required for
my method and tool Alfie to be generalized in order to generate a representative set of
equivalence classes of feature interactions for a pair of Stateflow models.

6.1.1 From EFSM to STATEFLOW Models

Figure 6.1 shows the elements of a Stateflow model that are different from an EFSM,
and therefore, require changes to my method for EFSMs. The elements of Stateflow,
and their translation to the language of SMV, were explained in detail in Chapter 4.

B

(c) / a : t
M

D

B1 1 B2
C

1

1

2

E

F G

1 2

1

1

2

2

A

1

1

hierarchical
states

defined order of execution
for composite states (ordered-composition)

defined
priority of execution

for transitions

composite
state

Figure 6.1: Elements of a Stateflow model that differ from an EFSM

Beyond an EFSM, a Stateflow model can include hierarchical states, such as the
main superstate M in Figure 6.1, and composite states, such as ordered-composition B in
Figure 6.1. A Stateflow model runs in a single thread, and its execution is completely
deterministic because (1) each sibling in an ordered-composition has an assigned execution
order, thus an ordered-composition runs sequentially (e.g., in Figure 6.1, sibling B1 executes
before sibling B2 in B), and (2) all the transitions in a Stateflow model have a defined
priority of execution, so non-determinism is disallowed.

106

When a Stateflow model includes an ordered-composition, its sequential execution is
completed in a big-step, with each sibling executing in a small-step. All of the siblings of an
ordered-composition respond to the same set of inputs, and there is at most one progressing
transition taken in a small-step. In contrast, an EFSM takes only one transition in response
to a set of inputs. mdl2smv creates a condition called stable (a macro in SMV), which is
true when a big-step is concluded for an individual feature.

A feature interaction is detected during the integration of features, when two State-
flow models are running concurrently. Because each Stateflow model can include
ordered-compositions, the feature interaction can occur between transitions taken in dif-
ferent small-steps of a big-step. To illustrate the integration of features and detection of
feature interactions, consider the Stateflow model of a heater (HEATER) system and
the Stateflow model of an air conditioning (AC) system, first introduced in Section 4,
and shown here in Figure 6.2 and in Figure 6.3 respectively. Note that, although Chap-
ter 5 showed a flawed AC system, the model AC in Figure 6.2 describes the corrected and
intended functionality of the system.

OFF IDLE ON

(e=enter ∧

(t < 1))

1
: t

2
: t (e=exit)

4
: t (t ≥ 1)

6
: t (e=exit)

5
: t (t < 1)

AC

(A)

(e=enter ∧ (t ≥ 1))
3
: t

t 7:
/set_therm=t-1

1

1
2

12

2

3

Figure 6.2: Simplified air conditioning AC model

ON

OFF

IDLE

HEAT

3
: t

(t <

t_want)

4
: t

(t ≥

t_want)

DO

(e=enter)
1
: t

2
: t (e=exit)

HEATER

(H) 1 SET 2

t 5:
/set_therm=t+1

CHANGE

7
: t (B_dec ∧

t_want=

t_want-1

t_want>0)/

6
: t (B_inc ∧

t_want=

t_want+1

t_want<2)/

1

1

1

2

1

1

2

Figure 6.3: Simplified heater HEATER model

107

Models AC and HEATER share as inputs: the variable e that takes on the values enter
and exit, and the variable t that indicates the current temperature and ranges over the
values 0..2. HEATER also includes the Boolean variables B inc and B dec to indicate if
the buttons to increase and decrease the desired temperature are respectively pressed or
depressed, and the local variable t want that holds the desired temperature (ranging over
0..2 and initialized to 1). Both models can set the output variable set therm to request
that the thermostat changes the temperature. The shared actuator of these two features
is set therm, which ranges over the values 0..2.

The rest of this section summarizes the changes needed for my method and tool Alfie
to detect and represent all equivalence classes of feature interactions.

6.1.2 Detect Feature Interactions in a big-step

A feature interaction is detected when two Stateflow models run concurrently. The
invariant to check is ¬FI because the main goal is to have a system of integrated features
with no feature interactions. If a feature interaction exists, then a counterexample is
generated.

A feature interaction for active safety features is detected by SMV as conflicting re-
quests to the actuators made via parameterized events, when two models are executing
using parallel composition. Parameterized events consist of (1) a variable that has the
value associated with the request (prefixed by “set ”) and (2) a Boolean that represents
the presence or absence of the request (with suffix “ req”). For instance, a feature in-
teraction should be detected if AC and HEATER make contradictory output requests to
set therm. However, when an ordered-composition is present, it might not be possible to
isolate one small-step where the feature interaction occurs because conflicting requests to
actuators can occur in different small-steps. Therefore, the detection of feature interac-
tions must be made at the big-step boundary of the concurrent features, i.e., when the two
features have generated all their outputs for a given set of inputs. The big-step bound-
ary for the integrated pair of features is marked by the condition sys stable, which is the
conjunction of the stable macros per feature.

Because a feature interaction can only be detected at sys stable, the Boolean variables
associated with parameterized events use remainder semantics to guarantee that the values
of the requests to actuators persist throughout the big-step. Then, the definition of the
invariant inv to detect a feature interaction becomes

inv = (sys stable → ¬FI).

108

Example 6.1: To illustrate the detection of a feature interaction when HEATER
and AC are running concurrently, suppose that t want is set to 2 and that the initial
temperature t is 1. The LTL property of interest is an Immediate Same Actuator
FIDP, as defined in Chapter 3, with the value threshold equal to one:

G ¬(| assignthermoA − assignthermoH | > 1)

meaning that a feature interaction is detected if HEATER and AC request changes to
the value of the shared actuator set therm that differ by 1. Because the request to an
actuator is modelled by a parameterized event, the statement of the FIDP must include
the Boolean variables that indicate the requests (i.e., variable ending in i.e., req), as
well as the difference between the variables values. By using the FIDP, checked at
sys stable, the property to detect feature interactions becomes:

G(sys stable → ¬(A.therm req ∧ H.therm req ∧ | set thermA − set thermH | > 1)).

Using this invariant, a counterexample trace such as the one in Figure 6.4 is returned
by the model checker. This counterexample path shows a feature interaction that
occurs when AC requests set thermA to be set to 0 as HEATER requests set thermH to
be set to 2 in big-step3. Note that, once set by t7 and t5, the values of set thermA and
set thermH remain unchanged and their associated Boolean event requests A.therm req
and H.therm req remain true throughout the big-step thanks to the remainder seman-
tics. In Figure 6.4, the values of transitions taken are in bold and underlined to be
easily recognizable.

A.TrA = t0
set_thermA = 0,

A.therm_req = 0,

H.TrH = t0,

H.TrDO = t0,

H.TrSET = t0,

set_thermH = 0,

H.therm_req = 0

A.TrA = t1,

set_thermA = 0,

A.therm_req = 0,

H.TrH = t1,

H.TrDO = t0,

H.TrSET = t0,

set_thermH = 0,

H.therm_req = 0

A.TrA = t4,

set_thermA = 0,

A.therm_req = 0,

H.TrH = t0,

H.TrDO = t3,

H.TrSET = t0,

set_thermH = 0,

H.therm_req = 0

A.TrA = t4,

set_thermA = 0,

A.therm_req = 0,

H.TrH = t0,

H.TrDO = t3,

H.TrSET = tn,

set_thermH = 0,

H.therm_req = 0

A.TrA = t7,

set_thermA = 0,

A.therm_req = 1,

H.TrH = t0,

H.TrDO = t5,

H.TrSET = t0,

set_thermH = 2,

H.therm_req = 1

A.TrA = t7,

set_thermA = 0,

A.therm_req = 1,

H.TrH = t0,

H.TrDO = t5,

H.TrSET = tn,

set_thermH = 2,

H.therm_req = 1

parameterized

event for

AC

output request

to actuator

sys_stable AC HEATER

big-step1 big-step2 big-step3

parameterized

event for

HEATERa

output request

to actuator
new non-deterministic inputs +

generated outputs from previous inputs

⇒ check output request to actuators for FI

@ sys_stable

Figure 6.4: Counterexample path for HEATER and AC

The size of a big-step in the integrated model can change dynamically, depending on
if any of the features includes an ordered-composition and the number of siblings in an
ordered-composition.

109

Example 6.2: When HEATER and AC run concurrently, the size of the big-step is 1 if
AC takes any of its transitions while HEATER takes t1 or t2, as in big-step1 in Figure 6.4.
However, when the ordered-composition ON in model HEATER is executing, the size
of the big-step is 2 because ON takes two transitions to complete its execution, one
transition taken in each sibling, as shown in Figure 6.4 for big-step2 or big-step3.

6.1.3 Report Set of Transitions Taken in a big-step

Because of the presence of ordered-compositions, multiple transitions can be taken in a
big-step. Because the feature interaction can occur between transitions taken in different
small-steps of a big-step, the set of transitions taken in a big-step is needed to understand
the feature interaction. Recall that a model that includes an ordered-composition requires
more than one transition variable to report all the transitions taken in a big-step, so
multiple transition variables are included in the model by mdl2smv, as described in detail
in Chapter 4. The summary of transitions taken in a big-step must be observed at sys stable
because, at any other small-step, only a partial history of the transitions taken in the big-
step is available, or repeated information would be gathered when a feature idles while the
other feature completes its execution. These cases are illustrated in the following example.

Example 6.3: When HEATER is executing its ordered-composition ON, it takes
two small-steps for HEATER to process the input while AC processes the same input
in one small-step. Therefore, AC must hold its information constant by (a) keeping
its local variables values unchanged, including transitions and control states, and (b)
keeping the value of its actuator variables unchanged. Figure 6.4 shows that AC
holds its information constant while idling in the second small-step of big-step2 and
the second small-step of big-step3. My process observes the control states reached
and transitions taken in a big-step at sys stable, where all the information about the
completed execution of an ordered-composition is available (e.g., ON in HEATER), and
where it can recognize that each of t4 and t7 were taken only once.

For concurrent components, function lst trans big step produces of all transitions taken
in a big-step (at sys stable). All the transitions taken in the big-step must be reported, as
the actions of a couple of these transitions are the cause of the feature interaction.

6.1.4 Update Definition of FIPaths for Concurrent Models

FIPaths defines a finite representation of the set CE, as introduced in Chapter 5. To
be able to deal with concurrent models, I need to modify function progress and function
reduce init config, which are part of the definition of FIPaths, as described next. Note that
the function trunc always truncates the path at the big-step boundary because the feature
interaction is identified at sys stable.

110

First, for Stateflow features running concurrently, at least one of the features must be
making progress by taking a progressing transition during a big-step to avoid stuttering.
Recall that, for a model that contains ordered-compositions, more than one transition
variable is necessary to report all the transitions taken in a big-step. For instance, in
model HEATER, three transition variables are declared: TrH, TrDO and TrSET by mdl2smv,
as explained in Chapter 4. Therefore, the definition of progress must account for all the
transition variables that are part of the features running concurrently. But requesting that
all transition variables take a progressing transition is too strong of a condition as, it is
valid that one feature idles by taking a tn whenever at that step in the execution there is
nothing that the feature can do. Moreover, not all transition variables are updated in a
big-step, as the parent of some transitions are not active at that point in the execution,
i.e., in HEATER, when ON is executing, the only transition variables updated are TrDO and
TrSET.

The macro progress that implements the definition of progress should state that it is
never the case that, in the same small-step, all transition variables have value tn (which is
the value for self-looping non-progressing transitions), or the value t0 (which is the value
meaning ‘no transition taken’ in a sibling). Examples of accepted and rejected big-steps
by the macro progress are illustrated in Figure 6.5.

[t1, t2, t4]

[tn, t3, tn]

[tn, tn]

[t1, t2]

[t3]

[t4]

[t1, t2, t0]

[tn, t3, t5]

[tn, tn, t0]

[tn, tn, tn]

✔ ✘✔✔✔

(a) (b) (c) (d) (e)

F1:

F2:

Figure 6.5: Example of accepted and rejected steps by macro progress

Second, any counterexample that returns to an initial configuration should be consid-
ered equivalent to one that starts from the last initial configuration in the counterexample
because the same failed invariant can be reached without this initial loop, where an initial
configuration is described in Definition 6.4. Therefore, the definition of reduce init config
must check both triples (one per model) in each configuration to identify an initial config-
uration loop.

6.1.5 Update Definition of Equivalence Classes

For concurrent models, it would be possible to take the cross-product of the combined
models and use my definitions from Chapter 5. However, during my experiments I found
that this method does not achieve the same value in summarization for Level 1. Figure 6.6
illustrates the problem with features that do not contain ordered-compositions. If the com-
bined path of two models running concurrently is taken, the sequence of transitions in path

111

p1 is distinct from the sequence of transitions in path p2 because of non-progressing transi-
tions taken in between progressing ones. But when considering the sequence of progressing
transitions per model, as shown at the bottom of Figure 6.6, both paths are equivalent.
Therefore, I refine the notion of equivalence for Level 1 by gathering the sequence of tran-
sitions per model and then removing EFSM loops, and creating the conjunction of the
resulting information. For Level 1, projection is required to distinguish the transitions
that correspond to each model before the equivalence class is generated.

F1
t1 t2 tn tn t3

F2
t4 tn t5 t6 t7

F1
tn t1 t2

F2
t4 t5 t6

⟨(t1, t4),(t2, tn),(tn, t5),(tn, t6),(t3, t7)⟩

¬inv

 ⟨(tn, t4),(t1, t5),(t2, t6),(t3, t7)⟩≢

t3

t7

¬inv

⟨t1, t2, t3⟩ ∧ ⟨t4, t5, t6, t7)⟩ ⟨t1, t2, t3⟩ ∧ ⟨t4, t5, t6, t7)⟩≡

combined models

paths per model

p1⎨ p2⎨
Figure 6.6: Equivalence of paths per model, but not in the combined models

For Levels 2-4, the equivalence class is defined on the combined models because these
levels concentrate only on a particular point in the path (such as the common initial
configuration or the configuration where the invariant fails at sys stable). These points in
the execution can only be defined by both model’s concurrent execution, so looking at only
one model’s execution in isolation would be incorrect.

6.1.6 Remove EFSM loops with respect to big-step boundaries

A path generated from the concurrent execution of two Stateflow feature models can
be thought of as a sequence of big-steps. The function reduceEFSM must check for and
eliminate EFSM loops only at sys stable, i.e., at the big-step boundary, because relevant
information about a path in the model, and particularly about the feature interaction,
could be eliminated otherwise. These ideas are illustrated in the following example.

Example 6.4: Consider the concurrent execution of models A and B in Figure 6.7,
in which a feature interaction occurs when taking transition t2 along with transition
t5. Recall that in Section 6.1.5, the definition of Level 1 is refined to be applied
per feature, and thus, reduceEFSM is only applied per feature. If reduceEFSM was
applied to model B considering small-steps, an EFSM loop from small-step2 to small-
step5 would be detected and eliminated. However, the eliminated EFSM loop contains
information about the transition in model B that contributed to the feature interaction
in the last big-step, and thus, that information would not be reported. This problem
does not occur when applying reduceEFSM at sys stable.

112

big-step1 big-step2

small-step1 small-step2 small-step3 small-step4 small-step5 small-step6

A.TrA = t0
A.sA = sX

B.TrB = t0
B.sB = B1

B.sB1 = sP

B.sB2 = sR

B.sB3 = sT

A.TrA = t1

A.sA = sY,

B.TrB = tn
B.sB = B1

B.sB1 = sQ

B.sB2 = sS

B.sB3 = sT

A.TrA = t1
A.sA = sY

B.TrB = t3
B.sB = B2

B.sB1 = sQ

B.sB2 = sR

B.sB3 = sT

A.TrA = t1
A.sA = sY

B.TrB = t6
B.sB = B3

B.sB1 = sQ

B.sB2 = sS

B.sB3 = sT

A.TrA = t2

A.sA = sX,

B.TrB = t8
B.sB = B1

B.sB1 = sQ

B.sB2 = sS

B.sB3 = sU

A.TrA = t2
A.sA = sX

B.TrB = t5
B.sB = B2

B.sB1 = sQ

B.sB2 = sS

B.sB3 = sT

A.TrA = t2
A.sA = sX

B.TrB = tn
B.sB = B3

B.sB1 = sQ

B.sB2 = sS

B.sB3 = sT

EFSM loop

EFSM loop

X

Y

A

t
1 t

2

B

UT

V

1 3B1 B3
t
8

t
9

t
10

P

Q

t
3 t

4

t
5

2B2

R

S

t
6 t

7 sys_stable

Figure 6.7: Equivalence of paths per model, but not in the combined models

6.1.7 No Environmental Constraints

Automotive active safety features react to the same set of inputs (i.e., same environmental
conditions), but there are no other shared variables among features. These features are
normally developed by different vendors, or by different teams within a company, in iso-
lation. However, indirect communication between features occurs when the outputs from
the features change the environment, affecting the input of the features at a later time.
Such dependencies can be modelled by an environment model or constraints. However, I
do not use environmental constraints because of the difficulty of modelling accurately an
automotive hybrid system. As a result, my method can result in some false positives caused
by the unconstrained environment. I view this as better than missing a real counterexam-
ple describing a feature interaction because of constraints that are too strict or based on
incorrect assumptions, particularly when these assumptions come from different vendors.
Analysis of the counterexamples can help construct and refine environmental constraints,
as also done by Whalen et al. [181]. In Chapter 7, more insight will be given as to the
consequences of the lack of environmental constraints in my case study.

113

6.2 STATEFLOW Model

The syntax of a Stateflow model, which is a hierarchical state machine containing OR-
states, AND-states (i.e., ordered-compositions) and labelled transitions, is defined next.

Definition 6.1 The syntax of a Stateflow model consists of a tuple

〈 S, H, CS, InitCS, V, InitV, T 〉
where

• S is a finite set of control states.

• H is a tree that defines the AND/OR hierarchy of control states, where AND means
ordered-composition, basic states are leaves and that includes defaults.

• CS is a finite set of trees, each of which is a subtree of H with markings, such that
for each AND-state, only one child is marked, and for each OR-state, only one child
is present in the tree.

• InitCS is a set of trees of initial control states (InitCS ⊆ CS).

• V is a finite set of typed variables with

– V = IV ∪ OV ∪ LV, where IV is a set of input variables, OV is a set of output
(controlled) variables and LV is a set of local variables;

– The sets IV, OV and LV are disjoint.

• InitV is a set of sets of initial values for variables. Each set contains one pair for
each variable. The first component of the pair is a variable in V, and the second
component is the variable’s initial assignment drawn from the variable’s type.

• T is a finite set of progressing transitions. Each t ∈ T, with t = n : s
(c)/a−−−→ s′, has

– a name n, accessed by function name(t),

– a source control state s ∈ S, accessed by function src(t),

– a destination control state s′ ∈ S, accessed by function dst(t),

– a label of the form (c)/a, where (c) is an optional condition on the variables
in V called a guard, accessed by function guard(t), and a is an optional set
of assignments to variables in (OV ∪ LV) called actions, accessed by function
actions(t). There are never two assignments to the same variable in a set of
actions1.

1This restriction is to avoid race conditions. I consider these type of assignments to be a design error
in Stateflow models.

114

Next, I provide an overview of the semantics of Stateflow. As in the case of EFSM
models, every control state implicitly has a single self-looping transition named tn, which is
taken when no guard on any other transition exiting the state is satisfied. These transitions
are called non-progressing.

Definition 6.2 A control state s is active in cs ∈ CS if s is a child of an OR-state and
it is present in cs, if s is a child of an AND-state and all of its ancestor AND-states are
marked in cs.

A configuration represents a moment in the execution of two Stateflow models run-
ning in parallel.

Definition 6.3 A configuration σ of a pair of Stateflow features running in parallel
is a pair of two triples (one for model A and one for model B, with the syntactical elements
superscripted with A or B), where triple 〈csA, nA, valA〉 consists of

• csA ∈ CSA,

• nA ⊆ TA ∪ {tn}, a set of names of transitions; several transitions can be taken in a
big-step because of ordered-compositions,

• valA, a set of pairs, where the first component of each pair is a variable in VA, and
the second component is the variable’s assignment from the variable’s finite type.

and similarly for model B.

Definition 6.4 The set of initial configurations σinit of a pair of Stateflow features
running in parallel contains pairs of two triples (one for model A and one for model B),
where triple 〈csAinit, nA

init, val
A
init〉 consists of

• csAinit ∈ InitCSA,

• nA
init=∅ as no transitions have been taken,

• valAinit ∈ InitVA, a set of initial assignments to variables.

and similarly for model B.

A step during the execution of two Stateflow models running in parallel leads from
one configuration to the next following the ideas of small-steps and big-steps introduced
in Chapter 4, where a big-step consist of a series of small-steps. There is at most one
progressing transition taken in a small-step. All small-steps in a big-step respond to the
same set of inputs.

115

Definition 6.5 For a Stateflow model, a triple 〈cs, n, val〉 is stable when either

• For all active nested AND-states in cs, only the children that are the first siblings in
each ordered-composition are marked as active, or

• any transition is taken in a state whose parent is not an ordered-composition.

Definition 6.6 For two Stateflow models A and B running in parallel, a configuration
(〈csA, nA, valA〉, 〈csB, nB, valB〉) is sys stable when the triple of each of the models is stable.

Definition 6.7 During the execution of two Stateflow models A and B running in
parallel, big-step(I,(〈csA, nA, valA〉,〈csB, nB, valB〉)) is the result of a series of small-steps,
starting from the configuration (〈csA, ∅, valA |I〉,〈csB, ∅, valB |I〉) where valA |I means the
set of assignments to input variables is input I in valA (and similarly for model B), and
ends in a sys stable configuration. The small-step relation of the concurrent model is
defined as in Chapter 4 and consists of:

• if a model A is not in a stable configuration, it takes a transition such that

– the set of active control states and the assignments to variables in the triple for
A of this configuration satisfy the conditions in the transition’s guard,

– in the next configuration, the set of active control states is modified to leave the
source state and enter the destination of the transition (respecting the hierarchy
H following default states), with AND-states nodes marking as active the child
that is next sibling in the ordered-composition, the name of the transition taken
is added to the set of transition names taken, the set of assignments to local
and controlled variables are modified by the transition’s actions, and the set of
assignments to input variables is the same as the initial set of assignments to
variables from inputs I, i.e., valA |I .

and similarly for model B.

• if a model A is in a stable configuration, but model B is not, A idles such that

– in the next configuration, the set of control states, the set of transition names
taken, and the set of assignments to variables is maintained the same.

and similarly for model B.

The set of transitions taken defined above are implemented in an SMV model using tran-
sition variables. The transition name t0, which was first introduced in Section 4.5, is used
in an SMV model generated by mdl2smv to model the empty set assignment to the set
of transition names in the initial configuration as well as in the starting configuration of a
big-step.

116

6.3 Counterexample Equivalence Classes for a Pair of

Concurrent Components

The process to create the set of all feature interactions in a reduced set of equivalence
classes is defined in terms of the set FIPaths, as described in Section 5.4 but with the
changes to the definition of progress and reduce init config explained in Section 6.1.4.

The following notation is used to describe the levels of counterexample equivalence
classes for models running concurrently. These models can contain hierarchical and com-
posite states, therefore, my definitions need to consider sets of states and sets of transitions,
unlike the definitions in Chapter 5, where a step in the execution of an EFSM contains one
control state and one transition.

• InitCS: A set where each element is a set of control states found in the initial con-
figuration. Each element is the union of combinations of sets of initial control states
from each model.

• FICS: A set where each element is a set of control states found in a reachable con-
figuration in which the invariant fails at sys stable.

• FIT : A set of sets of progressing transitions, where each set of transitions is part of a
reachable configuration in which the invariant fails. From each set of transitions, two
of the transitions in the set contain actions whose requests to actuators have caused
the feature interaction reflected at sys stable.

• fst cs(p): The set of control states found in the first configuration in path p.

• lst cs(p): The set of control states found in the last configuration in path p.

• lst trans big step(p): The set of progressing transitions taken in the last big-step in
path p.

• all but last big step(p): The sequence of configurations in path p except for the ones
in the last big-step.

• trans seq(p): The sequence of sets of progressing transitions taken in path p at the
boundary of each big-step, i.e., at sys stable.

• projF (p): The set of triples, each triple containing the set of control states, the set
of transitions and the set of assignments to variables corresponding to feature F in
path p, i.e., the information of one of the concurrent features.

117

• reduceEFSM(p): Removes EFSM loops from path p, as explained in Section 6.1.6.
An EFSM loop is one that reaches the same control states at sys stable in p more
than once.

The notation [x] is used for the equivalence class of x, which consists of the set of equivalent
elements of FIPaths in the class x. x may be a control state, a path, or a transition, etc.

I present my levels of equivalence classes defined over the set FIPaths, in order from
the most detailed to the least detailed. Table 6.1 shows the equivalence classes of feature
interactions created by each of the levels for the integrated model of AC and HEATER.

Level 1 Level 2
[〈 ((A.TrA=t1),(A.TrA=t4),(A.TrA=t7)),

((H.TrH=t1),(H.TrDO=t3),(H.TrDO=t5)) 〉]
[〈 ((A.TrA=t3),(A.TrA=t7)), [A.TrA=t7,

((H.TrH=t1),(H.TrDO=t3),(H.TrDO=t5)) 〉] H.TrDO=t5]
[〈 ((A.TrA=t3),(A.TrA=t7)),

((H.TrH=t1),(H.TrDO=t3,H.TrSET=t6),(H.TrDO=t5)) 〉]
Level 3 Level 4

[((A.sA=OFF,H.sH=OFF,

H.sON=DO,H.sDO=IDLE,H.sSET=CHANGE), [(A.sA=ON,H.sH=ON,

(A.sA=ON,H.sH=ON H.sON=DO,H.sDO=HEAT,H.sSET=CHANGE)]
H.sON=DO,H.sDO=HEAT,H.sSET=CHANGE)]

Table 6.1: Levels of equivalence classes of feature interactions for
the integrated model of AC and HEATER

6.3.1 Level 1: Distinct Paths

I expect Level 1 to be the most commonly chosen level for analysis as it captures one
representative of each distinct path that contains a feature interaction. However, as ex-
plained in detail in Section 6.1.5, for Level 1, I use the sequence of transitions per model
after removing EFSM loops, and create the conjunction of the information per model to
define the equivalence class for the combined path. For Level 1, projection is required to
distinguish the transitions that correspond to each model, and the removal of EFSM loops
must be done at the big-step boundary, i.e., at sys stable. Thus, all the paths that have
the same transitions in its last big-step and that have the same sequence of progressing
transitions after removing EFSM loops in each feature’s path are considered equivalent2.

2For Levels 1-2, the counterexample path must be of length at least one.

118

Definition 1: For a pair of features A and B, ∀p ∈ FIPaths •
[p] = {q ∈ FIPaths |

lst trans big step(q) = lst trans big step(p)
∧ ((trans seq(reduceEFSM(projA(all but last big step(q))))) =

(trans seq(reduceEFSM(projA(all but last big step(p))))))
∧ ((trans seq(reduceEFSM(projB(all but last big step(q))))) =

(trans seq(reduceEFSM(projB(all but last big step(p))))))}
There are three equivalence classes at Level 1 for the integrated model of AC and HEATER.
For example, the counterexample path illustrated by Figure 6.4 is part of the first equiva-
lence class in Table 6.1 after performing the projections per model and taking the respective
sequence of progressing transitions. There were no EFSM loops that needed to be removed
in this example. For the second and third equivalence classes, a feature interaction is de-
tected when model AC reaches state ON via transition t3, while the execution of HEATER
is similar to the one shown in Figure 6.4, except that the second configuration in the path
of the third equivalence class describes that a progressing transition was taken in sibling
SET, requesting the desired temperature to increase. Also, for the last two equivalence
classes, EFSM loops had to be removed to arrive at the description shown in Table 6.1.

6.3.2 Level 2: Distinct Last Transitions

All the paths that have the same set of progressing transitions in the last big-step are
considered equivalent. Note that t in this definition is a set of progressing transitions.

Definition 2: ∀t ∈ FIT • [t] = {p ∈ FIPaths | lst trans big step(p) = t}
There is one equivalence class at Level 2 for the integrated model of AC and HEATER.
The counterexample path in Figure 6.4 on page 109 is part of the equivalence class
[A.TrA=t7,H.TrDO=t5], which is in fact the suffix in all paths shown as equivalence classes
of Level 1.

6.3.3 Level 3: Distinct Initial and Final States

All the paths that have the same set of initial control states and set of final control states
are considered equivalent.

Definition 3: ∀i ∈ InitCS,∀s ∈ FICS•
[i, s] = {p ∈ FIPaths | fst cs(p) = i ∧ lst cs(p) = s}

An equivalence class is empty if a set of initial control states in InitCS is not the first on
a path that leads to a set of control states in FICS. There is one non-empty equivalence

119

class at Level 3 for the integrated model of AC and HEATER. The counterexample path
illustrated by Figure 6.4 on page 109 is part of this equivalence class.

Level 3 allows the designer to examine conditions on the initial control states and
potential errors in the initial variable values that generate a feature interaction.

6.3.4 Level 4: Distinct Final States

All the paths that lead to the same set of final control states are considered equivalent.

Definition 4: ∀s ∈ FICS • [s] = {p ∈ FIPaths | lst cs(p) = s}
There is one equivalence class at Level 4 for the integrated model of AC and HEATER. The
counterexample path illustrated by Figure 6.4 on page 109 is part of this equivalence class.

Level 4 allows the designer to find features that immediately conflict with each other
when a feature interaction is detected in the initial state.

6.4 On-the-fly Counterexample Grouping for Concur-

rent Components

This section shows how the definitions to create a representation of the set of all feature
interactions in a reduced set of equivalence classes, shown in Section 6.3, are implemented
in my method and tool Alfie.

My on-the-fly method to detect and group feature interactions for a pair of active
safety features running concurrently, is illustrated in Figure 6.8. As the process described
in Chapter 5, my method iteratively: (1) asks SMV to generate a counterexample, (2)
creates the counterexample to its equivalence class for the desired level, (3) represents this
equivalence class as an LTL expression, (4) creates a new property that is the disjunction
of this LTL expression with the invariant and the LTL expressions representing previously
generated counterexamples, and (5) repeats the process by re-running the model checker
on the same model with the new property. The iterative process runs automatically via
scripts and it is repeated until no more counterexamples are found, producing as output one
representative counterexample per equivalence class, i.e., one distinct feature interaction
per class. I call this set of representative counterexamples CErep. By disjuncting an LTL
expression of the equivalence class with the property, we disallow the generation of any
more counterexamples in that equivalence class. The iterative process that Alfie follows
is summarized by Algorithm 2, presented in Chapter 5. The model must contain the
following:

120

¬FI: Macro that specifies the FIDP that specifies the lack of a feature interaction in the
integrated model, as described in Chapter 3, either for same or conflicting actuators.
However, only interactions of the Immediate type are considered in this dissertation.

progress: Macro that specifies (progressing trans ∨ final states), a condition indicating that
at least one progressing transitions is taken at a small-step unless the model reaches a
final control state in the integrated model. The macro progressing trans is formed by
disallowing the conjunction of all transitions variables in the integrated model taking
non-progressing transitions. There is one condition for each transition variable name
Tri in the integrated model. Therefore, the macro progressing trans has the form
¬(
∧

(Tri=tn ∨ Tri=t0)). For example, the progressing trans macro for HEATER is
¬((TrHi=tn ∨ TrHi=t0) ∧ (TrDOi=tn ∨ TrDOi=t0) ∧ (TrSETi=tn ∨ TrSETi=t0)).
Final states are control states that are not source states of any contributing transition.

sys stable: Macro that specifies when all features (a) have generated all the outputs for
the current inputs and (b) are ready to begin with new inputs. sys stable is the
conjunction of the stable macro definitions for each feature.

Automatic Feature Interaction Detection

Create
equivalence
class for c/e

if (c/e)

model +
new_property

SMV
Model

Checking
if ¬(c/e)

level

model

• progress
• ¬FI

• sys_stable

one representative c/e

per equivalence class

Interactions
All Feature

CErep ⬋⬊

Figure 6.8: On-the-fly grouping level process for concurrent components

Alfie’s process starts by generating q, the element of FIPaths from a counterexample
c. A path q in FIPaths, resulting from the execution of multiple concurrent features, is
a sequence of big-steps. At each big-step, a sequence of transitions is taken and a set of
control state variables has changed their values, reflecting the new state of the system at
sys stable. To limit the model checking exploration, the macro progress is incorporated in
the property to be checked. Thus, Alfie begins by checking the property

prop: G(progress) → G(sys stable → ¬FI)

to get the first counterexample. In the rest of this chapter, I will use inv to denote the
condition (sys stable → ¬FI). The macro progress included in the property implements the
definition of the function progress as described in Section 6.1.4, ensuring that the coun-
terexample returned by the model checker contains at least one progressing transition in
each big-step. Then, Alfie applies the rest of the definition of FIPaths to c, generating

121

Level LTL property

4
(G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧

(A.sA=ON ∧ H.sH=ON ∧ H.sON=DO ∧ H.sDO=HEAT ∧ H.sSET=CHANGE))))

3

(G (progress)) → ((G (inv)) ∨
((A.sA=OFF ∧ H.sH=OFF ∧ H.sON=DO ∧ H.sDO=IDLE ∧ H.sSET=CHANGE) ∧

(inv U (¬inv ∧
(A.sA=ON ∧ H.sH=ON ∧ H.sON=DO ∧ H.sDO=HEAT ∧ H.sSET=CHANGE)))))

2 (G (progress)) →((G (inv)) ∨ (inv U (¬inv ∧ (A.TrA=t7 ∧ H.TrDO=t5))))

1

(G (progress)) → ((G (inv)) ∨
(((A.sA=OFF ∧ H.sH=OFF ∧ H.sON=DO ∧ H.sDO=IDLE ∧ H.sSET=CHANGE) ∧
(inv U ((A.TrA=t1) ∧ (inv U ((A.TrA=t4) ∧ (inv U (¬inv ∧ (A.TrA=t7))))))))

∧
((A.sA=OFF ∧ H.sH=OFF ∧ H.sON=DO ∧ H.sDO=IDLE ∧ H.sSET=CHANGE) ∧
(inv U ((H.TrH=t1) ∧ (inv U ((H.TrDO=t3) ∧ (inv U (¬inv ∧ (H.TrDO=t5))))))))))

Table 6.2: LTL properties per level of equivalence classes for counterexample shown in
Figure 6.4, which illustrates a feature interaction for AC and HEATER

the element q: the function trunc creates the subpath of the counterexample ending in
the first configuration that fails the invariant, while the functions reduce config loops, re-
duce init config and reduce vals are applied to the resulting subpath. For each element q
of FIPaths, Alfie creates an LTL expression according to the desired level, L, that is added
to the invariant as a disjunction, thus generating the property to check next

prop L: G(progress) → ((G(inv)) ∨ L).

As in the process described in Section 5.6, Alfie ensures that the antecedent of the property
prop is not vacuously satisfied by verifying the property EG progress before generating
results for any level of counterexample equivalence classes.

Next, I explain in order from least complex to most complex the LTL expression that
represents the equivalence class of an element of FIPaths according to the desired level.
These LTL expressions are illustrated in Table 6.2 for the counterexample shown in Fig-
ure 6.4, where the LTL expression L added per level is highlighted.

6.4.1 Level 4: Distinct Final States

For a path q ∈ FIPaths, in Level 4 Alfie adds to the invariant a disjunction with an LTL
expression L that has the value of the set of control states in the last configuration of q
(which is an element of FICS), generating the following property with L highlighted:

122

prop L4: (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ lst cs(q)))).

prop L4 forces the model checker to find another set of control states in the first config-
uration that fails the invariant. The process concludes when all the sets of control states
in FICS have been discovered.

The justification of the loop-invariant for Alfie with respect of Level 4 for concurrent
components is the same as in Chapter 5 for Level 4, but in this case, the definition of lst cs
returns a set of control states in FICS.

6.4.2 Level 3: Distinct Initial and Final States

For a path q ∈ FIPaths, in Level 3 Alfie adds to the invariant a disjunction with an LTL
expression L describing the set of control states in the initial configuration of q, and the
set of control states in the last configuration of q (which is an element of FICS), generating
the following property with L highlighted:

prop L3: (G (progress)) → ((G (inv)) ∨ (fst cs(q) ∧ (inv U (¬inv ∧ lst cs(q))))).

Over multiple paths, Alfie groups all final control states with the same initial control states
together in a disjunction with the invariant property for brevity of the LTL expression. In
the next iteration, the model checker searches for paths that either start with the same set
of initial control states, but end at a different set of control states that fail the invariant,
or start with a different set of initial control states and end at a set of control states where
the invariant fails. The process concludes when all combinations of sets of control states
in InitCS that reach a set of control states in FICS have been discovered.

The justification of the loop-invariant for Alfie with respect of Level 3 for concurrent
components is the same as in Chapter 5 for Level 3, but in this case, the definition of fst cs
returns a set of control states in InitCS and lst cs returns a set of control states in FICS.

6.4.3 Level 2: Distinct Last Transitions

For a path q ∈ FIPaths, in Level 2 Alfie adds to the invariant a disjunction with an LTL
expression L that has the value of the set of transitions taken in the last big-step in q
(which leads to a set of control states in FICS) generating the following property with L
highlighted:

prop L2: (G (progress)) → ((G (inv)) ∨ (inv U (¬inv ∧ lst trans big step(q)))),

prop L2 forces the model checker to find other set of transitions that leads to a set of
control states in FICS. The process concludes when all the sets of transitions in FIT are
discovered.

123

The justification of the loop-invariant for Alfie with respect of Level 2 for concurrent
components is the same as in Chapter 5 for Level 2, but in this case, the definition of
lst trans big step returns a set of transitions taken in the last big-step of q.

6.4.4 Level 1: Distinct Paths

For a path q ∈ FIPaths, in Level 1 Alfie adds to the invariant a disjunction with an LTL
expression L that is the conjunction of two LTL expressions, one per model. Each of
the LTL expressions makes the model checker accept any path with the same sequence of
transitions as the path followed in that model, and all EFSM looping variations of that
path, except that the set of transitions in the last big-step must be the same in all paths.

The LTL expression that recognizes all EFSM looping variants of a path is constructed
using the LTL operator Until, similarly to the process followed in Section 5.6.4. Through
the use of the Until operator, the paths in each model with EFSM loops whose states
all satisfy the feature interaction property at sys stable, are included in this equivalence
class. The LTL expression for one of the models must be conjuncted to the LTL expression
of the other component, since the sequence of transitions in both components happen
simultaneously. Then, the conjunction, i.e., the LTL expression L, should be added to the
property as a disjunction with the invariant, thus generating the following property with
L highlighted:

prop L1: (G (progress)) → ((G (inv)) ∨
((fst cs(q) ∧ (inv U (tA1 ∧ · · · (inv U (tAlast−1 ∧ (inv U (¬inv ∧ tAlast)))))))

∧
(fst cs(q) ∧ (inv U (tB1 ∧ · · · (inv U (tBlast−1 ∧ (inv U (¬inv ∧ tBlast))))))))),

where
{ (〈tA1,· · · ,tAlast〉,〈tB1,· · · ,tBlast〉) •

〈tA1,· · · ,tAlast−1〉 = trans seq(reduceEFSM(projA(all but last big step(q)))),
〈tB1,· · · ,tBlast−1〉 = trans seq(reduceEFSM(projB(all but last big step(q)))),

tAlast = projA(lst trans big step(q)),
tBlast = projB(lst trans big step(q)) }.

prop L1 forces the model checker to accept the paths that are described in the properties
for each component.

Note that the LTL expression per model only considers the transitions for one feature,
even though the equivalence classes for Level 1 are defined in terms of lst trans big step,
which is the set of transitions of the combined model, because each LTL expression (a)
explicitly indicates that the transitions in the last big-step are the ones in which the

124

invariant fails, and (b) specifies that any other transitions in the sequence satisfy the
invariant. Therefore, even if the projection per model is taken for the transitions returned
by lst trans big step, the projected transitions are still representing the common big-step in
which the invariant fails. These ideas are illustrated in Figure 6.9, where the LTL expression
describing the sequence of transitions for F1 conjuncted with the LTL expression describing
the sequence of transitions for F2 define the equivalence class for path p. Both features
have to take paths of the same length to the configuration that fails the invariant.

F1
t
1

t
2

t
n

F2
t
5

t
n t

6
p⎨ t

4

t
8

¬inv

t
n

t
3

t
7

t
n

big-step1 big-step2 big-step3

inv

{t3, t4, t8}=lst trans big step(FIPaths(p))

〈{t1,t2}〉=trans seq(reduceEFSM(projF1(all but last(FIPaths(p)))))

〈{t5},{t6, t7}〉=trans seq(reduceEFSM(projF2(all but last(FIPaths(p)))))

projF1(lst trans big step(FIPaths(p)))
= {t3, t4}

projF2(lst trans big step(FIPaths(p)))
= {t8}

It is possible to take projection on each
model because at last big-step ¬inv

(I ∧ (inv U ((t1 ∧ t2) ∧ (inv U (¬inv ∧ (t3 ∧ t4))))))

(I ∧ (inv U (t5 ∧ (inv U ((t6 ∧ t7) ∧ (inv U (¬inv ∧ t8)))))))

F1
F2

For transitions taken in last big-step,
explicit condition with ¬inv

∧

F1 EFSM loop

Figure 6.9: LTL expressions per model for concurrent path p

The process concludes when all combinations of distinct paths per model, which are
differentiated by the set of transitions in the last big-step, i.e., transitions in FIT, have
been discovered, including looping variants with EFSM loops that all satisfy the invariant
in the sequence per model. The motivation for differentiating paths with respect to their
last set of transitions is similar to the motivation given in Section 5.6.4. The justification
of the loop-invariant for Alfie with respect of Level 1 is described next.

125

Justification of Alfie loop-invariant :

(⇒) ∀p ∈ CE • (p |= prop L1⇒ ∃c ∈ CErep • p ∈ [c])

For Level 1, property prop L1 has the form:
(G (progress)) → ((G (inv)) ∨

((I1 ∧ (inv U (tA1
1 ∧ · · · (inv U (tA1

last−1 ∧ (inv U (¬inv ∧ tA1
last)))))))

∧ (I1 ∧ (inv U (tB1
1 ∧ · · · (inv U (tB1

last−1 ∧ (inv U (¬inv ∧ tB1
last))))))))

∨ ... ∨
((Ik ∧ (inv U (tAk

1 ∧ · · · (inv U (tAk
last−1 ∧ (inv U (¬inv ∧ tAk

last)))))))
∧ (Ik ∧ (inv U (tBk

1 ∧ · · · (inv U (tBk
last−1 ∧ (inv U (¬inv ∧ tBk

last)))))))))

where
{ (〈tAi

1,· · · ,tAi
last〉,〈tBi

1,· · · ,tBi
last〉) | ∃ ci ∈ CErep •

〈tAi
1,· · · ,tAi

last−1〉= trans seq(reduceEFSM(projA(all but last(FIPaths(ci))))),
〈tBi

1,· · · ,tBi
last−1〉= trans seq(reduceEFSM(projB(all but last(FIPaths(ci))))),
tAi

last = projA(lst trans big step(FIPaths(ci))),
tBi

last = projB(lst trans big step(FIPaths(ci))) }.
If p ∈ CE satisfies prop L1, then p must be of one of two forms:

...

...

... ...

inv

¬ inv ⋀

...

inv

(a)

(b)

or

¬ inv ⋀

...

inv

reduceEFSM

reduceEFSM

proj
A

proj
B

all_but_last(p)

all_but_last(p)

tAi
1

tAi
last−1 tAi

last

tBi
lasttBi

last−1tBi
1

tBi
last

tAi
last

For case (a), p is not in CE. For case (b), a path p has (b1) both 〈tAi
1, .., tA

i
k−1〉

and 〈tBi
1, .., tB

i
k−1〉 as the sequence of transitions resulting after removing any EFSM

loops per model from the element of FIPaths of p (excluding the last big-step),
returned respectively by trans seq(reduceEFSM(projA(all but last(FIPaths(ci))))) and
trans seq(reduceEFSM(projB(all but last(FIPaths(ci))))), for some ci, and (b2) tik as
the set of transitions that leads to the first control state that fails the invariant,

126

returned by lst trans big step(FIPaths(ci)), but projected into each of the models as
tAi

k and tBi
k. Therefore, p ∈ [ci] for ci ∈ CErep. �

(⇐) ∀p ∈ CE • (∃c ∈ CErep • p ∈ [c]⇒ p |= prop L1)

Let path p be a member of the equivalence class of c1 ∈ CErep. By Algorithm 2 for
Level 1, when c1 was generated by the model checker, property prop L1 included
the LTL expression

((I1 ∧ (inv U (tA1
1 ∧ · · · (inv U (tA1

last−1 ∧ (inv U (¬inv ∧
projA(lst trans big step(FIPaths(c1))))))))))

∧ (I1 ∧ (inv U (tB1
1 ∧ · · · (inv U (tB1

last−1 ∧ (inv U (¬inv ∧
projB(lst trans big step(FIPaths(c1)))))))))))

disjuncted with the invariant, with both
〈tA1

1, .., tA
1
last−1〉= trans seq(reduceEFSM(projA(all but last(FIPaths(c1))))), and

〈tB1
1 , .., tB

1
last−1〉= trans seq(reduceEFSM(projB(all but last(FIPaths(c1))))).

If p ∈ [c1], p must have the form:

¬ inv ⋀

proj
A

(lst_trans_big_step(FIPaths(c
1
)))

inv ⋀ trans_seq(reduceEFSM(

proj
A

(all_but_last(FIPaths(c
1
)))))

... ...

... ...

tAi
1 tAi

last−1
tAi

last

tBi
lasttBi

last−1tBi
1

tBi
last ¬ inv ⋀

proj
B

(lst_trans_big_step(FIPaths(c
1
)))

inv ⋀ trans_seq(reduceEFSM(

proj
B

(all_but_last(FIPaths(c
1
)))))

Therefore, path p satisfies property prop L1. �

Table 6.3 shows the number of cycle iterations, the number of equivalence classes per
level the maximum BDD size for all cycles, and the total time for all iterations of the
analysis of HEATER and AC, shown in Figure 6.2 and in Figure 6.3. The number of
equivalence classes per level correspond to the ones shown in Figure 6.1. The detection of
all equivalence classes of feature interactions per level for automotive active safety features
is presented in Chapter 7.

127

AC-HEATER Iterations
Equivalence BDD

Time
Classes Nodes

Level 4 1 1 11137 2.5s
Level 3 1 1 11149 2.5s
Level 2 1 1 13522 2.5s
Level 1 3 3 131657 6.9s

Table 6.3: Statistics for HEATER and AC

6.5 Related Work

This section concentrates on related approaches that have been proposed to deal with the
feature interaction problem in the automotive domain.

Lochau and Goltz describe a test case generation method for feature interaction analysis
between Statechart-like behavioural models [124]. Even though they describe the input of
their analysis as Stateflow models, the semantics defined in the paper do not match
Stateflow’s, as an AND-state is not truly concurrent as they describe. Moreover, they
claim that multiple features can be integrated and run in parallel within Stateflow, by
using an AND-state that has all the features to be integrated as its components, which is
incorrect. Considering their method as identifying feature interactions for Statechart-like
models, the authors generate test cases when two features access (read or write) a shared
variable, where each test case contains the input events that enables the feature interaction.
In contrast, my method creates all equivalence classes of feature interactions for pairs of
Stateflow models, and avoids slight data variations of paths that might be generated
by test cases.

D’Souza, Gopinathan et al. describe a method to detect and resolve feature interac-
tions using concepts of supervisory control theory and based on a notion of “conflict-
tolerance” [67, 68]. Thinking of each feature as a supervisor or controller, this framework
follows the process of Thistle et al. [164, 184] and detects an interaction as a blocking con-
troller conjunction. Their resolution strategy involves two parts: (1) Use of a predefined
priority of execution among features, and (2) Features are aware of potential conflicts, and
therefore, each feature is extended with functionality that enables it to continue operating
in the presence of a conflict and when the feature has lower priority. Thus, the feature
might resume its controlling behaviour at a later time. One disadvantage of this approach
is that it only detects one feature interaction. Also, the priorities used or the conflict-
tolerance functionality added to features might not consider all possible conflicts in the
system. I believe that the framework described would benefit from using my method to
recognize all classes of conflicts in the system before applying the resolution.

128

There have been some approaches that intend to verify multiple features, although these
approaches are not directly applied to the feature interaction problem or the automotive
domain. Classen et al. [58] describe a novel method, fSMV, to apply symbolic model
checking in order to verify features that are part of a software product line (SPL). In
this framework, all subsets of features in the SPL are checked against the same property,
which is advantageous for some applications, such as checking a requirement that should
hold in any product derived from the SPL. However, it does not provide any advantage
to my analysis because not all pairs of features have feature interactions. Instead, I use
pruning, thus reducing the number of cases to be analyzed and verified. Blundell, Fisler
et al. [27] propose a method to verify features in an SPL that communicate sequentially
in a pipe-and-filter manner. They use flow analysis to derive a property describing the
data provided from one feature to the next one in the pipe, and based on this information,
constraints on successor feature’s states are derived. These constraints are then used to
perform lightweight checks to determine whether compositions of features violate system-
wide properties. In contrast, automotive active safety features are analyzed as they execute
concurrently in parallel.

6.6 Summary

In this chapter, I have addressed the problem of detecting feature interactions at design-
time in a pair of models running concurrently, where the models control the vehicle’s
dynamics independently from the driver. My method and tool Alfie was generalized in
this chapter to generate a set of counterexamples that is representative of the set of all fea-
ture interactions for models running concurrently. The features considered are active safety
features that help control the dynamics of the vehicle, and they are commonly modelled
in Matlab’s Stateflow. A feature interaction in the automotive domain occurs when
the output requests to the actuators from two features can create contradictory physical
forces that could lead to an unsafe outcome. This chapter illustrated my method with the
models of an air conditioning (AC) system and a heater (HEATER) system, where a feature
interaction is detected when both models send contradictory requests to the common actu-
ator set therm. My main goal is the application of these results to the automotive domain.
Therefore, a case study that validates my method and tool Alfie, using automotive active
safety features, is presented in Chapter 7.

This chapter showed two main contributions. First, how to detect a feature interactions
for a pair of active safety features in the automotive domain using the model checker SMV.
Second, a method and tool to automatically produce a representative set of the set of all
feature interactions for a pair of features.

129

Chapter 7

Case Studies

This chapter shows how my method and tool Alfie, described in Chapter 6, is used on
the “University of Waterloo Feature Model Set” (UWFMS) [102] to represent all feature
interactions of the UWFMS in a set of equivalence classes. Scalability issues are also
addressed in this chapter, showing specific examples.

The present chapter is organized as follows. Section 7.1 provides an overview of the
UWFMS, which is a set of non-proprietary automotive active safety features that I created
to carry on my case studies and validate my method. Full description of the UWFMS is
given in Appendix A. Section 7.2 deals with scalability by describing strategies to partition
a large LTL property into two (or more) separate model checking runs that together cover
the original property, giving specific details of the partitioning process used in my case
studies. Section 7.3 describes the results of my analysis for immediate actuator feature
interactions, while Section 7.4 describes the results for conflicting actuators feature inter-
actions. In this chapter, for brevity, I often call a pair of features a “combo”. Section 7.5
considers related work on partitioning.

7.1 Overview of the Design Models in the UWFMS

UWFMS features are “Active Safety Systems” that use sensors, cameras, and radar to
control the motion control systems of the vehicle (independently from the driver) with the
intention of improving safety of the vehicle’s occupants, although the intended behaviour of
individual features might still lead to unsafe interactions between features. For active safety
features, the motion control systems are the actuators Throttle, Brake and Steering. Each
design model in the UWFMS was created using a subset of the Matlab’s Stateflow
language and is described in detail in Appendix A. In this section, a brief overview of the

131

UWFMS features is provided, as well as, some information on the translated SMV models
used in the case study. The seven UWFMS features are the following:

• Cruise Control (CC) helps cruise while driving forward by controlling the Throttle.

• Collision Avoidance (CA) helps to prevent or mitigate collisions when driving for-
ward by controlling the Brake.

• Park Assist (PA) assists during parallel parking by controlling the Throttle, Brake
and Steering.

• Lane Guide (LG) helps keep the vehicle within its lane by controlling the Steering.

• Emergency Vehicle Avoidance (EVA) pulls the vehicle over when an emergency ve-
hicle needs the road to be cleared by controlling the Throttle, Brake and Steering.

• Parking Space Centering (PSC) assists during perpendicular parking by controlling
the Throttle, Brake and Steering.

• Reversing Assistance (RA) helps prevent or mitigate collisions when reversing by
controlling the Brake.

My UWFMS automotive active safety features are representative in type and complex-
ity of models developed in industrial practice [99], even though they do not include failure
modes (e.g., fail-safe states for degraded modes of operation). Because the translated SMV
models contain the same level of description as the UWFMS design models, the findings
of my analysis can be directly understood in terms of the feature models in Stateflow,
as validated by the traceability of the results listed in each section. Also, each section
describing results from my analysis will discuss manageability, as well as scalability in the
cases where partitioning is used.

Table 7.1 contains information on the size of these models in SMV. Total state space
refers to the product of possible values for all variables in a model. Later, the number
of reachable states is provided when verifying each feature interaction detection property
(FIDP) per combo (pair of features). The model checking verification runs were performed
on a 2.8 GHz AMD Opteron CPU with 32 GB of RAM.

7.2 Scalability via Partitioning

My method and tool Alfie generates a representation of the set of all feature interactions
in a reduced set of equivalence classes, producing one counterexample per equivalence
class. This process is summarized in Algorithm 2 on page 88, which iteratively adds
to the invariant an LTL expression for each equivalence class seen so far in the process.
However, for large models with many distinct counterexamples, such as the active safety
features running concurrently, the size of the LTL property including the representation of

132

Total # # Max. Vars. # Basic
State Space Trans. Vars. range Control States

CC 2.972e+14 18 17 100 13
CA 4.162e+11 26 15 100 9
PA 7.632e+17 20 21 100 12
LG 2.249e+11 19 16 100 9

EVA 1.130e+17 19 20 100 8
PSC 1.881e+19 18 21 100 12
RA 2.472e+09 18 15 100 8

Table 7.1: Information on the size of the UWFMS translated SMV models

equivalence classes already seen becomes too large to model check. LTL model checking
depends on the size of the property, in addition to the size of the model [143].

In this section, I describe a strategy to partition the LTL property into two (or more)
separate model checking runs that together cover the original property, thus making Alfie’s
process scalable. Each partition is a condition, e.g., part, added to the LTL property to
restrict the search and divide the problem into smaller subproblems, which together, cover
the original property.

There are different kinds of partitions that can be used. However, given the experience
I gained during the analysis of my case studies, the set of criteria I chose for partitioning
is the following, allowing the division of the problem into smaller categories while ensuring
that no information is missed in the process. For a Boolean condition part:

(c1) A partition divides the problem disjointly in two: one of the form F(part) and the
other of the form G(¬part).

(c2) After a partition is selected, the LTL properties to verify are smaller than the original
property.

These characteristics make partitions guide the search to consider only part of the state
space and reduce the LTL property to only those equivalence classes in which part is true
somewhere along the path (or not). Thus, this process reduces the resources needed to
generate more counterexamples when the search without partitions would not complete.
More detail on the importance of these criteria will be explained next while describing the
partitioning process.

To partition, the process starts by selecting a Boolean condition part, which allows the
problem to be split in two, one with F(part) and the opposite with G(¬part), as identified
by criteria (c1). The partitioning process is illustrated in Figure 7.1. The partitioning
condition is added as a conjunction to the antecedent of the property being verified. These
conditions reduce the size of the LTL property, as required by criteria (c2), because when
verifying the case F(part), only the LTL expressions for which ci |= F(part) for ci ∈ CErep

133

part ¬part1
counterexample
including part

counterexample not
including part

c
1
c
2
c
3
c
4

F(part) G(¬part)

Figure 7.1: Illustration of a simple partitioning process

are included in the subproblem to be verified. While verifying the case F(part), the model
checker only generates counterexamples in which part is true somewhere along the path,
thus reducing the model checking problem. The counterexamples that fall in this case, i.e.,
counterexamples that contain part, become part of the positive branch. An example of the
initial property to verify in the positive branch, after selecting the condition part, for the
partitioning process illustrated in Figure 7.1 is:

((G(progress)) ∧ F(part)) → ((G(inv)) ∨ c1 ∨ c4).
Similar reasoning applies to case G(¬part), where the LTL expressions included in the

subproblem are the ones for which ck |= G(¬part) for ck ∈ CErep. The counterexamples
that fall in this case, i.e., counterexamples that do not contain part, become part of the
negative branch. An example of the initial property to verify in the negative branch, after
selecting the condition part, for the partitioning process illustrated in Figure 7.1 is:

((G(progress)) ∧ G(¬part)) → ((G(inv)) ∨ c2 ∨ c3).
Once the verification within a branch has been exhausted (i.e., no more counterexamples
are generated), the verification of the other branch can be performed.

Each partition divides the problem into two parts, however, each subproblem can be
further divided if necessary. Figure 7.2 illustrates the process, where three partitions
are needed to complete the verification effort. The partitioning process follows a depth
first search, starting with the positive branch. The partitioning algorithm is given in
Algorithm 3, which is recursive to allow for as many partitions as necessary.

In Algorithm 3, there are two cases in which the verification cannot continue, and
therefore, the results generated by Alfie are not complete:

1. When Cadence SMV runs out of memory during verification, returning a segmenta-
tion fault (SIGSEGV), as checked in line 2.

2. When a new partition cannot be found, i.e., when there are no more control states
and transitions that can be selected from the counterexamples that are part of the
current branch, as checked in line 17.

In both cases, Alfie returns all the counterexamples that it has been able to generate so far
in the process, and continues the verification in the next branch. Thus, the process that
Alfie follows produces as much information as possible, given the resources available.

134

Algorithm 3 – alfie partition(m, level, thold, pos cond, neg cond, prop L, CErep)

Input: m (model with macros inv, progress, sys stable), level, thold (time threshold),
pos cond (partitioning elements in the positive condition), neg cond (partitioning ele-
ments in the negative condition), prop L (condition in the current branch)

Output: CErep (set of representative counterexamples, one per equivalence class)

1: run smv(m, prop L)
2: if (verification runs out of memory) then . SMV returns SIGSEGV
3: return CErep . Verification cannot continue, return current CErep
4: else
5: if (verification completes within thold) then
6: if (counterexample c generated) then
7: . Create LTL expression for c according to desired level
8: L ← mk ltl expr(c, level)
9: prop L ← prop L + L . Add L as disjunction with the invariant

10: CErep ← CErep ∪ c . Add counterexample c to set CErep
11: alfie partition(m, level, thold, pos cond, neg cond, prop L, CErep)
12: else
13: return CErep . Verification completed
14: end if
15: else . Threshold value reached, partitioning needed
16: part ← select partition(CErep, pos cond) . Select a partitioning element
17: if (no new partition can be found) then
18: return CErep . Verification cannot continue, return current CErep
19: else
20: . Select counterexamples in the new positive and negative branch
21: (CErep p,CErep n) ← select ce(CErep, pos cond, part)
22: . Create LTL expressions for counterexamples in each branch
23: (prop Lp,prop Ln) ← mk ltl expr(CErep p,CErep n, level)
24: . Verification within positive branch
25: pos cond ← pos cond ∪ part
26: p’ ← alfie partition(m, level, thold*2, pos cond, neg cond, prop Lp, CErep p)
27: . Verification within negative branch
28: neg cond ← neg cond ∪ ¬part
29: n’ ← alfie partition(m, level, thold*2, pos cond, neg cond, prop Ln, CErep n)
30: return p’ ∪ n’ . Verification completed!! Results from both branches
31: end if
32: end if
33: end if

135

c
1

part1 ¬part11

counterexample
included in

positive branch

counterexample
included in

negative branch

2part2 ¬part2

partitioning
condition

F(part1)

F(part2)
⋀

F(part1)

G(¬part2)
⋀

c
1
c
2
c
3
c
4
c
5

c
1
c
2
c
4
c
6

3part3 ¬part3

G(¬part1)

F(part3)
⋀

G(¬part1)

G(¬part3)
⋀

c
3
c
5
c
11
c
12
c
13
c
14

c
6
c
7

verification
complete!

no more c/e's in

positive branch

c
2
c
4
c
8

verification
complete!

no more c/e's in

negative branch

c
9
c
10

c
5
c
12
c
13

c
3
c
11
c
14

c
15

verification
complete!

no more c/e's in

positive branch

verification
complete!

no more c/e's in

negative branch

Figure 7.2: Illustration of a process with three partitions

During my experiments, I recognized several options for partitioning elements that can
be used in the condition part, separately or using a combination of these elements:

Initial state: In this category, one can consider initial control states of the model or initial
configurations of the system. There is at least one initial control state in the model.
However, there likely exist multiple initial configurations, considering all distinct initial
values of variables. For example, the allowed initial values of the input variable t for
model AC in Figure 6.2 are 0, 1, and 2, while the input variable e can take on values
enter and exit. Therefore, although there is only one initial control state, there are six
potential different initial configurations with respect to the input variables t and e.

FI state: Control states in FICS, i.e., states in which the feature interaction property
fails. There are none if the model does not have a feature interaction.

Data variables: A restriction on the values that selected variables can take. If no ap-
propriate selection is made, there might not be a significant reduction in the number
of cases produced. For instance, for a variable x declared as a range of values 0..10, a
good choice for partition could be x <= 5 and x > 5.

Transitions on path: Selection of a transition or a set of transitions in the model. The
partition can be a condition on either (a) the presence of the transition(s) in a path,
or (b) the ordered sequence of a set of transitions.

Control states on path: Selection of a control state or a set of control states of the
model. The partition can be a condition on either (a) the presence of the control
state(s) in a path, or (b) the ordered sequence of a set of control states.

136

But when is a partition selected? A partition is chosen when the threshold is reached.
There are a few heuristic measures that I have discovered that help to determine when to
perform partitioning:

• A value threshold on the length of the LTL property being analyzed, so the search is
divided when the number of characters of the LTL property is greater than the value
threshold set.
• A time threshold on the amount of time elapsed since the current iteration of the model

checker started, so that the search is divided when the defined time threshold is reached.

The partitioning measure used in my case studies is a time threshold. The starting time
threshold for partitioning is 1 hour, and it doubles every time a new partition is selected
because, even if the problem is broken down into two subproblems, I want to ensure each
subproblem had as much time as possible to complete. In the example shown in Figure 7.2,
both partition 2 and partition 3 would be given 2 hours each to complete their verification.
If either partition needs to be partitioned again, that partition would be given 4 hours, and
so on. The memory usage at each iteration is set to unlimited, and no other jobs ran while
my analysis completed, so SMV was able to use all of the 32 GB of memory available in
the server when needed.

In my case studies, control states or transitions are used as partitioning elements.
Finding a partitioning element that divides the set CErep more evenly considerably reduces
the size of the LTL property because only about half of the LTL expressions would be
represented in the initial property for the positive branch, and similarly for the initial
property in the negative branch. Therefore, when the time threshold has elapsed, Alfie
constructs a frequency list, i.e., a list of control states and transitions with an associated
count of their presence in each of the counterexamples that are part of the current partition.
When the first partition is selected, all the counterexamples seen so far in the process are
considered. From this frequency list, Alfie selects the element whose frequency number is
closer to (n/2) and that has not been selected as a partitioning element yet, where n is the
number of counterexamples in the current branch. Algorithm 4 describes the selection
of a partitioning element that divides the search more evenly.

The process of partitioning has the disadvantage that some verification effort might be
repeated. This occurs when, after the division of the equivalence classes of counterexamples
seen so far in the process into a positive and negative branch, a counterexample generated
within a branch is reduced to an equivalence class seen previously but not included in
the current branch. If a counterexample does not contain a partitioning variable, a, the
LTL representation of its equivalence class goes in the negative branch, however, this
equivalence class may include paths that have the variable a in a loop. In this case, when
results are combined, my method arbitrarily chooses one counterexample to represent the
same equivalence class generated from both partitions. For illustration purposes, for the
combo CA-EVA to be discussed in Section 7.3.4, consider the equivalence classes:

137

Algorithm 4 – select partition(CErep, parts in branch)

Input: CErep (set of representative counterexamples in the current branch),
parts in branch (partitioning elements part of the current branch)

Output: new part (a new partitioning element that divides the search the most evenly)

1: freq list ← mk frequency list(CErep)
2: n ← | CErep |
3: . Select control state or transition that divides CErep most evenly
4: new part ← select part even(freq list, n)
5: while (new part ∈ parts in branch) do
6: freq list ← freq list − new part . Reduce freq list so a different element is chosen
7: new part ← select part even(freq list, n) . Select a partition not seen before
8: end while
9: return new part

L1 1 [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
and

L1 25 [〈(CA t14), (CA t16), (CA t19), (CA t29)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
have been generated when the first partition on CA t29 is required. In this case, L1 25 is
included in the positive branch while L1 1 is included in the negative branch. Then, the
following counterexample can be generated by SMV within the positive branch (with the
EFSM loop to eliminate highlighted):

〈〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t34) , (CA t35)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉〉

This counterexample then gets reduced to the previously seen equivalence class L1 1, whose
LTL expression was not included in the positive branch. Therefore, more iterations than
equivalence classes can be reported when partitioning is used. Concrete examples of the
advantages of using partitioning during my case studies will be given in the sections dis-
cussing scalability for particular pairs of active safety features.

7.3 Same Actuator Feature Interactions

This section shows the results of the detection of immediate feature interactions for same
actuators, following the schema shown in Section 3.2.1, and repeated here for convenience:

G ¬(| assign X1 − assign X2 | > value threshold)

where the schema uses assign X to represent an assignment value request made to actuator
X. Because the request to an actuator is modelled by a parameterized event, the applied

138

schema will have the variable that has the value associated with the command, i.e., set X,
and a Boolean that indicates the presence of the command, i.e., X req. Recall that a
counterexample is returned by the model checker when a feature interaction is detected.
The actual property checked is shown in the corresponding section describing the pairs of
features that interact with respect to an actuator and its threshold. Table 7.2 shows each
actuator and its respective threshold considered in the FIDPs for same actuator.

Actuator Value threshold

Same
Brake 30

Actuators
Throttle 20
Steering 1

Table 7.2: Elements of multiple feature influence and thresholds for same actuators

The value thresholds should be given by domain experts. For the list shown in Table 7.2,
I selected the value thresholds as sufficiently different values to identify feature interactions
given the range of possible values of each actuator.

Although the number of combos with potential feature interactions from my non-
proprietary UWFMS is

(
7
2

)
, because the UWFMS has 7 automotive active safety features,

only pairs that influence the same actuator need to be checked. As shown in Figure 7.3,
for immediate same actuator feature interactions, only 22 pairs are analyzed. I ran my
analysis for same actuator conflicts on all 22 of these combinations, and feature interactions
were detected in 4 combos (marked in bold in Figure 7.3). In the rest of this section, the
marked pairs are discussed in detail.

CC

CA
Throttle

Brakes

PA

LG

Steering

RA

PSC

EVA

⎨CC-PA, CC-EVA,

CC-PSC, PA-EVA,

PA-PSC, EVA-PSC⎨PA-LG, PA-EVA,

PA-PSC, LG-EVA,

LG-PSC, EVA-PSC

⎨CA-PA, CA-EVA,

CA-PSC, CA-RA,

PA-EVA, PA-PSC,

PA-RA, EVA-PSC,

EVA-RA, PSC-RA

Figure 7.3: Diagram of potential and actual same actuator feature
interactions in UWFMS combos

139

7.3.1 Feature Interactions between LG and EVA

The feature interactions detected between LG and EVA for actuator Steering were identified
using SMV with the following property as invariant:

(sys stable → ¬(Steering reqLG ∧ Steering reqEVA ∧
(| set SteeringLG − set SteeringEVA | > 1))).

The results of the analysis are summarized in Table 7.3, showing the number of iterations of
the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo LG-EVA is 4.43376e+12.

LG-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 1 1 30058 3.56s
Level 3 1 1 30088 3.55s
Level 2 4 4 45682 6.83s
Level 1 9 9 1208347 5m15s

Table 7.3: Same actuator feature interaction analysis results for LG-EVA

The following list shows the equivalence classes reported per level for the combo pair
LG-EVA, along with an explanation of the results for this combo. Discussions on traceabil-
ity and manageability are left to Section 7.3.5. No partitions were needed to complete the
analysis for Level 1, thus the number of iterations is the same as the number of equivalence
classes and no discussion on scalability is included in this section.

Level 4 – Distinct Final States
This equivalence class lets the modeller observe that a feature interaction occurs when
LG and EVA are requesting steering to opposite directions, as a request of steering
with -1 indicates that the vehicle shall turn the wheels to the right, while a request of
steering with 1 indicates that wheels shall turn to the left.

L4 1: [(LG sLG=sENABLED,LG sENABLED=sENGAGED,LG sENGAGED=sASSIST RIGHT,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sPULLOVER)]

Level 3 – Distinct Initial and Final States
The equivalence class uncovers the same information as Level 4 because there is only
one initial state.

Level 2 – Distinct Last Transitions
Each equivalence class in this level lets the modeller observe the combination of tran-
sitions that allow LG and EVA to request steering to opposite directions.

140

L2 1: [LG t28, EVA t23]

L2 2: [LG t28, EVA t26]

L2 3: [LG t25, EVA t23]

L2 4: [LG t25, EVA t26]

Level 1 – Distinct Paths
Each equivalence class in this level lets the modeller observe the distinct paths in
the models that allow LG and EVA to request steering to opposite directions. For
instance, although L1 1–L1 3 take the same path in LG, there are three distinct paths
taken in EVA, reaching the state in FICS with both, EVA t23 and EVA t26. In L1 1, the
path through EVA reaches a feature interaction via EVA t23, while in L1 3 the feature
interaction is reached via EVA t26. In contrast, in L1 2 the feature interaction is reached
via EVA t26 while going through EVA t23, but in this case, EVA t23 is in the prefix of the
path and it is not taken simultaneously with LG t28 to produce a feature interaction.

L1 1: [〈(LG t14), (LG t34), (LG t28)〉, 〈(EVA t13), (EVA t20), (EVA t23)〉]
L1 2: [〈(LG t14), (LG t34), (LG t28)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t26)〉]
L1 3: [〈(LG t14), (LG t34), (LG t28)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t26)〉]
L1 4: [〈(LG t14), (LG t34), (LG t23), (LG t25)〉, 〈(EVA t13), (EVA t20), (EVA t23)〉]
L1 5: [〈(LG t14), (LG t34), (LG t23), (LG t25)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t26)〉]
L1 6: [〈(LG t14), (LG t34), (LG t23), (LG t25)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t26)〉]
L1 7: [〈(LG t14), (LG t34), (LG t28), (LG t26), (LG t25)〉, 〈(EVA t13), (EVA t20), (EVA t23)〉]
L1 8: [〈(LG t14), (LG t34), (LG t28), (LG t26), (LG t25)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t26)〉]
L1 9: [〈(LG t14), (LG t34), (LG t28), (LG t26), (LG t25)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26)〉]
Another interesting case to discuss is the relationship between L1 1 and L1 8, where
L1 1 appears to be a prefix of L1 8. Thus, this case might at first seem like the ability
to reach two feature interactions in path L1 8, but the LTL properties for Level 1
explicitly disallow such situation, and only the last two transitions in L1 8 lead to a
feature interaction. Otherwise, the counterexample that generated L1 8 would have
been satisfied by the LTL expression describing L1 1. Therefore, although transitions
LG t28 and EVA t23 seem to occur simultaneously in L1 8 because of their relative position
in the equivalence class, they actually occurred at different steps in the counterexample
path from which L1 8 was generated. LG t28 and EVA t23 appear to be at the same
position in L1 8 through reductions made by FIPaths and reduceEFSM. Combo PSC-
EVA in Section 7.3.2 would have a similar discussion to the one described in this section.

141

7.3.2 Feature Interactions between PSC and EVA

The feature interactions detected between CC and EVA for actuator Steering were identified
using SMV with the following property as invariant:

(sys stable → ¬(Steering reqPSC ∧ Steering reqEVA ∧
| set SteeringPSC − set SteeringEVA | > 1)).

The results of the analysis are summarized in Table 7.4, showing the number of iterations of
the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo PSC-EVA is 8.77652e+11.

PSC-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 1 1 33192 5.76s
Level 3 1 1 33202 4.75s
Level 2 2 2 68736 6.51s
Level 1 3 3 283048 21.78s

Table 7.4: Same actuator feature interaction analysis results for PSC-EVA

The following list shows the equivalence classes reported per level for the combo pair
PSC-EVA. Discussions on traceability and manageability are left to Section 7.3.5. No
partitions were needed to complete the analysis for Level 1, thus no discussion on scalability
is included in this section.

Level 4 – Distinct Final States

L4 1: [(EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sPULLOVER,
PSC sPSC=sENABLED,PSC sENABLED=sENGAGED,PSC sENGAGED=sMOVE RIGHT)]

Level 3 – Distinct Initial and Final States
The equivalence class uncovers the same information as Level 4 because there is only
one initial state.

Level 2 – Distinct Last Transitions

L2 1: [PSC t16, EVA t23]

L2 2: [PSC t16, EVA t26]

Level 1 – Distinct Paths

L1 1: [〈(PSC t13), (PSC t29), (PSC t16)〉, 〈(EVA t13), (EVA t20), (EVA t23)〉]
L1 2: [〈(PSC t13), (PSC t29), (PSC t16)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t26)〉]

142

L1 3: [〈(PSC t13), (PSC t29), (PSC t16)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t26)〉]

7.3.3 Feature Interactions between CC and EVA

The feature interactions detected between CC and EVA for actuator Throttle were identified
using SMV with the following property as invariant:

(sys stable → ¬(Throttle reqCC ∧ Throttle reqEVA ∧
(| set ThrottleCC − set ThrottleEVA | > 20))).

The results of the analysis are summarized in Table 7.5, showing the number of iterations of
the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo CC-EVA is 2.33095e+11 .

CC-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 3 3 857197 2m28s
Level 3 3 3 857209 2m28s
Level 2 2 2 841251 1m42s
Level 1 4 3 14879504 80m87s

Table 7.5: Same actuator feature interaction analysis results for CC-EVA

The following list shows the equivalence classes reported per level for the combo pair
CC-EVA. Discussions on traceability and manageability are left to Section 7.3.5, while the
end of this section discusses scalability as one partition was used to generate the results
reported for Level 1.

Level 4 – Distinct Final States

L4 1: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sINC SPEED,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sCOAST)]

L4 2: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sHOLD SPEED,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sCOAST)]

L4 3: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sDEC SPEED,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sCOAST)]

143

Level 3 – Distinct Initial and Final States
The three equivalence classes uncover the same information as Level 4 because there is
only one initial state.

Level 2 – Distinct Last Transitions

L2 1: [CC LOGIC CONTROL t20, EVA t24]

L2 2: [CC LOGIC CONTROL t20, EVA t27]

Level 1 – Distinct Paths

L1 1: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t24)〉]

L1 2: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 3: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t24),(EVA t26),(EVA t27)〉]

Discussion of Scalability for CC-EVA – Same Actuator

One partition was needed for the analysis of Level 1 with combo CC-EVA to complete, when
detecting same actuator feature interactions, as illustrated in Figure 7.4. The starting time
threshold for partitioning is 1 hour. The process for combo CC-EVA using one partition
completed, and it did so in a short time frame (about 80 minutes). These results also
illustrate that, when all branches complete the verification, complete results are generated
and reported.

EVA_t
27

¬EVA_t
27

✔ ✔

1

Figure 7.4: Partitions needed during analysis of Level 1 for CC-EVA

7.3.4 Feature Interactions between CA and EVA

The feature interactions detected between CA and EVA for actuator Brake were identified
using SMV with the following property as invariant:

144

(sys stable → ¬(Brake reqCA ∧ Brake reqEVA ∧
(| set BrakeCA − set BrakeEVA | > 30))).

The results of the analysis are summarized in Table 7.6, showing the number of iterations
of the model checker, the equivalence classes discovered per level (for Level 1 the results are
incomplete, which is indicated by the ‘+’ sign), the maximum BDD nodes for all iterations
and the time taken to complete the process. The number of reachable states for the analysis
of all levels with combo CA-EVA is 2.63757e+09.

CA-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 1 1 26394 3.06s
Level 3 1 1 26405 3.06s
Level 2 6 6 37696 6.9s
Level 1 142 44+ 119890367 157h59m30s

Table 7.6: Same actuator feature interaction analysis results for CA-EVA

The following list shows the equivalence classes reported per level for the combo pair
CA-EVA. Discussions on traceability and manageability are left to Section 7.3.5, while the
end of this section discusses scalability because the combo CA-EVA required partitioning
to generate the results reported for Level 1 (although the results are incomplete).

Level 4 – Distinct Final States
This equivalence class lets the modeller observe that a feature interaction occurs when
CA and EVA are requesting sufficiently different braking forces: CA requests hard
braking while EVA requests soft braking.

L4 1: [(CA sCA=sENABLED,CA sENABLED=sENGAGED,CA sENGAGED=sMITIGATE,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sSLOW)]

Level 3 – Distinct Initial and Final States
The equivalence class uncovers the same information as Level 4 because there is only
one initial state in automotive features designed in Stateflow.

Level 2 – Distinct Last Transitions
Each equivalence class in this level lets the modeller observe the combination of transi-
tions that allow CA and EVA to request hard braking and soft braking simultaneously.

L2 1: [CA t35, EVA t22]

L2 2: [CA t35, EVA t25]

L2 3: [CA t30, EVA t22]

L2 4: [CA t30, EVA t25]

145

L2 5: [CA t29, EVA t22]

L2 6: [CA t29, EVA t25]

Level 1 – Distinct Paths
Each equivalence class in this level lets the modeller observe the distinct paths in
the models that allow CA and EVA to request simultaneously hard braking and soft
braking. There are many equivalence classes identified in combo CA-EVA because
of the many conditions that the features are prepared to react to. For instance, CA
can deal with situations in which the vehicle is in an imminent collision course, or
where the vehicle could be in a potential collision, or where no potential of collision
is detected. When CA is executing, it is possible that several of these threat collision
situations can occur, one after the other and in various combinations, thus, making
CA react by requesting different degrees of braking force at different times. When
CA executes concurrently with EVA, the number of possible situations to react to is
very large, as illustrated by the cases listed in this section. However, the incorporation
of environmental constraints might help reduce the number of cases generated. For
instance, some constraints could be included to disallow the case in which an imminent
collision threat is followed in the next step by a mild threat. But by not restricting
the environment, my results let the modeller decide if this situation is possible, if it
requires a particular resolution or if a constraint in the environment during analysis is
required. As discussed in Section 6.1.7, my method generates the knowledge to make
the best informed decision as to how to resolve the interactions presented.

L1 1: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
L1 2: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]
L1 3: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]
L1 4: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]
L1 5: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
L1 6: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]
L1 7: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
L1 8: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]
L1 9: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]
L1 10: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

146

L1 11: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 12: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 13: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 14: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 15: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 16: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 17: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 18: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 19: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 20: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 21: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 22: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 23: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 24: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 25: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 26: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 27: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

147

L1 28: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 29: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 30: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 31: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 32: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 33: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t22)〉]

L1 34: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t22)〉]

L1 35: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 36: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 37: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 38: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 39: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 40: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 41: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 42: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

L1 43: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t25)〉]

L1 44: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t25)〉]

148

Discussion of Scalability for CA-EVA – Same Actuator

The analysis of Level 1 with combo CA-EVA used six partitions when detecting same ac-
tuator feature interactions, as illustrated in Figure 7.5. An analysis for CA-EVA without
partitions, using Cadence SMV, runs out of memory after generating only 20 counterexam-
ples. The size of the LTL property becomes too large for SMV to complete the verification,
and therefore, partitioning is used.

CA_t
30

¬CA_t
30

CA_t
29

¬CA_t
29

CA_t
35 ¬CA_t

35

CA_t
34 ¬CA_t

34 CA_t
34

¬CA_t
34

CA_t
15 ¬CA_t

15

SIGSEGV SIGSEGV
SIGSEGV !

! !

!

1

2

3

4
5

6

Figure 7.5: Partitions needed during analysis of Level 1 for CA-EVA

During the partitioning process, SMV can use all of the 32 GB of available mem-
ory, but there were some branches in which Cadence SMV ran out of memory during
verification, marked with SIGSEGV in Figure 7.5. As described in Algorithm 3, Alfie
recovers from these segmentation faults and continues to generate equivalence classes from
the next conditional branch. Even though the output from Alfie does not generate all the
counterexamples representing equivalence classes of feature interactions, because of the
branches with SIGSEGV, the process with partitioning is still beneficial by producing 44
counterexamples, which is more than the 20 produced by the process without partitioning.

7.3.5 Discussion of Traceability and Manageability for Same Ac-
tuator Feature Interactions

Traceability – For the same actuator combo pairs CA-EVA, LG-EVA and PSC-EVA, in
which none of the features include ordered-compositions, the results can be easily traced
back to the Stateflow models by (1) following the hierarchy of control states, as the name
of the states reported in the counterexample by SMV are unchanged from the Stateflow
models (in the results from Level 3 and 4), (2) locating the transition name reported in
the counterexample, as these models use one transition variable for the transition taken
(in the results from Level 2), and (3) following the sequence of transition names reported
in the counterexample from the only initial state (in the results from Level 1).

149

For the same actuator combo pair CC-EVA, where CC includes an ordered-composition,
the results can be traced back to the Stateflow models by (1) following all the hierar-
chies of control states, as the name of the states reported in the counterexample by SMV
are unchanged from the Stateflow models (in the results from Level 3 and 4), (2) fol-
lowing the hierarchies of transition names reported in the counterexample, as model CC
includes an ordered-composition, and therefore, it has several transition variables to report
the transitions taken in the big-step (in the results from Level 2), and (3) following the
sequence of transition names, hierarchically in the case of CC, reported in the counterex-
ample from the only initial state (in the results from Level 1). Following the transition
names hierarchically is not too complicated, as the name of the transition variable indicates
the superstate in which the transition is located. For instance, CC LOGIC CONTROL t22
indicates that transition t22 is within the control state LOGIC CONTROL of feature CC.

Manageability – The results are manageable as they can be simply listed in each section
for all levels. In contrast, an approach showing all counterexamples would have been
hard to generate (probably impossible with current resources), and moreover, very hard
to understand and analyze. As an illustration of the reduction achieved by my method,
Section 5.5 showed in Table 5.3 some of the elements of FIPaths that would be classified
as data variants by feature designers, compared to the more compact representation of
equivalence classes shown in Table 5.2. However, for some combos such as CA-EVA, a
very large number of cases is reported, which might be reduced by incorporating some
environmental constraints. The challenge is that some of these constraints appear to be
specific to a particular feature or combination of features, which would make my method
dependent on the set of features that are part of the system, somehow defeating the idea
of the generality of my definition. It might be interesting to investigate if it is possible
to find a set of environmental constraints that is useful and independent of the features
analyzed.

7.4 Conflicting Actuator Feature Interactions

This section shows the results of the detection of immediate feature interactions for con-
flicting actuators, following the schema shown in Section 3.2.1, and repeated here for
convenience:

G ¬((assign X > value thresholdX) ∧(assign Y > value thresholdY))

where the schema uses assign X and assign Y to represent an assignment value request
made to actuator X and actuator Y respectively. Because the request to an actuator is
modelled by a parameterized event, the applied schema will have the variable that has the
value associated with the command, i.e., set X, and a Boolean that indicates the presence
of the command, i.e., X req, and similarly for actuator Y . A counterexample is returned

150

by the model checker when a feature interaction is detected. The actual property checked
is shown in the section describing the pairs of features that interact with respect to a pair of
actuators and their thresholds. Table 7.7 shows the pairs of actuators and their respective
thresholds considered in the feature interaction detection for conflicting actuators.

Actuator Value threshold

Brake 40
Conflicting Throttle 30
Actuators Throttle 40

Steering 0

Table 7.7: Elements of multiple feature influence and thresholds for conflicting actuators

Figure 7.6 shows, for immediate conflicting actuators feature interactions, the 27 pairs
that are analyzed by Alfie. However, feature interactions were detected in only 4 out of 27
combos (marked in bold in Figure 7.6). In the rest of this section, the marked pairs are
discussed in detail.

CC

CA

Throttle

Brakes

PA

LG

Steering

RA

PSC

EVA ⎨CC-PA, CC-LG, CC-EVA,

CC-PSC, PA-LG, PA-EVA,

PA-PSC, EVA-PA, EVA-LG,

EVA-PSC

⎨CC-CA, CC-PA, CC-EVA,

CC-PSC, CC-RA, PA-CA,

PA-EVA, PA-PSC, PA-RA,

EVA-CA, EVA-PA, EVA-PSC,

EVA-RA, PSC-CA, PSC-PA,

PSC-EVA, PSC-RA

Speed

Position

Figure 7.6: Diagram of potential and actual conflicting actuators feature
interactions in UWFMS combos

7.4.1 Feature Interactions between CC and EVA

The feature interactions detected between CC and EVA for actuators Throttle and Brake
were identified using SMV with the following property as invariant:

(sys stable → ¬(Throttle reqCC ∧ Brake reqEVA ∧
((set ThrottleCC > 30) ∧ (set BrakeEVA > 40))).

151

The results of the analysis are summarized in Table 7.8, showing the number of iterations of
the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo CC-EVA is 2.33095e+11.

CC-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 3 3 1228888 7m12s
Level 3 3 3 1228899 7m7s
Level 2 3 3 933399 2m25s
Level 1 4 4 8643233 34m7s

Table 7.8: Conflicting actuators feature interaction analysis results for CC-EVA

The following list shows the equivalence classes reported per level for the combo pair
CC-EVA. Discussions on traceability and manageability are left to Section 7.4.5. No par-
titions were needed to complete the analysis for Level 1, thus no discussion on scalability
is included in this section.

Level 4 – Distinct Final States
This equivalence class lets the modeller observe that a feature interaction occurs when
CC requests an increase in throttle as EVA requests braking.

L4 1: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sINC SPEED

EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sPULLOVER)]

L4 2: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sHOLD SPEED

EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sPULLOVER)]

L4 3: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sDEC SPEED

EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sPULLOVER)]

Level 3 – Distinct Initial and Final States
The three equivalence classes uncover the same information as Level 4 because there is
only one initial state.

Level 2 – Distinct Last Transitions

L2 1: [CC LOGIC CONTROL t20, CC SPEED SETTING t33, EVA t23]

L2 2: [CC LOGIC CONTROL t20, EVA t23]

L2 3: [CC LOGIC CONTROL t20, EVA t26]

152

Level 1 – Distinct Paths
This equivalence class show the different paths that allow CC and EVA request throttle
and brake simultaneously. An interesting case to discuss is L1 1 compared to L1 2, as
the path in EVA is the same, while the path in CC varies in the last step. The
variation occurs when sibling SPEED SETTING in the ordered-composition of CC takes
a progressing transition in the last big-step of L1 2, while the same sibling takes no
progressing transition in the other equivalence classes reported in this section. One
can argue that L1 1 and L1 2 are not distinct feature interactions, but it is only by
analyzing the results that the modeller can decide if the transition taken in sibling
SPEED SETTING is needed or not. With respect to ordered-compositions, an idea
to refine the notion of equivalence would be to inspect each sibling in the big-step
where the feature interaction is detected and try to identify the sibling that directly
requested the action that generated the feature interaction. The potential problem that
I anticipate with this refinement is that if another sibling is indirectly contributing to
feature interaction, its contribution would be hidden in an equivalence class that only
presents information about the one sibling that requested the action on an actuator.
For instance, based on this idea for refinement, L1 1 and L1 2 would be put into the
same equivalence class, represented by L1 2.

L1 1: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20, CC SPEED SETTING t33)〉,
〈(EVA t13), (EVA t20), (EVA t23)〉]

L1 2: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t23)〉]

L1 3: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27), (EVA t26)〉]

L1 4: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26)〉]

7.4.2 Feature Interactions between CC and LG

The feature interactions detected between CC and LG for actuators Throttle and Steering
were identified using SMV with the following property as invariant:

(sys stable → ¬(Throttle reqCC ∧ Steering reqLG ∧
((set ThrottleCC > 40) ∧ (set SteeringLG > 0))).

153

The results of the analysis are summarized in Table 7.9, showing the number of iterations of
the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo CC-LG is 1.93977e+12.

CC-LG Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 3 3 1191238 3m7s
Level 3 3 3 1194220 3m9s
Level 2 2 2 1189155 1m59s
Level 1 3 3 3645577 10m37s

Table 7.9: Conflicting actuators feature interaction analysis results for CC-LG

The following list shows the equivalence classes reported per level for the combo pair
CC-LG. Discussions on traceability and manageability are left to Section 7.4.5. No parti-
tions were needed to complete the analysis for Level 1, thus no discussion on scalability is
included in this section.

Level 4 – Distinct Final States

L4 1: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sINC SPEED

LG sLG=sENABLED,LG sENABLED=sENGAGED,LG sENGAGED=sASSIST RIGHT)]

L4 2: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sHOLD SPEED

LG sLG=sENABLED,LG sENABLED=sENGAGED,LG sENGAGED=sASSIST RIGHT)]

L4 3: [(CC CC=LOGIC CONTROL,CC ENABLED=ENGAGED,CC ENGAGED=ACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sDEC SPEED

LG sLG=sENABLED,LG sENABLED=sENGAGED,LG sENGAGED=sASSIST RIGHT)]

Level 3 – Distinct Initial and Final States
The three equivalence classes uncover the same information as Level 4 because there is
only one initial state.

Level 2 – Distinct Last Transitions

L2 1: [CC LOGIC CONTROL t20, LG t28]

L2 2: [CC LOGIC CONTROL t20, LG t25]

154

Level 1 – Distinct Paths

L1 1: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(LG t14), (LG t34), (LG t28)〉]

L1 2: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(LG t14), (LG t34), (LG t23), (LG t25)〉]

L1 3: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(LG t14), (LG t34), (LG t28), (LG t26), (LG t25)〉]

7.4.3 Feature Interactions between CC and CA

The feature interactions detected between CC and EVA for actuators Throttle and Brake
were identified using SMV with the following property as invariant:

(sys stable → ¬(Throttle reqCC ∧ Brake reqCA ∧
((set ThrottleCC > 30) ∧ (set BrakeCA > 40))).

The results of the analysis are summarized in Table 7.10, showing the number of iterations
of the model checker, the equivalence classes discovered per level (for Level 1 the results are
incomplete, as indicated by the ‘+’ sign), the maximum BDD nodes for all iterations and
the time taken to complete the process. The number of reachable states for the analysis of
all levels with combo CC-CA is 1.16548e+11.

CC-CA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 3 3 2141806 5m18s
Level 3 3 3 2141336 4m59s
Level 2 4 4 4493705 9m0s
Level 1 77 15+ 109091660 231h25m3s

Table 7.10: Conflicting actuators feature interaction analysis results for CC-CA

The following list shows the equivalence classes reported per level for the combo pair
CC-CA. Discussions on traceability and manageability are left to Section 7.4.5, while the
end of this section discusses about scalability because the combo CC-CA required parti-
tioning to generate the results reported for Level 1 (although the results are incomplete).

155

Level 4 – Distinct Final States

L4 1: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sINC SPEED,
CA sCA=sENABLED,CA sENABLED=sENGAGED,CA sENGAGED=sMITIGATE)]

L4 2: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sHOLD SPEED,
CA sCA=sENABLED,CA sENABLED=sENGAGED,CA sENGAGED=sMITIGATE)]

L4 3: [(CC sCC=sLOGIC CONTROL,CC sENABLED=sENGAGED,CC sENGAGED=sACCELERATING,
CC sLOGIC CONTROL=sENABLED,CC sSPEED SETTING=sDEC SPEED,
CA sCA=sENABLED,CA sENABLED=sENGAGED,CA sENGAGED=sMITIGATE)]

Level 3 – Distinct Initial and Final States
The three equivalence classes uncover the same information as Level 4 because there is
only one initial state.

Level 2 – Distinct Last Transitions

L2 1: [CC LOGIC CONTROL t20, CC SPEED SETTING t33, CA t35]

L2 2: [CC LOGIC CONTROL t20, CA t35]

L2 3: [CC LOGIC CONTROL t20, CA t30]

L2 4: [CC LOGIC CONTROL t20, CA t29]

Level 1 – Distinct Paths

L1 1: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20, CC SPEED SETTING t33)〉,
〈(CA t14), (CA t16), (CA t35)〉]

L1 2: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t35)〉]

L1 3: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t33), (CA t30)〉]

L1 4: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20, CC SPEED SETTING t33)〉,
〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉]

L1 5: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉]

156

L1 6: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉]

L1 7: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20, CC SPEED SETTING t33)〉,
〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉]

L1 8: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉]

L1 9: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20, CC SPEED SETTING t33)〉,
〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉]

L1 10: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉]

L1 11: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t19), (CA t29)〉]

L1 12: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉]

L1 13: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉]

L1 14: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉]

L1 15: [〈(CC LOGIC CONTROL t22), (CC LOGIC CONTROL t18, CC SPEED SETTING t31),
(CC LOGIC CONTROL t20)〉,
〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉]

Discussion of Scalability for CC-CA – Conflicting Actuators

Nine partitions were required for the analysis of Level 1 with combo CC-CA to finish, when
detecting conflicting actuators feature interactions, as illustrated in Figure 7.7. As in the
case for the detection of same actuator feature interactions, the starting time threshold for
partitioning is 1 hour, doubling every time a new partition is selected, while the memory

157

usage is set to unlimited, so SMV could use the 32GB of memory if needed. Still, in
some cases, Cadence SMV ran out of memory in some branches while trying to complete
the verification, indicated by SIGSEGV in Figure 7.7. Even if the results generated are
not complete, Alfie tries to generate as much information as possible by recovering from
these segmentation faults and continuing with the generation of equivalence classes in the
next conditional branch, as illustrated in Figure 7.7. The partitioning process generated
15 distinct equivalence classes using 77 iterations and nine partitions.

CA_t
23

¬CA_t
23

CA_t
30

¬CA_t
30

CA_t
31 ¬CA_t

31

CA_t
20

¬CA_t
20 CA_t

35
¬CA_t

35

¬CA_t
29

SIGSEGV

✔

✔
1

2

3

4

6

8
CA_t

29

CA_t
32 ¬CA_t

32
5

CA_t
32

¬CA_t
32

SIGSEGV ✔

7

CA_sWARN ¬CA_sWARN

SIGSEGV ✔

9

SIGSEGV ✔

✔

Figure 7.7: Partitions needed during analysis of Level 1 for CC-CA

7.4.4 Feature Interactions between CA and EVA

The feature interactions detected between CA and EVA for actuators Throttle and Brake
were identified using SMV with the following property as invariant:

(sys stable → ¬(Throttle reqEVA ∧ Brake reqCA ∧
((set ThrottleEVA > 30) ∧ (set BrakeCA > 40))).

The results of the analysis are summarized in Table 7.11, showing the number of iterations
of the model checker, the equivalence classes discovered per level, the maximum BDD nodes
for all iterations and the time taken to complete the process. The number of reachable
states for the analysis of all levels with combo CA-EVA is 2.63757e+09.

The following list shows the equivalence classes reported per level for the combo pair
CA-EVA. Discussions on traceability and manageability are left to Section 7.4.5, while the
end of this section discusses about scalability because the combo CA-EVA required parti-
tioning to generate the results reported for Level 1 (although the results are incomplete).

158

CA-EVA Iterations
Equivalence BDD Total

Classes Nodes Time
Level 4 1 1 21043 2.98s
Level 3 1 1 21102 2.98s
Level 2 6 6 45016 7.41s
Level 1 176 33+ 127561652 280h59m50s

Table 7.11: Conflicting actuators feature interaction analysis results for CA-EVA

Level 4 – Distinct Final States

L4 1: [(CA sCA=sENABLED,CA sENABLED=sENGAGED,CA sENGAGED=sMITIGATE,
EVA sEVA=sENABLED,EVA sENABLED=sENGAGED,EVA sENGAGED=sCOAST)]

Level 3 – Distinct Initial and Final States
The equivalence class uncovers the same information as Level 4 because there is only
one initial state.

Level 2 – Distinct Last Transitions

L2 1: [CA t35, EVA t24]

L2 2: [CA t35, EVA t27]

L2 3: [CA t30, EVA t24]

L2 4: [CA t30, EVA t27]

L2 5: [CA t29, EVA t24]

L2 6: [CA t29, EVA t27]

Level 1 – Distinct Paths

L1 1: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 2: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]
L1 3: [〈(CA t14), (CA t16), (CA t35)〉, 〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]
L1 4: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 5: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 6: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 7: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 8: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,

〈(EVA t13), (EVA t20), (EVA t24)〉]

159

L1 9: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 10: [〈(CA t14), (CA t16), (CA t33), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 11: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 12: [〈(CA t14), (CA t16), (CA t19), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 13: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 14: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 15: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 16: [〈(CA t14), (CA t16), (CA t19), (CA t29), (CA t32), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 17: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 18: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t21), (CA t30)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 19: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 20: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 21: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉, 〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 22: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 23: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t24)〉]
L1 24: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]
L1 25: [〈(CA t14), (CA t16), (CA t19), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]
L1 26: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]
L1 27: [〈(CA t14), (CA t16), (CA t33), (CA t22), (CA t29)〉,

〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

160

L1 28: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 29: [〈(CA t14), (CA t16), (CA t35), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 30: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 31: [〈(CA t14), (CA t16), (CA t33), (CA t30), (CA t31), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

L1 32: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t23), (EVA t27)〉]

L1 33: [〈(CA t14), (CA t16), (CA t35), (CA t32), (CA t22), (CA t29)〉,
〈(EVA t13), (EVA t20), (EVA t24), (EVA t26), (EVA t27)〉]

Discussion of Scalability for CA-EVA – Conflicting Actuators

Ten partitions were required for the analysis of Level 1 for CA-EVA to finish, when de-
tecting conflicting actuators feature interactions, as illustrated in Figure 7.8. The starting
time threshold for partitioning is 1 hour, doubling when a new partition is selected, and
always using as much as 32 GB of memory during verification. For CA-EVA, there were
also some branches in which Cadence SMV ran out of memory during verification, marked
in Figure 7.8 with SIGSEGV. Although the results generated are not complete, Alfie gener-
ated as many equivalence classes as possible (i.e., 33 distinct equivalence classes). As seen
in Table 7.11, more iterations than equivalence classes are reported because of repeated
information generated during partitioning.

7.4.5 Discussion of Traceability and Manageability for Conflict-
ing Actuators Feature Interactions

Traceability – For the conflicting actuators combo pair CA-EVA, which does not include
ordered-compositions, the results can be easily traced back to the Stateflow models
by (1) following the hierarchy of control states, as the name of the states reported in
the counterexample by SMV are unchanged from the Stateflow models (in the results
from Level 3 and 4), (2) locating the transition name reported in the counterexample by
SMV, as these models use only one transition variable for the last transition taken (in the
results from Level 2), and (3) following the sequence of transition names reported in the
counterexample by SMV from the only initial state (in the results from Level 1).

161

CA_t
24

¬CA_t
24

CA_t
35

¬CA_t
35

CA_t
15 ¬CA_t

15

CA_t
30

¬CA_t
30

CA_t
29

¬CA_t
29

¬CA_t
17

SIGSEGV

✔

✔
1

2

3

4

6

7CA_t
17

CA_t
33 ¬CA_t

33
5

CA_t
34

¬CA_t
34

9

CA_t
30 ¬CA_t

30

✔

8

SIGSEGV ✔

CA_t
31

¬CA_t
31

SIGSEGV ✔

10

SIGSEGV

SIGSEGV

Figure 7.8: Partitions needed during analysis of Level 1 for CA-EVA

For the conflicting actuator combo pairs CC-CA, CC-EVA, and CC-LG, in which fea-
ture CC includes an ordered-composition, the results can be traced back to the Stateflow
models by (1) following all the hierarchies of control states, as the name of the states re-
ported in the counterexample by SMV are unchanged from the Stateflow models (in
the results from Level 3 and 4), (2) following the hierarchies of transition names reported
in the counterexample, as model CC includes an ordered-composition, and therefore, it
requires several transition variables to report the transitions taken in the big-step (in the
results from Level 2), and (3) following the sequence of transition names, hierarchically in
the case of CC, reported in the counterexample from the only initial state (in the results
from Level 1). Following the transition names hierarchically is not too complicated, as the
name of the transition variable indicates the superstate in which the transition is located.

Manageability – The results are manageable as they can be listed in each section for
all levels and for all combos, whereas an approach that shows all data variants of the
equivalence classes in each section would be hard to generate and analyze.

7.5 Related Work

This section discusses approaches that partition a verification run by modifying the prop-
erty. Pu and Zhang define search state partitioning for LTL model checking by introducing
new data variables in the model, and use these variables as conditions to partition the
search [150, 151]. Their partitions are also disjoint conditions as in my method. However,
my method does not introduce variables that are not part of the original model. Sebastiani

162

et al. [158] propose the use of generalized symbolic trajectory evaluation (GSTE) [188]
as property-driven partitioning. It uses the state variables in the property automaton to
drive the partitioning, creating an abstraction of the system. In contrast, my partitioning
works on the concrete model of the system.

7.6 Summary

This chapter has shown the use of my method and tool Alfie, described in Chapter 6, and
also demonstrated the reduction produced by my equivalence classes of counterexamples
in the detection of feature interactions for combinations of seven automotive design mod-
els. My case studies also showed the advantages of using partitioning to generate more
equivalence classes of feature interactions.

163

Chapter 8

Conclusions

This chapter summarizes the main contributions of my work, as well as its limitations.
Finally, I discuss my plans for future work.

8.1 Contributions

My contributions presented in this dissertation are the following:

• The identification of the characteristics of automotive active safety systems that make
model checking a promising technique to detect feature interactions.

• A systematic, complete and general definition of feature interactions that identifies
contradictory requests by software features to actuators. This definition is based on
the set of actuators controlled by the features and domain expert knowledge.

• The creation of the UWFSM set of non-proprietary automotive active safety feature
models (without vehicle dynamics), designed in Matlab’s Stateflow, to use in
my case study because there is not a publicly available set of models.

• The creation of the translator mdl2smv that generates SMV models from automo-
tive features designed using a subset of the Matlab’s Stateflow language. The
translated SMV models contain the same level of description as the design models.

• A novel method and tool, called Alfie, to detect a set of counterexamples that is
representative of the set of all counterexamples to an invariant for an extended finite
state machine (EFSM) model by modifying on-the-fly the property being verified.

165

Alfie divides the set of all counterexamples into equivalence classes based on sim-
ilarity in states and transitions in the EFSM path, producing one representative
counterexample per equivalence class.

• The process to detect a feature interaction when two Stateflow models are run-
ning concurrently, using the model checker SMV, generating a counterexample when
a feature interaction is identified. The behaviour of the vehicle dynamics is left
completely unrestricted to identify any conflicting requests to actuators.

• The generalization of my method and tool Alfie to pairs of concurrent Stateflow
models running in parallel to detect to detect a set of counterexamples that is repre-
sentative of the set of all counterexamples (feature interactions), generating a repre-
sentative counterexample per equivalence classes.

• The use of a partitioning strategy by Alfie to provide a scalable solution to the prob-
lem of finding all feature interactions. This strategy breaks down the LTL property
that represents the equivalence classes of counterexamples seen so far in the pro-
cess into subproblems, which cover the original LTL property when the verification
becomes too large to model check.

The validation of my contributions is summarized as follows:

• My definition of feature interactions has the following attributes, which are validated
in Section 3.3:

– systematic, by creating LTL properties automatically from a list of actuators
and their value thresholds.

– complete with respect to the set of actuators and thresholds provided by domain
experts to detect any conflicting actuator requests between pairs of features.

– general, by being independent of the behaviours of the features that are part of
the system.

• My translator mdl2smv generates SMV models from Stateflow active safety de-
sign models that retain the same level of detail, validated by checking the traceability
of my case study results in Chapter 7.

• My novel method and tool Alfie generates a set of counterexamples that is represen-
tative of the set of feature interactions between pairs of active safety features, with
a counterexample produced per equivalence class, making my results manageable.
This process is validated by illustrating the reduction achieved by my method in
Section 5.5 and by observation of the results of my case study in Chapter 7.

166

• Alfie is made scalable by using a strategy that partition the problem when the size of
the LTL property is too large to model check, validated experimentally in Chapter 7
by analyzing the partitioning used in my case study.

8.2 Limitations

There are some factors that might limit the adoption of my method. This section describes
the limitations of my work.

My definition of feature interactions for active safety features is advantageous with
respect to the traditional approach to detect interactions by automotive domain experts,
where domain experts try to list the behaviours in which they expect the features to interact
in an unsafe manner. However, my definition is only complete with respect to the expert
knowledge provided, i.e., the thresholds provided by domain experts. An outstanding
problem is how to determine value thresholds that do not miss feature interactions that
can lead to safety risks. Also, my definition does not consider vehicle dynamics, thus
making analysis using formal verification practical. More research is needed to incorporate
vehicle dynamics.

My translator from Matlab’s Stateflow to SMV, mdl2smv, does not recognize nor
handle the following Stateflow syntax:

• Condition actions in transitions
• Actions within states
• Connective junctions
• Graphical and Matlab functions
• In(state name) condition functions
• Temporal conditions (use of operators such as after, at, every within Stateflow)
• Event broadcasting

However, I have observed that these syntactic elements were not needed in industrial
practice when modelling automotive design features, and that an equivalent design can
likely be created without these syntactic elements.

My method and tool Alfie detect feature interactions for automotive active safety fea-
tures, which are intra-vehicle features. For inter-vehicle features, the number and kind
of features are not fixed, and therefore, model checking may not be a good approach for
detection. Also, for Level 1, Alfie could miss some distinct bugs because of the reduction
of EFSM loops, for instance, in the case of multiple self-looping transitions that all gen-
erate a feature interaction. This is a design decision I made, which makes the verification
more efficient. Even with the reduction of EFSM loops, some combination of features still

167

generated a large number of equivalence classes for Level 1 during my case study, such as
combo CA-EVA. However, including even one instance of each different EFSM loop would
make the problem of generating all equivalence classes of counterexamples for Level 1 even
harder, based on my observation while experimenting with this idea.

In my case studies, some combination of features generated a very large number of
equivalence classes, although they were not able to complete even while using partitioning.
This issue might be aided by the incorporation of environmental constraints. However,
some of these constraints appear to be specific to a particular feature or combination of
features, which could make my method dependent on the set of features that are part of
the system.

8.3 Future Work

For my definition of feature interactions, instead of simply considering a fixed value as a
threshold, I plan to consider different value thresholds depending on the environmental
conditions, e.g., using a greater value threshold to detect interactions when cruising at low
speeds. This consideration may help the analysis be more efficient, but I do not expect
any other changes in the feature interaction definition or in the definition of equivalence
classes of counterexamples.

I am also interested in generalizing my methods and tools to feature models that are
designed in languages other than Stateflow. For this generalization, the first step would
be the creation of a translator from the newly considered design language to the language in
which analysis is going to be performed. Cadence SMV has been a good fit for our current
analysis, and although we briefly explored options such as bounded model checking [57]
without improvement to our iterative method, it might be worth considering other model
checkers such as NuSMV [54] or SPIN [93]. Depending on the source and target language, in
the future it might possible to integrate the ability to simulate counterexamples generated.

The features considered in this dissertation are intra-vehicle features, which can be
thought of as a fixed set in the car because they are selected at release or resale time. With
the new trend of inter-vehicle features, which can be integrated or removed dynamically,
e.g., infotainment services or road-assistance services, it would be interesting to explore the
detection of feature interactions for inter-vehicle features and what the impact in methods
and tools would be. Some of the approaches proposed for detection of feature interactions
for Internet applications seem relevant when considering inter-vehicle features.

Another option to explore is the generalization of my definition of feature interactions,
as well as to my method Alfie, to recognize multiple configurations that fail the invariant
in a path, although applying the method to a real system did not seem computational
feasible when I performed some trials with such generalization.

168

My method is validated by a case study with my UWFMS set of non-proprietary au-
tomotive feature design models to detect all feature interactions of type Immediate. I plan
to expand on my results and techniques by tackling the detection of feature interactions
of type Temporal. The challenges that I expect to overcome are: (a) the generalization
of the LTL representation of the equivalence classes when dealing with requests separated
in time, using history variables or a more expressive property representation, and (b) the
description of strategies that partition the equivalence class into smaller categories in the
case that the size of the property is too big.

Also, because I believe that my results will have relevance to the solution of the feature
interaction problem in other cyber physical systems, I intend to study the applicability of
my techniques to other domains, e.g., in networked medical systems.

169

APPENDICES

171

Appendix A

Non-Proprietary Automotive Feature
Set: UWFMS

This chapter describes the functionality of each of the automotive feature design models
in my non-proprietary set and show how such functionality is modelled using the subset
of the Stateflow language described in Chapter 4. The set of non-proprietary feature
design models is called the “University of Waterloo Feature Model Set” (UWFMS). The
UWFMS is novel in the sense that there is not a publicly available set of models that I
could use to validate my methods to detect feature interactions in the automotive domain.
Some of these feature design models are based on TRW Automotive features’ textual
descriptions provided by their website [5]. These features are regarded by TRW as ‘Active
Safety Systems’, under the heading of ‘Driver Assist Systems’. The other features were
devised by Richard Fanson1 and I to have a larger set of feature models to work with.

Each section provides the final Stateflow design model per feature used in the case
study described in Chapter 7, as well as a brief description of the design decisions made
when modelling the UWFMS in Stateflow. Each of the non-proprietary feature models
were designed to fulfill a goal, with no explicit intention that these features might interact
with each other in an unsafe manner. The inputs, outputs and local variables used in each
design model are also summarized in a table for each type of variables. These tables are
placed close to the design model to help the reader understand the figures.

A.1 Cruise Control (CC)

UWFMS’s CC is based on TRW’s ACC description:

1Richard Fanson is a Mechatronics engineer who helped in the design of the UWFMS. His knowledge
and insights, as well as those from the engineers at GM, helped to make the UWFMS representative [99].

173

“TRW’s Adaptive Cruise Control (ACC) technology improves upon standard
cruise control by automatically adjusting the vehicle speed and distance to that
of a target vehicle. ACC uses a long range radar sensor to detect a target vehicle
up to 200 meters in front and automatically adjusts the ACC vehicle speed and
gap accordingly. ACC decelerates or accelerates the vehicle according to the
desired speed and distance settings established by the driver. As per standard
cruise control, the driver can override the system at any time”.

Figure A.1 shows an example of the feature’s execution from the TRW website.

(a) (b)

Figure A.1: Adaptive Cruise Control Functionality: (a) The ACC vehicle approaches the
Target vehicle at 70 mph (ACC’s vehicle set speed); (b) Due to the proximity, ACC starts
coasting by adjusting the ACC vehicle’s speed to 60 mph, matching the Target vehicle’s
speed.

There are two kinds of buttons that can be used when modelling features:

• A Push button, which when clicked, causes an action. Given that the triggering of an
action is instantaneous, push buttons are normally modelled by events (e.g., Cancel).
However, some push buttons can be held. These are modelled as two events, one
to capture when it is initially pressed (i.e., SetAccelIn), and another to model the
instant at which it is no longer pressed (i.e., SetAccelOut).

• A Toggle button, which when clicked, alternates between two states, which are set
and unset. Given that the state remains, toggle buttons are normally modelled by
data such as a Boolean (e.g., CC Enabled).

Figure A.2 presents CC’s functionality modelled in Stateflow, which will be ex-
plained in the following paragraphs. Table A.1 shows the local variables, Table A.2 the
input variables, and Table A.3 the output variables used in UWFMS’s CC design model.

174

The details of UWFMS’s CC design in Stateflow are as follows: CC should auto-
matically accelerate and decelerate the CC vehicle based on a target speed specified by
the driver and a constant distance separation with a Target vehicle, set at 50 meters. Un-
like TRW’s CC description, our design uses KPH (kilometers per hour). CC consists of
two siblings in an ordered-composition: the LOGIC CONTROL state, which controls the
vehicle logic for the throttle, and the SPEED SETTING state, which keeps track of the
target speed. The default of the LOGIC CONTROL sibling is the DISABLED state, and
CC starts in the DISABLED state when the car is turned on. When the driver turns CC
on, by pressing the CC Enabled button, CC enters the ENABLED state and sets the target
speed to 0 (which remains 0 until the feature is engaged).

The default of the ENABLED superstate is the DISENGAGED state. Pressing the
Set/Accel button, while driving forward at a speed greater than 40 KPH, makes CC to
enter the ENGAGED state. The default of the ENGAGED superstate is the COASTING
state. CC must be in the COASTING state when either the current speed exceeds the
target speed, or if the vehicle ahead is less than 50 meters away. Coast means that the
CC vehicle either maintains or decreases its speed by requesting no throttle, but not by
braking. CC moves to the ACCELERATING state when the current speed is less then the
target speed and the Target vehicle is farther than 50 meters from the CC vehicle. The
throttle output is proportional to the difference between the target speed and the current
speed. Depressing the brake or pressing the Cancel button shall cause CC to enter the
OVERRIDE state. This state remains active until either the Set/Accel or Resume/Coast
buttons is pressed, which makes CC to enter the ENGAGED state. An Error event at any
time when CC is on will cause a transition to the FAIL state, and it will not be able to
recover from this condition until the CC vehicle is restarted.

The default of the SPEED SETTING sibling is the HOLD SPEED state. Pressing the
Set/Accel button makes CC to enter the INC SPEED state and locks in the current speed
value as the target speed. If the Set/Accel button is held while the target speed is less than
100 KPH, the target speed is incremented for every cycle unit that occurs. Release of the
Set/Accel button sends CC back to the HOLD SPEED state. Pressing the Resume/Coast
button makes CC to enter the DEC SPEED state and locks in the current speed value as
the target speed. If the Resume/Coast button is held while the target speed is greater than
0 KPH, the target speed is decremented for every cycle unit that occurs. Release of the
Resume/Coast button sends CC back to the HOLD SPEED state.

The definition of stable for UWFMS’s CC is (sCC=sLOGIC CONTROL).

Type Name Meaning

data CC Engaged Value that indicates when CC is engaged [Boolean]

Table A.1: Local variables used in Cruise Control (CC)

175

Type Name Meaning

event No event Signal at a cycle unit for the Stateflow model
when no other event is generated

event SetAccelIn Signal indicating depression of Set/Accel button
event SetAccelOut Signal indicating release of Set/Accel button
event ResumeCoastIn Signal indicating depression of Resume/Coast button
event ResumeCoastOut Signal indicating release of Resume/Coast button
event Cancel Signal indicating depression of Cancel button
event Error Signal indicating when an error has occurred
data CC Enabled Driver controlled main power to enable/disable the

feature [Boolean]
data FollowDist Number to define distance to the vehicle ahead (Value

between 0 and 100) [Meters in integers]
data BrakePedal Value of brake pedal input represented as a percentage

of maximum depression [Percentage in integers]
data AccelPedal Value of accelerator pedal input represented as a

percentage of maximum depression [Percentage in integers]
data Speed Current speed of the vehicle (value within the range of 0

to 100) [KPH in integers]
data PRNDL In The input representing the current gear selection

with the following values assumed:
PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.2: Input variables used in Cruise Control (CC)

Type Name Meaning

data set Throttle Value proportional to difference between the target
speed and current speed [Percentage in integers]

data TargetSpeed Target cruising speed of the feature (This variable
is an output to display its value) [KPH in integers]

Table A.3: Output variables used in Cruise Control (CC)

176

!
"
#
#
$
%
!
#
&
&
'(
)

2

'(
*
%
!
"
#
#
$

+
,
-
$
%
!
"
#
#
$

$
#
*
%
!
"
#
#
$

-
,
)
'*
%
*
,
(
&
.
,
-

1

/
0
'-

$
'!
0
1
-
#
$

#
(
0
1
-
#
$

$
'!
#
(
)
0
)
#
$

,
2
#
.
.
'$
#

#
(
)
0
)
#
$

0
*
*
#
-
#
.
0
&
'(
)

*
,
0
!
&
'(
)

(
3
%
4
5
4
6
7
8&
9
:;
4
7!
<
4
4
=
>?
>
@
A
A
B

C&
9
:;
4
7!
<
4
4
=
D
&
9
:;
4
7!
<
4
4
=
E
@
FG

1

81
:9
H
4
"
4
=
9
IJ
A
>K
K>
L*
*
%
#
6
;
9
;
4
=
B

2

!
4
70
M
M
4
I'
6
8*
*
%
#
6
;
9
;
4
=
BN

&
9
:;
4
7!
<
4
4
=
D
!
<
4
4
=
F

2

!
4
70
M
M
4
I,
O
7

3

81
:9
H
4
"
4
=
9
IJ
A
>K
K>
L*
*
%
#
6
;
9
;
4
=
B

2

.
4
P
O
Q
4
*
3
9
P
7'
6
8*
*
%
#
6
;
9
;
4
=
BN

&
9
:;
4
7!
<
4
4
=
D
!
<
4
4
=
F

1
.
4
P
O
Q
4
*
3
9
P
7,
O
7

3

(
3
%
4
5
4
6
7
8&
9
:;
4
7!
<
4
4
=
>J
>
A
B

C&
9
:;
4
7!
<
4
4
=
D
&
9
:;
4
7!
<
4
4
=
!
@
FG

1

#
::
3
:N

*
*
%
#
6
;
9
;
4
=
D
A
F

1

8L
*
*
%
#
6
9
R
I4
=
BN

&
9
:;
4
7!
<
4
4
=
D
A
F>
*
*
%
#
6
;
9
;
4
=
D
A
F

2

8*
*
%
#
6
9
R
I4
=
BN

&
9
:;
4
7!
<
4
4
=
D
A
F

*
9
6
M
4
IN

*
*
%
#
6
;
9
;
4
=
D
A
F

2

81
:9
H
4
"
4
=
9
IJ
A
BN

*
*
%
#
6
;
9
;
4
=
D
A
F

3

!
4
70
M
M
4
I'
6
>K
>.
4
P
O
Q
4
*
3
9
P
7'
6
8S
!
<
4
4
=
J
D
T
A
U
U
"
.
(
$
-
%
'6
D
D
V
WB
N

*
*
%
#
6
;
9
;
4
=
D
@
F

8!
<
4
4
=
?
T
A
KK
"
.
(
$
-
%
'6
LD
V
BN

*
*
%
#
6
;
9
;
4
=
D
A
F

1

!
4
70
M
M
4
I'
6
8!
<
4
4
=
J
D
T
A
U
U
"
.
(
$
-
%
'6
D
D
V
BN

*
*
%
#
6
;
9
;
4
=
D
@
F

8S
/
3
II3
X
$
YP
7J
Z
A
WU
U
S!
<
4
4
=
?
&
9
:;
4
7!
<
4
4
=
WB
N

P
4
7%
&
[
:3
77
I4
D
S&
9
:;
4
7!
<
4
4
=
!
!
<
4
4
=
WF

8S
/
3
II3
X
$
YP
7?
D
Z
A
WK
KS
!
<
4
4
=
J
D
&
9
:;
4
7!
<
4
4
=
WB

t2
2

t2
3

t1
8

t3
7

t2
6

t1
9

t2
4

t2
5

t2
0

t2
1

t3
1

t3
2

t3
3

t2
8

t3
5

t2
7

t3
0

t3
4

Figure A.2: Cruise Control (CC) Stateflow design model

177

A.2 Collision Avoidance (CA)

UWFMS’s CA is based on TRW’s CW description:

“TRW’s Collision Warning (CW) System can assist drivers by helping to pre-
vent or mitigate accidents. Combining long and short range radars with a
video camera, TRW’s Collision Warning monitors the road ahead (including
part of the side-fronts). In the event that a vehicle or obstacle approaches,
TRW’s collision warning system can notify the driver of a possible collision
through audible or visual alerts and can also provide braking force as soon as
an imminent collision is detected. ”

Figure A.3 shows an example of the feature’s execution from the TRW website.

(a) (b)

Figure A.3: Collision Warning Functionality: (a) CW uses radars and sensors to monitor
the presence and distance of vehicles ahead of the CW vehicle; (b) When CW senses a
collision threat with a vehicle in front, it alerts the driver (if a mild threat) and applies
brakes (if an imminent threat).

Figure A.4 presents CA’s functionality modelled in Stateflow, which we will explain
in the following paragraphs. UWFMS’s CA adds a level of collision threat to the two
proposed by TRW’s CW. Table A.4 describes the input variables and Table A.5 describes
the output variables used in UWFMS’s CA design model.

The details of UWFMS’s CA design in Stateflow are as follows: The CA feature
begins in the DISABLED state. When the driver turns CA on by pressing the CA Enabled
button, CA enters the ENABLED state. The default of the ENABLED superstate is the
DISENGAGED state. Once the CA vehicle’s speed exceeds 25 KPH while driving forward,
the feature will enter the ENGAGED state.

178

When engaged, CA is able to warn the driver and/or take action if a possible threat
is encountered. I assumed that some external pre-processing unit computes data from the
sensors and converts it into a threat input for CA, which is a reasonable assumption as
it occurs in practice in the automotive industry [16]. The threat input could be either:
None=0, Mild=1, Near=2, Imminent=3. If a threat input is received while in either
the IDLE, WARN, AVOID, or MITIGATE states, one of the following transitions occurs
depending on the threat:

• In the case that no threat is detected, or the obstacle ceases to be present, no warning
and no braking intervention will be made. CA changes to the IDLE state.

• In the case of a mild threat, a mild threat warning will be output (i.e., Warning =
1) with no braking intervention. CA enters the WARN state.

• In the case of a near threat, a near threat warning will be output (i.e., Warning = 2)
and soft braking will occur to slow the vehicle and avoid the potential collision (i.e.,
Brake = 30%). CA enters the AVOID state.

• In the case of an imminent threat, an imminent threat warning will be output (i.e.,
Warning = 3) and full force braking will occur to mitigate the collision as much as
possible (i.e., Brake = 80%). CA enters the MITIGATE state.

If the vehicle is brought to a halt when in either the AVOID or MITIGATE states, CA will
go to the HALT state and the vehicle will be held at halt until the driver presses on the brake
pedal beyond a threshold (for our model, the brake pedal threshold is set to 10 percent
of depression) to resume control of the vehicle. Then, CA will enter the ENABLED but
DISENGAGED state. A driver acceleration pedal input exceeding 35 percent of depression
will cause CA to enter the OVERRIDE state from any state in the ENABLED superstate.
Releasing the acceleration pedal to less than 35 percent of depression while CA Enabled is
still true sends CA back to the ENABLED state. An Error event at any time when CA is
on will cause a transition to the FAIL state, and it will not be able to recover from this
condition until the vehicle is restarted.

UWFMS’s CA relies on the fact that the pre-processing threat assessment accounts for
vehicle speeds so that what once was a threat will not remain a threat at speeds lower than
25 KPH or at a stop. Otherwise, the feature could be stuck at halt or other undesirable
outcomes.

The definition of stable for UWFMS’s CA is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in CA.

179

Type Name Meaning

event Error A signal indicating when an error has occurred
data CA Enabled Driver controlled main power to enable/disable the

feature [Boolean]
data BrakePedal Value indicating the physical amount of depression of the

brake pedal by the driver (0 for not depressed and any
positive value when depressed) [Percentage in integers]

data AccelPedal Value of physical pedal input represented as a percentage
of maximum depression [Percentage in integers]

data Speed Current speed of the vehicle (value within the range of 0
to 100) [KPH in integers]

data Threat Input from a pre-processing threat assessment block that
converts sensor inputs into a threat:

Threat = 0: No Threat
Threat = 1: Mild Threat
Threat = 2: Near Collision Threat
Threat = 3: Imminent Collision Threat

[Threat value in integers]
data PRNDL In The input representing the current gear selection

with the following values assumed:
PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.4: Input variables used in Collision Avoidance (CA)

180

Type Name Meaning

data set Brake Output indicating if the feature is physically intervening
by applying brake force:

set Brake = 30: Soft-Braking
set Brake = 80: Hard-Braking

[Brake degree as percentage in integers]
data CA HVI Value to indicate the message being displayed to the

driver through a human-vehicle interface (HVI):
CA HVI = 0: CA Disabled
CA HVI = 1: CA Enabled
CA HVI = 2: CA Engaged
CA HVI = 3: CA Error
CA HVI = 4: CA Override

[Display value in integers]
data CA Warning Audible and/or visual warning to indicate the presence

of threats, their severity and the intervention of CA:
Warning = 0: No Threat
Warning = 1: Mild Threat
Warning = 2: Near Collision Threat
Warning = 3: Imminent Collision Threat
Warning = 4: Vehicle Held Stopped

[Warning value in integers]

Table A.5: Output variables used in Collision Avoidance (CA)

181

EN
AB

LE
D

D
IS

EN
G

AG
ED

EN
G

AG
ED

ID
LE

W
AR

N

M
IT

IG
AT

E
AV

O
ID

H
AL

T

D
IS

AB
LE

D

O
VE

R
R

ID
E

FA
IL

[C
A_

En
ab

le
d]

/
C

A_
H

VI
=

1;

[!C
A_

En
ab

le
d]

/
C

A_
H

VI
=

0;
W

ar
ni

ng
=0

;

3

[!C
A_

En
ab

le
d]

/
C

A_
H

VI
=

0;
W

ar
ni

ng
=

0;

2

[A
cc

el
Pe

da
l>

=
35

]/
C

A_
H

VI
=

4;
W

ar
ni

ng
=

0;
2

[A
cc

el
Pe

da
l<

35
]/

C
A_

H
VI

=
1;

3

Er
ro

r /
C

A_
H

VI
=

3;

1

Er
ro

r/
C

A_
H

VI
=

3;
W

ar
ni

ng
=0

;

1

[(B
ra

ke
Pe

da
l>

10
)]/

C
A_

H
VI

=
1;

W
ar

ni
ng

=
0;

[(S
pe

ed
>

0&
&S

pe
ed

<=
25

)||
PR

N
D

L_
In

!=
3]

/
C

A_
H

VI
=

1;
 W

ar
ni

ng
=

0;
1

[S
pe

ed
>

25
&&

PR
N

D
L_

In
==

3]
/

C
A_

H
VI

=
2;

[S
pe

ed
==

0]
/

C
A_

H
VI

=
1;

 W
ar

ni
ng

=
4;

2

[T
hr

ea
tC

A=
=

0]
/

W
ar

ni
ng

=0
;

2

[T
hr

ea
tC

A=
=

0]
/

W
ar

ni
ng

=
0;

3

[T
hr

ea
tC

A=
=

2]
/

W
ar

ni
ng

=2
;

se
t_

Br
ak

e=
30

;

3
[T

hr
ea

tC
A=

=
3]

/
W

ar
ni

ng
=3

;
se

t_
Br

ak
e=

80
;

1

[(T
hr

ea
tC

A=
=

0)
]/

W
ar

ni
ng

=
0;

1

[(T
hr

ea
tC

A=
=

1)
]/

W
ar

ni
ng

=
1;

2

[T
hr

ea
tC

A=
=

1]
/

W
ar

ni
ng

=1
;

1

[T
hr

ea
tC

A=
=

1]
/

W
ar

ni
ng

=
1;

1

[T
hr

ea
tC

A=
=

3]
/

W
ar

ni
ng

=
3;

se
t_

Br
ak

e=
80

;

2

[T
hr

ea
tC

A=
=

2]
/

W
ar

ni
ng

=
2;

se
t_

Br
ak

e=
30

;

3

[T
hr

ea
tC

A=
=

3]
/

W
ar

ni
ng

=3
; s

et
_B

ra
ke

 =
 8

0;
2

[T
hr

ea
tC

A=
=

2]
/

W
ar

ni
ng

=2
; s

et
_B

ra
ke

=
30

;
3t2
9

t3
1

t2
1

t2
2

t3
0

t3
2

t2
3

t3
3

t3
5

t3
4

t2
5

t1
7

t1
6

t2
4

t1
4

t1
5

t3
6

t3
7

t3
8

t3
9

t2
7

t1
9

t2
0

Figure A.4: Collision Avoidance (CA) Stateflow design model

182

A.3 Park Assist (PA)

UWFMS’s PA is based on TRW’s PA description:

“The TRW Park Assist (PA) system combines electrically powered steering
with environmental sensing to aid drivers during parallel parking maneuvers.
The system uses short range radar sensors to evaluate the length of the parking
slot. From this information, the steering trajectory is calculated and the proper
steering angle is automatically chosen. The driver monitors the steering. ”

Figure A.5 shows an example of the feature’s execution from the TRW website.

(a)

(b)

(c)

Figure A.5: Park Assist Functionality: (a) PA monitors for an empty space where the
PA vehicle can fit; (b) If a large enough space is found and the driver accepts the space,
PA starts the parking maneuver; (c) PA automatically adjusts the steering, throttle and
braking during the parking maneuver.

Figure A.6 presents PA’s functionality modelled in Stateflow, which we will explain
in the following paragraphs. Unlike TRW’s PA, in our design, we included the ability for
PA to operate the throttle and braking system while the parking maneuver is completed.
PA communicates with the driver when some decisions need to be made, such as accepting
parking spot, changing gears or enabling the next parking action (e.g., indicate NextPA).
Table A.6 describes the input variables and Table A.7 describes the output variables used
in the PA’s Stateflow design model.

The details of UWFMS’s PA design in Stateflow are as follows: PA starts in the
DISABLED state when the car is turned on. When the driver turns PA on by pressing
the PA Enabled button, PA enters the ENABLED state. The default of the ENABLED
superstate is the IDLE state. The enabled feature PA will remain idle until the speed of
the vehicle is less than 10 KPH while driving forward to move to the SEARCHING state
and start monitoring the sizes of the adjacent parking spaces. As observed in practice, We
assumed that the sensor data is pre-processed by an external module and that PA simply
obtains a SpaceFound boolean input indicating when a large enough space has been found.
When PA receives the SpaceFound boolean with value true, it will enter the PROMPTING

183

state to prompt the driver (through the HVI) to stop the car and accept the space, or
decline the space. If the space is declined or if the driver fails to stop, the external module
will make the SpaceFound boolean false, and PA will return to the SEARCHING state to
monitor for another parking space. If the driver stopped the car and the space is accepted,
PA enters the ENGAGED superstate, entering directly the SWIVEL OUT state.

While engaged, PA will take over and perform the parallel park maneuver. PA relies
on an external component that monitories the progress of the maneuver, sending back
to PA a Next event through a HVI when a transition to the next step of the parking
maneuver is initiated. PA also relies on the driver to change gears when required, as
feature engineers indicated that this process could not be performed automatically by a
feature2. The maneuver is broken up into 5 steps, each of which correspond to a state:

1. At state SWIVEL OUT, when receiving a Next event along with variables PRNDL
set to 1 (i.e., Reverse) and speed set to a value in the range 1..5, PA will first reverse
and turn into the parking space. PA will enter the SWIVEL IN state.

2. At state SWIVEL IN, when receiving a Next event along with PRNDL set to 1 (i.e.,
Reverse) and speed set to a value in the range 1..5, PA will continue to reverse but
turn the wheels the other way to swivel the front end into the parking space. PA will
move to the STOP1 state.

3. At state STOP1, when receiving a Next event and speed is 0, PA will stop and
straighten the wheels. PA will go to the CENTER state.

4. At state CENTER, when receiving a Next event along with PRNDL set to 3 (i.e.,
Drive) and speed set to a value in the range 1..5, PA will pull forward into the middle
of the parking space. PA will enter the STOP2 state.

5. At state STOP2, when speed is 0, PA will finally stop since the maneuver is complete.
PA will move to the DISABLED state.

Braking by the driver or the detection of a threat during the maneuver will send PA
into the OVERRIDE state, which can be resumed, where the parking process left off, when
the threat or braking ceases. Some pre-processing of sensor inputs will compute the sensor
data and convert it into a threat input for PA. Steering or acceleration by the driver during
the maneuver will send PA to the ABORT state. PA is designed so the feature cannot
resume from ABORT since the vehicle is likely off its trajectory path and cannot complete
the parking maneuver. An Error event at any time when PA is on will cause a transition
to the FAIL mode that cannot be left until the vehicle is shut off and restarted.

The definition of stable for UWFMS’s PA is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in PA.

2Clarification made by feature design engineers during Alma Juarez’s visits to GM Research and De-
velopment (2007-2008).

184

Type Name Meaning

event Next An signal from a diagnostic external component to
indicate when to transition between the different phases
of the parking maneuver

event Error A signal indicating when an error has occurred
data PA Enabled Driver selected main power to enable/disable the

feature [Boolean]
data SpaceFound Value to indicate whether or not the sensors have found

an appropriately sized space [Boolean]
data Accepted Driver’s input through a HVI to indicate (when prompted)

that the driver accepts the space found, so PA can
begin the maneuver [Boolean]

data Declined Driver’s input through a HVI to indicate (when prompted)
that the driver does not accept the space found, so
PA looks for another space [Boolean]

data SteerIn Driver controlled physical steering wheel input as a
steering wheel angle (0 means centred and any other value
means steering input from the driver) [Angle in integers]

data BrakePedal Value indicating the physical amount of depression of the
brake pedal by the driver (0 for not depressed and any
positive value when depressed) [Percentage in integers]

data AccelPedal Value of physical pedal input represented as a percentage
of maximum depression [Percentage in integers]

data Speed Current speed of the vehicle (value within the range of 0
to 100) [KPH in integers]

data Threat Input from a pre-processing threat assessment block that
converts sensor inputs into a threat; For PA, it only
indicates presence of obstruction [Boolean]

data PRNDL In The input representing the current gear selection
with the following values assumed:

PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.6: Input variables used in Park Assist (PA)

185

Type Name Meaning

data set Throttle Request for throttle control of the vehicle as a
percentage of maximum throttle (For PA, only one
constant value of throttle percentage is output, which
corresponds to a reasonable acceleration for parallel
parking) [Percentage in integers]

data set Brake An output request for braking force by the feature
as a percentage of maximum braking ability (For PA,
only one value of braking is output, which corresponds
to soft-braking) [Percentage in integers]

data set SteerOut Output request for steering control of the vehicle (the
(value -1 indicates that the vehicle shall turn the wheels
to the right, 0 indicates that the wheels shall be centred,
and 1 indicates that wheels shall turn to the left. A
external component processes these values and manipulate
the wheels accordingly) [Steering request in integers]

data PA HVI An output to represent the following information
that would be given to the driver:

PA HVI = 0: PA disabled
PA HVI = 1: PA enabled but idle, waiting for

speed range to engage searching
PA HVI = 2: PA searching
PA HVI = 3: PA prompting the driver, asking

to stop the vehicle and accept or decline
the space just found

PA HVI = 4: PA engaged and will display to
the driver that it is currently executing
the parking maneuver

PA HVI = 5: PA has completed the parking
maneuver

PA HVI = 6: PA has had to abort and cannot
resume, and the driver will have to try again

PA HVI = 7: PA is being overridden and will
continue when reason for override ceases

PA HVI = 8: PA encountered an error and will
be unavailable until the vehicle restarts

[Display value in integers]

Table A.7: Output variables used in Park Assist (PA)

186

!
"
#
$
%
!
&

'
(
)
*
'
+
,"
-

,&
%
!

.
!
#
(
/
0
,"
-

!
"
-
#
-
!
&

0

.
1
,2
!
%
3
)
4
+

.
1
,2
!
%
3
,"

/
!
"
+
!
(

.
+
)
'
5

.
+
)
'
6

)
2
!
(
(
,&
!

#
$
)
(
+

7
#
,%

&
,.
#
$
%
!
&

!
88
9
8:

'
#
3
0
2
,;
<
=

1

>'
#
3
!
?
@
A
BC
D
E:

'
#
3
0
2
,;
5
=

>F
'
#
3
!
?
@
A
BC
D
E:

'
#
3
0
2
,;
G
=

2

>.
H
C
C
D
;
;
G
E:

'
#
3
0
2
,;
I
=

>.
H
@
J
C
7
9
K
?
D
E:

'
#
3
0
2
,;
L
=

2

>.
H
C
C
D
M
G
N
N
.
H
C
C
D
O
;
5
G
N
N
'
(
"
&
%
3
,?
;
;
L
E:

'
#
3
0
2
,;
6
=

>#
J
J
C
H
PC
D
N
N
.
H
C
C
D
;
;
G
N
N
'
(
"
&
%
3
,?
;
;
5
E:

'
#
3
0
2
,;
Q
=R
S
C
P3
+
T
89
PP
BC
;
R6
G
=

S
C
P3
.
PC
C
8)
K
P;
5
=

2
>U
F#
J
J
C
H
PC
D
VW
WU
F.
H
@
J
C
7
9
K
?
D
VE
:

'
#
3
0
2
,;
6
=

1
>.
H
C
C
D
;
;
G
WW
.
H
C
C
D
M
5
G
WW
'
(
"
&
%
3
,?
F;
L
E:

'
#
3
0
2
,;
5
=

1

>U
F+
T
8C
@
P'
#
VN
N
U$
8@
X
C
'
C
D
@
B;
;
G
VE

2

>'
(
"
&
%
3
,?
F;
5
E:

'
#
3
0
2
,;
Y
=

1

>'
(
"
&
%
3
,?
F;
5
E:

'
#
3
0
2
,;
Y
=

1

>U
+
T
8C
@
P'
#
VW
WU
$
8@
X
C
'
C
D
@
BM
G
VE
:

'
#
3
0
2
,;
Z
=

2

>U
.
PC
C
8,
?
M
G
VW
WU
#
J
J
C
B'
C
D
@
BM
G
VE
:

'
#
3
0
2
,;
Y
=

1

>'
(
"
&
%
3
,?
F;
L
E:

'
#
3
0
2
,;
Y
=

1

>U
.
PC
C
8,
?
M
G
VW
WU
#
J
J
C
B'
C
D
@
BM
G
VE
:

'
#
3
0
2
,;
Y
=

1

"
C
[
P'
#
>'
(
"
&
%
3
,?
;
;
5
N
N
.
H
C
C
D
M
G
N
N
.
H
C
C
D
O
;
I
E:

'
#
3
0
2
,;
Q
=R
S
C
P3
+
T
89
PP
BC
;
R6
G
=

S
C
P3
.
PC
C
8)
K
P;
R!
5
=

2

"
C
[
P'
#
>'
(
"
&
%
3
,?
;
;
5
N
N
.
H
C
C
D
M
G
N
N
.
H
C
C
D
O
;
I
E:

'
#
3
0
2
,;
Q
=R
S
C
P3
$
8@
X
C
;
L
G
=

2

"
C
[
P'
#
>.
H
C
C
D
;
;
G
E:

'
#
3
0
2
,;
Q
=R
S
C
P3
+
T
89
PP
BC
;
6
G
=

"
C
[
P'
#
>'
(
"
&
%
3
,?
;
;
L
N
N
.
H
C
C
D
M
G
N
N
.
H
C
C
D
O
;
I
E:

'
#
3
0
2
,;
Q
=R
S
C
P3
$
8@
X
C
;
L
G
=

2

t3
3

t2
9

t2
0

t3
5

t2
1

t2
2

t2
4

t2
5

t2
6

t2
7

t2
8

t3
7

t2
3

t1
9

t3
8

t3
9

t3
0

t3
6t3
1

t3
2

Figure A.6: Park Assist (PA) Stateflow design model

187

A.4 Lane Guide (LG)

UWFMS’s LG is based on TRW’s LG description:

“TRW’s Lane Guide Departure (LG) System supports the driver and assists
in preventing unintentional lane departures. Utilizing a forward-looking video
camera that continuously monitors the vehicle’s lane, the system can determine
whether or not a driver is unintentionally drifting from the lane or the road. If
the driver unintentionally begins to wander out of their lane, the system alerts
the driver. ”

Figure A.7 shows an example of the feature’s execution from the TRW website.

(a) (b)

Figure A.7: Lane Guide Functionality: (a) As the LG vehicle cruises in a lane, LG monitors
the lane markings and the vehicle’s position; (b) If vehicle drifts from its lane, LG first can
warn the driver, and even provide steering corrective input.

Figure A.8 presents LG’s functionality modelled in Stateflow, which we will explain
in the following paragraphs. Table A.8 describes the input variables and Table A.9 describes
the output variables used in the LG’s Stateflow design model.

The details of USFMS’s LG design in Stateflow are as follows: LG starts in the
DISABLED state when the car is turned on. When the driver turns LG on by pressing
the LG Enabled button, LG enters the ENABLED state. The default of the ENABLED
superstate is the DISENGAGED state. LG relies on a external module that pre-process
the sensor data, which sends back to LG a LaneDrift value indicating the amount of vehicle
drifting. If the vehicle is adequately centered in the lane, LaneDrift is equal to 0. If the
LaneDrift input reaches the threshold of -10, the vehicle is drifting to the left. If the
LaneDrift input reaches the threshold of +10, the vehicle is drifting to the right.

188

LG can be used in two modes: “Warn” and “Assist”. Both modes are contained within
the state ENGAGED.

• If LG Mode = 0, this means that LG is set to “Warn”, and the feature will output
LG Warning = 1 to indicate that the vehicle drifts too far to the left or to the right, but
no other action other than the warning is taken. While LG Mode = 0, if the vehicle
is drifting left (i.e., LaneDrift < -10), LG will enter the WARN LEFT state, whereas
if the vehicle is drifting right (i.e., LaneDrift > 10), LG will enter the WARN RIGHT
state.

• If LG Mode = 1, this means that LG is set to “Assist”, and the feature will output
LG Warning = 0 (i.e., no warning indication). While LG Mode = 1, if the vehicle
is drifting left (i.e., LaneDrift < -10), LG will enter the ASSIST LEFT state, and
output SteerOut = -1; if the vehicle is drifting right (i.e., LaneDrift > 10), LG will
enter the ASSIST RIGHT state and output SteerOut = 1. These SteerOut output
values will indicate some external component to determine and request the steering
required to center the car. If the mode is set to “Assist”, the warning will not activate
when the vehicle drifts because PA will act to center the vehicle in its lane and a
warning during the execution of PA’s centering would be annoying to the driver.

The turn signal indication, brake pedal depression, and steering wheel input (over a
threshold of 10 and -10 degrees of rotation) will all send LG from any state in ENGAGED
to the OVERRIDE state. When any of these conditions cease to be present, LG goes to
the DISENGAGED state.

An Error event at any time when LG is on will cause a transition to the FAIL state,
which will remain the active state until the vehicle is restarted.

The definition of stable for UWFMS’s LG is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in LG.

189

Type Name Meaning

event Error A signal indicating when an error has occurred
data LG Enabled Driver selected main power to enable/disable the

feature [Boolean]
data LG Mode Mode selected by the driver, indicating that LG

works in either “Warn” mode (LGmode = 0) or
“Assist” mode (LGmode = 1) [Mode value in integers]

data LaneDrift Value to indicate if the vehicle is centered or not
in the lane (input from an external sensor processing
component, where a 0 indicates centered, values less than
-10 indicate drifting to the left, and values greater than 10
indicates drifting to the right) [Drifting value in integers]

data SteerIn Driver controlled physical steering wheel input as
a steering wheel angle (For LG, values are within the
range (-20,20), with 0 for centered) [Angle in integers]

data BrakePedal Value indicating the physical amount of depression
of the brake pedal by the driver (0 for not depressed
and any positive value when depressed) [Percentage
in integers]

data TurnSignal Value indicating if the turn signal is on or not
[Boolean]

data PRNDL In The input representing the current gear selection
with the following values assumed:

PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.8: Input variables used in Lane Guide (LG)

190

Type Name Meaning

data LG Warning Value that indicates if the LG is providing a warning
[Boolean]

data set SteerOut An output request for steering control of the vehicle
(For LG, the value -1 indicates that the vehicle shall turn
the wheels to the right, 0 indicates that the wheels shall be
centered, and 1 indicates that wheels shall turn to the left.
Some external component will process these values and
manipulate the wheels accordingly) [Steer request in
integers]

Table A.9: Output variables used in Lane Guide (LG)

191

!
"#
$
%
&
'
!

(
$
"&

'
)
$
%
&
'
!

*
+
'
,
,
"!
'

!
"#
'
)
-
$
-
'
!

'
)
-
$
-
'
!

"!
&
'

.
$
,
)
/
&
'
(
0

.
$
,
)
/
,
"-
1
0

$
#
#
"#
0
/
&
'
(
0

$
#
#
"#
0
/
,
"-
1
0

'
22
3
24

&
-
/
.
5
26
76
8
9
:
;

1

<=
&
-
/
'
6
5
>
?@
A
B4

&
-
/
.
5
26
76
8
9
:
;

2

<&
-
/
'
6
5
>
?@
A
B

<C
#
D@
@
2"
6
9
9
:
EF
F
C=
0
G
26
#
78
6
5
?E
F
F
C%
25
H
@
I
@
A
5
?9
9:
EB

<C
#
D@
@
2"
6
J
K
:
EL
LC
#
D@
@
2"
6
M
!
K
:
EL
LC
0
G
26
#
78
6
5
?E
LL
C%
25
H
@
I
@
A
5
?J
:
EB
4

&
-
/
.
5
26
76
8
9
:
;

2

<C
#
N
@
@
A
M
O
:
EL
LI
,
)
!
&
/
"6
=9
P
B4

&
-
/
.
5
26
76
8
9
:
;

1

<C
#
N
@
@
A
J
9
O
:
EF
F
I
,
)
!
&
/
"6
9
9
P
B

<C
&
5
6
@
!
27
QD
M
!K
:
EF
F
C&
-
/
R
3
A
@
9
9
:
EB
4

&
-
/
.
5
26
76
8
9
K
;

4

<C
&
5
6
@
!
27
QD
JK
:
EF
F
C&
-
/
R
3
A
@
9
9
:
EB
4

&
-
/
.
5
26
76
8
9
K
;

3

<C
&
5
6
@
!
27
QD
J
!K
:
EB
4

&
-
/
.
5
26
76
8
9
:
;

2

<C
&
5
6
@
!
27
QD
MK
:
EB
4

&
-
/
.
5
26
76
8
9
:
;

2

<C
&
5
6
@
!
27
QD
J
!K
:
EB
4

&
-
/
.
5
26
76
8
9
:
;

2

<C
&
5
6
@
!
27
QD
M
K
:
EB
4

&
-
/
.
5
26
76
8
9
:
;

2

<C
&
5
6
@
!
27
QD
M
!K
:
EF
F
C&
-
/
R
3
A
@
9
9
K
EB
4

&
-
/
.
5
26
76
8
9
:
;

S
@
D/
#
D@
@
2*
G
D9
!
K
;

2

<C
&
5
6
@
!
27
QD
J
K
:
EF
F
C&
-
/
R
3
A
@
9
9
K
EB
4

&
-
/
.
5
26
76
8
9
:
;

S
@
D/
#
D@
@
2*
G
D9
K
;

1

<C
&
-
/
R
3
A
@
9
9
:
EB
4

&
-
/
.
5
26
76
8
9
K
;

1

<C
&
-
/
R
3
A
@
9
9
K
EB
4

&
-
/
.
5
26
76
8
9
:
;

S
@
D/
#
D@
@
2*
G
D9
!
K
;

1

<C
&
-
/
R
3
A
@
9
9
:
EB
4

&
-
/
.
5
26
76
8
9
K
;

1

<C
&
-
/
R
3
A
@
9
9
K
EB
4

&
-
/
.
5
26
76
8
9
:
;

S
@
D/
#
D@
@
2*
G
D9
K
;

1

t1
4

t1
5

t3
5

t3
4

t3
1

t2
9

t3
0

t1
6

t1
7

t1
9

t2
0

t2
1

t2
2

t2
3

t2
4

t2
5

t2
6

t2
7

t2
8

Figure A.8: Lane Guide (LG) Stateflow design model

192

A.5 Emergency Vehicle Avoidance (EVA)

The Emergency Vehicle Avoidance (EVA) feature assists drivers by pulling over the vehicle
in situations when an emergency vehicle, which makes use of a siren, needs the road to
be cleared. Combining long and short range radars with a sound detector, and the use
of a GPS device, this feature determines when and where the vehicle needs to pull over.
When a siren is detected the vehicle should slow and pull to the right-side of the road, and
stop if the vehicle is in a safe location. If at an unsafe location (e.g., in the middle of an
intersection), the vehicle will coast until it is safe to continue the stop procedure.

Figure A.9 presents EVA’s functionality modelled in Stateflow, which we will explain
in the following paragraphs. Table A.10 describes the input variables and Table A.11
describes the output variables used in the EVA’s Stateflow design model.

The details of UWFMS’s EVA design in Stateflow are as follows: EVA starts in the
DISABLED state when the car is turned on. When the driver turns EVA on by pressing
the EVA Enabled button, EVA enters the ENABLED state.

At the ENABLED state, the feature will remain idle until a siren from an emergency
vehicle is detected, as indicated by the Siren boolean input. When the Siren Boolean is true
while driving forward, EVA will enters the ENGAGED state where the feature can acquire
control of the vehicle. The default of the ENGAGED superstate is the SLOW state. EVA
will monitor the right to see if pulling over is feasible. EVA relies on an external component
that sends events back to EVA regarding the safely of a stopping location. Then, EVA
receives a WayClear event when the location is safe, or a DontStop event when the location
is unsafe. If at the SLOW state EVA gets as an input a WayClear value true, it is safe to
pullover farther to the right, and EVA will enter the PULLOVER state. This transition to
the PULLOVER state requests braking and also requests steering control by outputting
SteerOut = -1, which indicates that the vehicle’s wheels need to move to the right. The
SteerOut output value will indicate some external component to determine and request the
steering required to pull over the vehicle. In either of the SLOW or PULLOVER states, if
EVA receives the DontStop boolean input value as true, EVA will enter the COAST state,
and also request a slight throttle to keep the vehicle moving until a safe location is found.
We assume that the value of throttle requested is adequate to ensure that the vehicle does
not come to a stop in an unsafe location (e.g., the middle of an intersection).

Any brake pedal depression or steering input of non-zero, and any acceleration pedal
input greater than a 30% depression from the driver sends EVA to the OVERRIDE state
from any state in the ENABLED superstate. When any of these conditions cease to be
present, EVA goes to the ENGAGED state while the feature is still enabled. Otherwise,
EVA transitions to the DISABLED state. An Error event at any time when EVA is on
causes a transition to the FAIL state, which remains the active state until the vehicle is
restarted.

193

The definition of stable for UWFMS’s EVA is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in EVA.

Type Name Meaning

event Error A signal indicating when an error has occurred
data EVA Enabled Driver selected main power to enable/disable the

feature [Boolean]
data Siren Input from an external component that uses GPS

information and microphones to determine if an
emergency vehicle is nearby and its whereabouts, so
EVA can act by moving the EVA vehicle out of the
emergency vehicle’s path [Boolean]

data WayClear Input from an external component that uses GPS
and radar information to indicate if pulling the EVA
vehicle over into the far right lane is possible
[Boolean]

data DontStop Input from an external component that uses GPS
information to determine if the current braking
action would cause the EVA vehicle to stop in an
unsafe location [Boolean]

data BrakePedal Value indicating the physical amount of depression
of the brake pedal by the driver (0 for not depressed
and any positive value when depressed) [Percentage
in integers]

data AccelPedal Value of physical pedal input represented as a
percentage of maximum depression [Percentage in
integers]

data Speed Current speed of the vehicle (value within the range
of 0 to 100) [KPH in integers]

data PRNDL In The input representing the current gear selection
with the following values assumed:

PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.10: Input variables used in Emergency Vehicle Avoidance (EVA)

194

Type Name Meaning

data set Throttle Request for throttle control of the vehicle as a
percentage of maximum throttle (For EVA, only one
constant value of throttle percentage is output, which
corresponds to a reasonable acceleration for pulling
over) [Percentage in integers]

data set Brake An output request for braking force by the feature
as a percentage of maximum braking ability (For
EVA, only two values of braking are output,
corresponding to soft-braking and mid-force braking)
[Percentage in integers]

data set SteerOut An output request for steering control of the vehicle
(For EVA, the value -1 indicates that the vehicle shall
turn the wheels to the right, 0 indicates that the
wheels shall be centred, and 1 indicates that wheels
shall turn to the left. Some external component will
process these values and manipulate the wheels
accordingly) [Steer request in integers]

data EVA HVI An output to represent the following information
that would be given to the driver:

EVA HVI = 0: EVA disabled
EVA HVI = 1: EVA enabled, but idle

waiting for the an emergency vehicle to
be detected (indicated by the siren boolean)

EVA HVI = 2: EVA engaged and executing
evasive action to slow and get as far out
of the way as possible

EVA HVI = 3: EVA is being overridden
EVA HVI = 4: EVA has encountered an

error and will not be available again
until the vehicle is restarted

[Display value in integers]

Table A.11: Output variables used in Emergency Vehicle Avoidance (EVA)

195

!
"#
$
%
&
'
!

(
)
'
*
*
"!
'

+
$
"&

'
,
$
%
&
'
!

!
"#
'
,
-
$
-
'
!

'
,
-
$
-
'
!

.
(
$
#
/

0
1
&
&
(
)
'
*

#
&
(
2

34
'
)
$
5
'
6
7
8
9:
;
<=

'
)
$
5
>
)
"?
@
A

2
'
BB
C
B=

'
)
$
5
>
)
"?
D
A

1

34
'
)
$
5
'
6
7
8
9:
;
<=

'
)
$
5
>
)
"?
@
A

1

3'
)
$
5
'
6
7
8
9:
;
<=

'
)
$
5
>
)
"?
E
A

3%
B7
F
:
0
:
;
7
94
?
@
GG
H$
I
I
:
90
:
;
7
9J
?
K
@
L<
=

'
)
$
5
>
)
"?
K
A

2

3%
B7
F
:
0
:
;
7
9?
?@
M
M
H$
I
I
:
90
:
;
7
9N
K
@
L<
=

'
)
$
5
>
)
"?
O
A

3

'
BB
C
B=

'
)
$
5
>
)
"?
D
A

3

34
#
PB
:
6
GG
#
Q
:
:
;
?
?
@
GG
0
*
,
!
&
5
"6
4?
K
<=

'
)
$
5
>
)
"?
E
A

3#
PB
:
6
M
M
#
Q
:
:
;
J
@
M
M
0
*
,
!
&
5
"6
?
?
K
<=

'
)
$
5
>
)
"?
O
A

34
!
C
6
R#
RC
Q
M
M
2
7
S
.
9:
7
B<
=

T
:
R5
%
B7
F
:
?
U
@
A

T
:
R5
#
R:
:
B(
V
R?
!
E
A

2

34
!
C
6
R#
RC
Q
M
M
42
7
S
.
9:
7
B<
=

T
:
R5
%
B7
F
:
?
K
@
A

1

3!
C
6
R#
RC
Q
<=

T
:
R5
/
W
BC
RR
9:
?
K
X
A

1

3!
C
6
R#
RC
Q
<=

T
:
R5
/
W
BC
RR
9:
?
K
X
A

1
32
7
S
.
9:
7
BM
M
4!
C
6
R#
RC
Q
<=

T
:
R5
%
B7
F
:
?
U
@
A

T
:
R5
#
R:
:
B(
V
R?
!
E
A

2

34
2
7
S
.
9:
7
BM
M
4!
C
6
R#
RC
Q
<=

T
:
R5
%
B7
F
:
?
K
@
A

2

t1
4

t1
3

t1
6

t1
7

t1
8

t2
9

t2
8

t1
9

t2
0

t2
4

t2
5

t2
6

t2
7

t2
3

t2
2

Figure A.9: Emergency Vehicle Avoidance Stateflow design model

196

A.6 Parking Space Centering (PSC)

The Parking Space Centering (PSC) feature assists drivers during perpendicular parking
maneuvers. I assumed that the vehicle is already at a valid parking space; an error signal
is sent if it is detected that this is not the case. The feature uses short range radar sensors
to determine the location of the vehicle within the box.

Figure A.10 presents PSC’s functionality modelled in Stateflow, which we will ex-
plain in the following paragraphs. Table A.12 describes the input variables and Table A.13
describes the output variables used in the PSC’s Stateflow design model.

The details of UWFMS’s PSC design in Stateflow are as follows: PSC defaults to
the DISABLED state when the vehicle is turned on. When the drivers turns PSC on by
pressing the PSC Enabled button, PSC enters the ENABLED superstate, which defaults
to the DISENGAGED state. When the vehicle is moving at less than 5 KPH while driving
forward, PSC moves into the ENGAGED state, which defaults to the STRAIGHT state.
At the STRAIGHT state, the vehicle begins moving straight forward, setting Throttle to 20.
We assumed that the inputs for LeftLine, RightLine, and FrontLine are units of distance with
5 being a threshold for close distance to the front, and a threshold for not being centered.
If the vehicle is farther from the left side than the right side (i.e., LeftLine-RightLine > 5)
then the feature enters the MOVE LEFT state to correct the vehicle’s position by setting
SteerOut to -1 while Throttle = 20. If the vehicle is farther from the right side than the
left side (i.e., RightLine-LeftLine > 5) then the feature enters the MOVE RIGHT state to
correct the vehicle’s position by setting SteerOut to 1 while Throttle = 20. These SteerOut
output values will indicate some external component to determine and request the steering
required to center the car, with the value of -1 used to represent the vehicle moving its
wheels to the left and the value of +1 used to represent wheels pointed to the right. At
any point while at the ENABLED state, when the front line of the parking box is 5 units
with the difference between the two sides being less than 5, PA enters the HALT state.
When the vehicle stops completely, PSC moves to the DISENGAGED state.

Any Error event at any time when PSC is on will cause the feature to transition to the
FAILED state, which cannot be left until the vehicle is shut off and restarted. Steering,
acceleration or braking by the driver sends PSC to the OVERRIDE state. When any of
these conditions cease to be present, PSC goes to the ENABLED state while the feature
is still enabled. Otherwise, PSC transitions to the DISABLED state.

The definition of stable for UWFMS’s PSC is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in PSC.

197

Type Name Meaning

event Error A signal indicating when an error has occurred
data PSC Enabled Driver selected main power to enable/disable the

feature [Boolean]
data LeftLine Input from radar, indicating the distance

to the left side of the parking space, whether
it is a line marking or an obstacle [Distance in
integers]

data RightLine Input from radar, indicating the distance
to the right side of the parking space, whether
it is a line marking or an obstacle [Distance in
integers]

data FrontLine Input from radar, indicating the distance
to the front of the parking space, whether it is a
line marking or an obstacle [Distance in integers]

data BrakePedal Value indicating the physical amount of depression
of the brake pedal by the driver (0 for not depressed
and any positive value when depressed) [Percentage
in integers]

data AccelPedal Value of physical pedal input represented as a
percentage of maximum depression [Percentage in
integers]

data PRNDL In The input representing the current gear selection
with the following values assumed:

PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.12: Input variables used in Parking Space Centering (PSC)

198

Type Name Meaning

data set Throttle Request for throttle control of the vehicle as a
percentage of maximum throttle (For PSC, only one
constant value of throttle percentage is output, which
corresponds to a reasonable acceleration for parking)
[Percentage in integers]

data set Brake An output request for braking force by the feature
as a percentage of maximum braking ability (For PSC,
only one value of braking is output, which corresponds
to soft-braking) [Percentage in integers]

data set SteerOut An output request for steering control of the vehicle
(For PSC, the value -1 indicates that the vehicle shall
turn the wheels to the right, 0 indicates that the
wheels shall be centred, and 1 indicates that wheels
shall turn to the left. Some external component will
process these values and manipulate the wheels
accordingly) [Steer request in integers]

Table A.13: Output variables used in Parking Space Centering (PSC)

199

!
"
#
$
$
%&
#

'
(
%)

&
%*
(
+
)
#
&

#
,
(
+
)
#
&

#
,
-
(
-
#
&

*
.
$
(
%-
/
.

0
!
"
#
1
)
#
'
.

0
!
"
#
1
$
%-
/
.

&
%*
#
,
-
(
-
#
&

/
(
)
.

#
22
3
24

5
*
6
1
/
"
%7

8
9

1

:;
5
*
6
1
#
<
=
>
?@
A
B4

5
*
6
1
/
"
%7

C
9

2

:+
2=
D
@
5
@
A
=
?E
C
FF
(
G
G
@
?5
@
A
=
?E
C
B4

5
*
6
1
/
"
%7

H
9

3

:+
2=
D
@
5
@
A
=
?7
7
C
I
I
(
G
G
@
?5
@
A
=
?7
7
C
B4

5
*
6
1
/
"
%7

J
9

3
#
22
3
24

5
*
6
1
/
"
%7

8
9 1

:;
5
*
6
1
#
<
=
>
?@
A
B4

5
*
6
1
/
"
%7

C
9

2

:5
*
6
1
#
<
=
>
?@
A
B4

5
*
6
1
/
"
%7

J
9

:*
K
@
@
A
E
C
I
I
*
K
@
@
A
L
7
M
I
I
5
$
,
&
)
1
%<
7
7
H
B

:*
K
@
@
A
7
7
C
B

:5
$
,
&
)
1
%<
;7

H
FF
*
K
@
@
A
7
7
C
FF
*
K
@
@
A
E
M
B

1

:N
'
23
<
O)
P<
@
L
M
QI
I
N)
@
RO
)
P<
@
!
$
PS
T
O)
P<
@
QL
M
I
I
N$
PS
T
O)
P<
@
!
)
@
RO
)
P<
@
QL
M
B4

U
@
O1
+
2=
D
@
7
H
C
9

2

:N
)
@
RO
)
P<
@
!
$
PS
T
O)
P<
@
QE
M
B4

U
@
O1
*
O@
@
2!
V
O7
!
J
9

U
@
O1
.
T
23
OO
?@
7
W
C
9

2
:N
$
PS
T
O)
P<
@
!
)
@
RO
)
P<
@
QE
M
B4

U
@
O1
*
O@
@
2!
V
O7

J
9

U
@
O1
.
T
23
OO
?@
7
W
C
9

1

:N
)
@
RO
)
P<
@
!
$
PS
T
O)
P<
@
QL
M
B4

U
@
O1
.
T
23
OO
?@
7
W
C
9

:N
$
PS
T
O)
P<
@
!
)
@
RO
)
P<
@
QL
M
B4

U
@
O1
.
T
23
OO
?@
7
W
C
9

t1
3

t1
4

t2
2

t3
0

t2
4

t2
8

t2
5

t2
9

t2
1

t2
7

t1
5

t1
6

t1
9

t2
0

t1
7

Figure A.10: Parking Space Centering (PSC) Stateflow design model

200

A.7 Reversing Assistance (RA)

The Reversing Assistant (RA) feature can assist drivers by helping to prevent or mitigate
collisions while reversing. Combining long and short range radars, RA monitors the path of
the vehicle while reversing. In the event that a vehicle or obstacle approaches, RA notifies
the driver of a possible collision and also brakes as soon as the threat of a collision becomes
imminent.

Figure A.11 presents RA’s functionality modelled in Stateflow, which we will explain
in the following paragraphs. Table A.14 describes the input variables and Table A.15
describes the output variables used in the RA’s Stateflow design model.

The details of UWFMS’s RA design in Stateflow are as follows: RA will start at the
DISABLED state when the vehicle is turned on. RA turns on by toggling the RA Enabled
button, making RA to enter the ENABLED superstate, which defaults to DISENGAGED.
RA will remain in the DISENGAGED state until the vehicle is put into reverse, indicated by
the input PRNDL In = 1, while the vehicle moves between 10 and 25 KPH. This action will
cause RA to enter the ENGAGED superstate, which defaults to the IDLE state. When
engaged, RA will be able to warn the driver and/or take action if a possible threat is
encountered. RA relies on an external component to pre-process sensor inputs and convert
them into a threat input for RA, stored in ObstacleZone. The threat input data could be
either: None=0, Mild=1, Imminent=2. If a threat input is received while in either the
IDLE, WARN, or ASSIST states, one of the following transitions will occur depending on
the threat:

• In the case that no threat is detected, or the obstacle ceases to be present, no warning
and no braking intervention are made. RA changes to the IDLE state.

• In the case of a mild threat, a mild threat warning will be output (i.e., Warning =
1) with no braking intervention. RA enters the WARN state.

• In the case of an imminent threat, an imminent threat warning will be output (i.e.,
Warning = 2) and a braking request will be made to mitigate the collision as much
as possible (i.e., Brake = 60%). RA enters the ASSIST state.

If the vehicle stops while the feature is in the ASSIST state, RA will enter the HOLD
state and remain there until an input of BrakePedal > 20 is detected, so RA moves to
the DISENGAGED state and the driver can regain control of the vehicle. Whenever the
vehicle’s gear selection changes from reverse (i.e., if PRNDL != 1) at any time in the
ENGAGED superstate, RA becomes DISENGAGED. A driver acceleration pedal input
exceeding 35% of depression at any time will cause RA to enter the OVERRIDE state until
the input becomes below the threshold, which causes RA to go back to the ENABLED

201

state as long as the feature is still enabled. An Error event at any time when RA is on will
send the feature to the FAILED state, where RA will remain until the car is turned off.

The definition of stable for UWFMS’s RA is defined as 1, i.e., true because the only
one transition is taken in each big-step as ordered-compositions are not present in RA.

Type Name Meaning

event Error A signal indicating when an error has occurred
data RA Enabled Driver selected main power to enable/disable the

feature [Boolean]
data BrakePedal Value indicating the physical amount of depression of the

brake pedal by the driver (0 for not depressed and any
positive value when depressed) [Percentage in integers]

data AccelPedal Value of physical pedal input represented as a percentage
of maximum depression [Percentage in integers]

data Speed Current speed of the vehicle (value within the range of 0
to 100) [KPH in integers]

data ObstacleZone Input from a pre-processing threat assessment block that
converts sensor inputs into a threat:

Threat = 0: No Obstacle
Threat = 1: Mild Threat
Threat = 2: Imminent Collision Threat

[Threat value in integers]
data PRNDL In The input representing the current gear selection

with the following values assumed:
PRNDL = 0: Park
PRNDL = 1: Reverse
PRNDL = 2: Neutral
PRNDL = 3: Drive
PRNDL = 4: Low

[Gear selection in integers]

Table A.14: Input variables used in Reversing Assistant (RA)

202

Type Name Meaning

data set Brake An output request for braking force by the feature
as a percentage of maximum braking ability (For RA,
only one value of braking is output, which corresponds
to mid-force braking) [Percentage in integers]

data RA HVI Value to indicate the message being displayed to the
driver through a human-vehicle-interface (HVI):

RA HVI = 0: CA Disabled
RA HVI = 1: CA Enabled
RA HVI = 2: CA Engaged
RA HVI = 3: CA Error
RA HVI = 4: CA Override

[Display value in integers]
data RA Warning Audible and/or visual warning to indicate the presence

of threats, their severity and the intervention of RA:
Warning = 0: No Obstacle
Warning = 1: Mild Threat
Warning = 2: Imminent Collision Threat
Warning = 3: Vehicle Held Stopped

[Warning value in integers]

Table A.15: Output variables used in Reversing Assistant (RA)

203

E
N
A
B
L
E
D

D
IS
E
N
G
A
G
E
D

E
N
G
A
G
E
D

ID
L
E

W
A
R
N

A
S
S
IS
T

H
O
L
D

D
IS
A
B
L
E
D

O
V
E
R
R
ID
E

F
A
IL

[R
A
_
E
n
a
b
le
d
]/

R
A
_
H
V
I=
1
;

[!
R
A
_
E
n
a
b
le
d
]/

R
A
_
H
V
I=
0
;

W
a
rn
in
g
=0
;

3

[!
R
A
_
E
n
a
b
le
d
]/

R
A
_
H
V
I=
0
;

W
a
rn
in
g
=0
;

2

[A
c
c
e
lP
e
d
a
l>
=3
5
]/

R
A
_
H
V
I=
4
;

W
a
rn
in
g
=0
;

2

[A
c
c
e
lP
e
d
a
l<
3
5
]/

R
A
_
H
V
I=
1
;

3

E
rr
o
r/

R
A
_
H
V
I=
3
;

W
a
rn
in
g
=0
;

1

E
rr
o
r/

R
A
_
H
V
I=
3
;

W
a
rn
in
g
=0
;

1

[B
ra
k
e
P
e
d
a
l>
2
0
]/

R
A
_
H
V
I=
1
;

W
a
rn
in
g
=0
;

[(
(S
p
e
e
d
>
0
&
&
S
p
e
e
d
<
1
0
)|
|S
p
e
e
d
>
2
5
)|
|P
R
N
D
L
_
In
!=
1
]/

R
A
_
H
V
I=
1
;
W
a
rn
in
g
=0
;

1

[S
p
e
e
d
>
=
1
0
&
&
S
p
e
e
d
<
=
2
5
&
&
P
R
N
D
L
_
In
=
=
1
]/

R
A
_
H
V
I=
2
;

[S
p
e
e
d
=
=
0
]/

W
a
rn
in
g
=3
;

2

[O
b
s
ta
c
le
Z
o
n
e
=
=

1
]/

W
a
rn
in
g
=
1
;

2
[O
b
s
ta
c
le
Z
o
n
e
=
=

2
]/

s
e
t_
B
ra
k
e
=
6
0
;

W
a
rn
in
g
=
2
;

1

[O
b
s
ta
c
le
Z
o
n
e
=
=

0
]/

W
a
rn
in
g
=
0
;

1

[O
b
s
ta
c
le
Z
o
n
e
=
=

0
]/

W
a
rn
in
g
=
0
;

1
[O
b
s
ta
c
le
Z
o
n
e
=
=

2
]/

s
e
t_
B
ra
k
e
=
6
0
;
W
a
rn
in
g
=
2
;

2

[O
b
s
ta
c
le
Z
o
n
e
=
=

1
]/

W
a
rn
in
g
=
1
;

2

t1
3

t1
4

t1
6

t1
9

t1
5

t3
2

t1
8

t2
1

t2
2

t2
3

t2
9

t2
4

t3
0

t2
7

t2
8

t2
5

t2
6

Figure A.11: Reversing Assistant (RA) Stateflow design model

204

A.8 Summary

My research effort is helped by producing the base for future feature interaction analysis,
creating a set of non-proprietary automotive feature design models in Stateflow, called
“University of Waterloo Feature Model Set” (UWFMS). This feature model set was created
because there was no other set that I could have used to validate my methods and tools. The
feature design models part of the UWFMS follow the syntactic modelling rules described
in Section 4.2. Many of the design decision made were influenced by my interaction with
the design engineers during my visits to GM Research and Development.

205

References

[1] Esterel Technologies. SCADE Suite Product Description,
http://www.esterel-technologies.com. 65

[2] MathWorks Stateflow Documentation, http://www.mathworks.com/access/
helpdesk/help/toolbox/stateflow/. 24

[3] Reactive Systems, Inc, http://www.reactive-systems.com. 65

[4] Rockwell Collins, http://www.rockwellcollins.com/. 65

[5] TRW automotive - the global leader in automotive safety systems,
http://www.trw.com/. 4, 173

[6] Z Formal Specification Notation — Syntax, Type System and Semantics, ISO/IEC
13568:2002. International Organization for Standardization (ISO), 2002. 42

[7] ITU-T Recommendation Z.100: Specification and Description Language (SDL). In-
ternational Telecommunication Union (ITU), 2007. 10, 42, 68

[8] Nasa langley formal methods site, http://shemesh.larc.nasa.gov/fm/index.html,
2008. 26

[9] R. Accorsi, C. Areces, W. Bouma, and M. de Rijke. Features as constraints. In
Feature Interactions in Telecommunications and Software Systems VI, pages 210–
225. IOS Press, 2000. 19, 42

[10] S. Aggarwal, R. P. Kurshan, and K. K. Sabnani. A calculus for protocol specification
and validation. In Protocol Specification, Testing, and Verification, pages 19–34, 1983.
28

[11] I. Aggoun and P. Combes. Observers in the SCE and SEE to detect and resolve
feature interactions. In Feature Interactions in Telecommunications Networks IV,
pages 198–212. IOS Press, 1997. 20

207

[12] A. Agrawal, G. Simon, and G. Karsai. Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. In International Workshop
on Graph Transformation and Visual Modeling Techniques, 2004. 66

[13] M. Amer, A. Karmouch, T. Gray, and S. Mankovski. Feature interaction resolution
using fuzzy policies. In Feature Interactions in Telecommunications and Software
Systems VI, pages 94–112. IOS Press, 2000. 20

[14] P. Ammann, W. Ding, and D. Xu. Using a model checker to test safety properties.
In International Conference on Engineering of Complex Computer Systems, pages
212–221, 2001. 103

[15] P. K. Au and J. M. Atlee. Evaluation of a state-based model of feature interactions. In
Feature Interactions in Telecommunications Networks IV, pages 153–167. IOS Press,
1997. 19, 42

[16] R. Baillargeon. Personal communication, 2008. 49, 179

[17] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: Localizing errors in
counterexample traces. SIGPLAN Notices, 38(1):97–105, 2003. 10, 11, 68, 103

[18] C. Banphawatthanarak and B. H. Krogh. Verification of stateflow diagrams using
smv: sf2smv 2.0. Technical Report CMU-ECE-2000-020, Carnegie Mellon University,
2000. 65

[19] L. Baresi, C. Ghezzi, A. Miele, M. Miraz, A. Naggi, and F. Pacifici. Hybrid service-
oriented architectures: a case-study in the automotive domain. In International
Workshop on Software Engineering and Middleware, pages 62–68. ACM, 2005. 3

[20] M. Benjamin, D. Geist, A. Hartman, Y. Wolfsthal, G. Mas, and R. Smeets. A study
in coverage-driven test generation. In Conference on Design Automation, pages 970–
975. ACM, 1999. 103

[21] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen,
and P. MacKenzie. Systems and Software Verification – Model Checking Techniques
and Tools. Springer, 2001. 26, 29

[22] J. Bereisa. Applications of Microcomputers in Automotive Electronics. IEEE Trans-
actions on Industrial Electronics, IE-30(2):87–96, 1983. 1

[23] J. Bergstra and W. Bouma. Models for feature descriptions and interactions. In
Feature Interactions in Telecommunications Networks IV, pages 31–45. IOS Press,
1997. 19, 42

208

[24] L. Blair, G. Blair, J. Pang, and C. Efstratiou. Feature’ interactions outside a telecom
domain. In Workshop on Feature Interactions in Composed Systems, pages 15–20,
2001. 21

[25] J. Blom. Formalisation of requirements with emphasis on feature interaction detec-
tion. In Feature Interactions in Telecommunications Networks IV, pages 61–77. IOS
Press, 1997. 19, 42

[26] J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for modular specification
of telephone services. In Feature Interactions in Telecommunications Systems, pages
197–216. IOS Press, 1994. 19, 42

[27] C. Blundell, K. Fisler, S. Krishnamurthi, and P. V. Hentenryck. Parameterized
interfaces for open system verification of product lines. In International Conference
on Automated Software Engineering, pages 258–267. IEEE Computer Society, 2004.
129

[28] T. Bolognesi and E. Brinksma. Introduction to the iso specification language lotos.
In Computer Networks, volume 14, pages 25–59, 1987. 42

[29] M. Boström and M. Engstedt. Feature interaction detection and resolution in the
delphi framework. In Feature Interactions in Telecommunications Systems III, pages
157–172. IOS Press, 1995. 19, 42

[30] L. G. Bouma and H. Velthuijsen. Introduction to feature interactions in telecommu-
nication systems. In L. Bouma and H. Velthuijsen, editors, Feature Interactions in
Telecommunications Systems, pages vii–xiv, 1994. 18

[31] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y. Lin. The feature
interaction problem in telecommunications systems. In International Conference on
Software Engineering for Telecommunications Switching Systems, pages 59–62, July
1989. 1, 2

[32] K. H. Braithwaite and J. M. Atlee. Towards automated detection of feature interac-
tions. In Feature Interactions in Telecommunications Systems II, pages 36–59. IOS
Press, 1994. 20

[33] J. Bredereke. Families of formal requirements in telephony switching. In Feature
Interactions in Telecommunications and Software Systems VI, pages 257–273. IOS
Press, 2000. 19, 41

[34] M. Broy. Challenges in automotive software engineering. In International Conference
on Software Engineering, pages 33–42. ACM, 2006. 1, 2

209

[35] M. Broy, I. H. Kruger, A. Pretschner, and C. Salzmann. Engineering Automotive
Software. Proc. of the IEEE, 95(2):356–373, 2007. 1, 2

[36] G. Bruns, P. Mataga, and I. Sutherland. Features as services transformers. In Feature
Interactions in Telecommunications and Software Systems V, pages 85–97. IOS Press,
1998. 19, 42

[37] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986. 28

[38] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel, T. Gray, and S. Mankovski.
Feature-interaction visualization and resolution in an agent environment. In Feature
Interactions in Telecommunications and Software Systems V, pages 135–149. IOS
Press, 1998. 20

[39] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98(2):142 – 170, 1992. 28

[40] M. Cain. Managing run-time interactions between call processing features. In IEEE
Communications Magazine, volume 30, pages 44–50, 1992. 20

[41] M. Calder, M. Kolberg, E. Magill, D. Marples, and S. Reiff-Marganiec. Hybrid
solutions to the feature interaction problem. In Feature Interactions in Telecommu-
nications and Software Systems VII, pages 295–312. IOS Press, 2003. 20

[42] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature interaction: a
critical review and considered forecast. Computer Networks, 41(1):115–141, 2003. 3,
7, 34, 41

[43] M. Calder, E. H. Magill, and D. Marples. Hybrid approach to software interworking
problems: Managing interactions between legacy and evolving telecommunications
software. In IEE Proceedings - Software, volume 146, pages 167–180, 1999. 20

[44] M. Calder and A. Miller. Using SPIN for feature interaction analysis: a case study.
In International SPIN workshop on Model Checking of Software, pages 143–162.
Springer-Verlag, 2001. 19, 42

[45] M. Calder and S. Reiff-Marganiec. Modelling legacy telecommunications switch-
ing systems for interaction analysis. In Systems Engineering for Business Process
Change, pages 182–195. Springer, 2000. 20

[46] K. Camera. SF2VHD: A stateflow to VHDL translator. Master’s thesis, University
of California, Berkeley, 2001. 66

210

[47] E. J. Cameron and H. Veldhuijsen. Feature interactions in telecommunications sys-
tems (a tutorial). pages 18–23, Aug. 1993. 17, 18

[48] C. Capellmann, P. Combes, J. Petterson, B. Renard, and J. L. Ruiz. Consistent
interaction detection - a comprehensive approach integrated with service creation.
In Feature Interactions in Telecommunications Networks IV, pages 183–197. IOS
Press, 1997. 19, 42

[49] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.
Reese. Model checking large software specifications. IEEE Transactions on Software
Engineering, 24(7):498–520, 1998. 53, 64, 66

[50] R. N. Charette. This car runs on code, http://spectrum.ieee.org/green-tech/
advanced-cars/this-car-runs-on-code. 1

[51] M. Chechik and A. Gurfinkel. A framework for counterexample generation and explo-
ration. International Journal on Software Tools for Technology Transfer, 9(5):429–
445, 2007. 10, 68, 85, 97, 102

[52] K. T. Cheng and A. S. Krishnakumar. Automatic functional test generation us-
ing the extended finite state machine model. In International Design Automation
Conference, pages 86–91. ACM, 1993. 10, 68, 70

[53] C. Chi and R. Hao. Test generation for interaction detection in feature-rich commu-
nication systems. Computer Networks, 51(2):426 – 438, 2007. 21, 43

[54] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A New Symbolic
Model Verifier. In International Conference on Computer Aided Verification, pages
495–499. Springer-Verlag, 1999. 65, 168

[55] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In Logic of Programs, volume 131, pages 52–71.
Springer-Verlag, 1982. 28

[56] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994. 30

[57] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000. 7,
26, 97, 168

[58] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic model checking of
software product lines. In International Conference on Software Engineering, pages
321–330. ACM, 2011. 129

211

[59] P. Combes and S. Pickin. Formalisation of a user view of network and services for
feature interaction detection. In Feature Interactions in Telecommunications Systems,
pages 120–135. IOS Press, 1994. 19, 42

[60] F. Copty, A. Irron, O. Weissberg, N. P. Kropp, and G. Kamhi. Efficient debugging
in a formal verification environment. In Conference on Correct Hardware Design and
Verification Methods, pages 275–292, 2001. 10, 11, 68, 69, 86, 102

[61] R. G. Crespo. Predicting feature interactions by using inconsistency models. Com-
puter Networks, 54(3):416–427, 2010. 22

[62] R. G. Crespo, M. Carvalho, and L. Logrippo. Distributed resolution of feature inter-
actions for internet applications. Computer Networks, 51(2):382 – 397, 2007. Feature
Interaction. 21, 22, 43

[63] J. Dabney and T. L. Harman. Mastering Simulink. Pearson/Prentice Hall, 2004. 9,
24

[64] L. de Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Incremental feature
validation: a synchronous point of view. In Feature Interactions in Telecommunica-
tions and Software Systems V, pages 262–275. IOS Press, 1998. 19, 42

[65] R. Debouk, B. Czerny, J. D’Ambrosio, and J. Joyce. Safety Analysis of Software-
intensive Motion Control Systems. SAE International Journal of Passenger Cars -
Electronic and Electrical Systems, 2(1):281–286, 2009. 3

[66] R. Debouk, B. Czerny, J. D’Ambrosio, and J. J. Joyce. Safety strategy for au-
tonomous systems. In International Systems Safety Conference. System Safety Soci-
ety, 2011. 3

[67] D. D’Souza and M. Gopinathan. Conflict-tolerant features. In International Confer-
ence on Computer Aided Verification, volume 5123 of LNCS, pages 227–239. Springer
Berlin / Heidelberg, 2008. 7, 23, 44, 128

[68] D. D’Souza, M. Gopinathan, S. Ramesh, and P. Sampath. Conflict-tolerant real-time
features. International Conference on Quantitative Evaluation of Systems, pages
274–283, 2008. 23, 44, 128

[69] E. A. Emerson. The beginning of model checking: A personal perspective. In 25
Years of Model Checking, volume 5000 of LNCS, pages 27–45. Springer Berlin /
Heidelberg, 2008. 29

[70] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods in
System Design, 9:105–131, 1996. 30

212

[71] A. Engels, L. M. G. Feijs, and S. Mauw. Test generation for intelligent networks using
model checking. In International Workshop on Tools and Algorithms for Construction
and Analysis of Systems, pages 384–398. Springer-Verlag, 1997. 103

[72] S. Esmaeilsabzali, N. Day, J. Atlee, and J. Niu. Deconstructing the semantics of
big-step modelling languages. Requirements Engineering, 15(2):235–265, 2010. 12,
46, 64

[73] A. Felty and K. Namjoshi. Feature specification and automatic conflict detection.
In Feature Interactions in Telecommunications and Software Systems VI, pages 179–
192. IOS Press, 2000. 19, 42

[74] Ford. Structured analysis and design usign matlab/simulink/stateflow – modeling
style guidelines. Technical report, Ford, 1999. 49

[75] M. Frappier, A. Mili, and J. Desharnais. Detecting feature interactions in relational
specifications. In Feature Interactions in Telecommunications Networks IV, pages
123–137. IOS Press, 1997. 19, 42

[76] G. Friedman, A. Hartman, K. Nagin, and T. Shiran. Projected state machine cov-
erage for software testing. In ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 134–143. ACM, 2002. 103

[77] N. Fritsche. Run-time resolution of feature interactions in architectures with sep-
arated call and feature control. In Feature Interactions in Telecommunications III,
pages 43–63. IOS Press, 1995. 20

[78] A. Gammelgaard and J. E. Kristensen. Interaction detection, a logical approach. In
Feature Interactions in Telecommunications Systems, pages 178–196, 1994. 19, 42

[79] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from re-
quirements specifications. SIGSOFT Software Engineering Notes, 24(6):146–162,
1999. 103

[80] J. P. Gibson. Feature requirements models: Understanding interactions. In Feature
Interactions in Telecommunications Networks IV, pages 46–60. IOS Press, 1997. 19,
42

[81] J. P. Gibson. Towards a feature interaction algebra. In Feature Interactions in
Telecommunications and Software Systems V, pages 217–231. IOS Press, 1998. 19,
42

213

[82] A. Gouya and N. Crespi. Detection and resolution of feature interactions in IP
multimedia subsystem. International Journal of Network Management, 9(4):315–
337, 2009. 21, 43

[83] N. Griffeth and H. Velthuijsen. The negotiating agents approach to runtime feature
interaction resolution. In Feature Interactions in Telecommunications Systems II,
pages 217–235. IOS Press, 1994. 20

[84] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In SPIN
Workshop on Model Checking of Software, pages 121–135. Springer, 2003. 10, 68,
102

[85] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. Proc. of the IEEE, 79(9):1305–1320, 1991. 65

[86] R. J. Hall. Feature combination and interaction detection via foreground/background
models. In Feature Interactions in Telecommunications and Software Systems V,
pages 232–246. IOS Press, 1998. 6, 19, 21, 42

[87] R. J. Hall. Feature Interactions in Electronic Mail. In Feature Interactions in
Telecommunications and Software Systems VI, pages 67–82. IOS Press, 2000. 22,
43

[88] G. Hamon and J. Rushby. An operational semantics for Stateflow. International
Journal on Software Tools for Technology Transfer, 9(5–6):447–456, 2007. 49

[89] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gramming, 8(3):231–274, June 1987. 9, 10, 24, 46, 68

[90] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao. Auto-generating
test sequences using model checkers: A case study. In International Worshop on
Formal Approaches to Testing of Software, volume 2931 of LNCS, pages 42–59, 2003.
103

[91] M. Heisel and J. Souquières. A heuristic approach to detect feature interactions in
requirements. In Feature Interactions in Telecommunications and Software Systems
V, pages 165–171. IOS Press, 1998. 19, 41

[92] A. Hitchcock. Methods of analysis of IVHS safety. Technical report, Institute of
Transportation Studies, UC Berkeley, 1992. 3

[93] G. J. Holzmann. The Spin Model Checker. Addison-Wesley, 2003. 11, 42, 68, 97,
102, 168

214

[94] S. Homayoon and H. Singh. Methods of addressing the interactions of intelligent
network services with embedded switch services. In IEEE Communications Magazine,
volume 26, pages 42–46. IEEE Computer Society, 1988. 20

[95] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data flow testing as model
checking. In International Conference on Software Engineering, pages 232–243, 2003.
103

[96] M. Jackson and P. Zave. Distributed feature composition: A virtual architecture for
telecommunications services. Software Engineering, 24(10):831–847, 1998. 20

[97] Y. Jia and J. M. Atlee. Run-time management of feature interactions. In ICSE
Workshop on Component-Based Software Engineering, pages 115–134. IOS Press,
2003. 20

[98] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 445–459. Springer-Verlag, 2002. 11, 68, 102

[99] J. J. Joyce. Personal communication, 2008. 13, 98, 132, 173

[100] A. L. Juarez Dominguez. Verification of DFC call protocol correctness criteria. Mas-
ter’s thesis, School of Computer Science, University of Waterloo. May, 2005. 31

[101] A. L. Juarez Dominguez and N. A. Day. Compositional reasoning for port-based dis-
tributed systems. In International Conference on Automated Software Engineering,
pages 376–379. ACM Press, 2005. 31

[102] A. L. Juarez Dominguez, N. A. Day, and R. T. Fanson. A preliminary report on
tool support and methodology for feature interaction detection. Technical Report
CS-2007-44, University of Waterloo, 2007. 14, 15, 98, 131

[103] A. L. Juarez Dominguez, N. A. Day, and R. T. Fanson. Translating Models of
Automotive Features in MATLAB’s Stateflow to SMV to Detect Feature Interactions.
In International Systems Safety Conference. System Safety Society, 2008. 14, 15

[104] A. L. Juarez Dominguez, N. A. Day, and J. J. Joyce. Modelling Feature Interactions
in the Automotive Domain. In International Workshop on Modeling in Software
Engineering, pages 45–50. ACM Press, 2008. 2, 6, 12, 14, 15, 18

[105] A. L. Juarez Dominguez, J. J. Joyce, and R. Debouk. Feature interaction as a
source of risk in complex software-intensive systems. In International Systems Safety
Conference. System Safety Society, 2007. 3, 7, 14, 15, 26

215

[106] D. Kalita and P. P. Khargonekar. SF2STeP: A CAD tool for formal verification of
timed stateflow diagrams. In International Symposium on Computer Aided Control
Systems Design, pages 156–162, 2000. 66

[107] J. Kamoun and L. Logrippo. Goal-oriented feature interaction detection in the intel-
ligent network model. In Feature Interactions in Telecommunications and Software
Systems V, pages 172–186. IOS Press, 1998. 19, 42

[108] S. Kawauchi and T. Ohta. Mechanism for 3-way feature interactions occurrence and
a detection system based on the mechanism. In Feature Interactions in Telecommu-
nications and Software Systems VII, pages 313–328. IOS Press, 2003. 36

[109] D. O. Keck. A tool for the identification of interaction-prone call scenarios. In Feature
Interactions in Telecommunications and Software Systems V, pages 276–290. IOS
Press, 1998. 19, 41

[110] D. O. Keck and P. J. Kuehn. The feature and service interaction problem in
telecommunications systems: A survey. IEEE Transactions on Software Engineering,
24(10):779–796, 1998. 34, 41, 43

[111] A. Khoumsi. Detection and resolution of interactions between services of telephone
networks. In Feature Interactions in Telecommunications Networks IV, pages 78–92,
1997. 19, 42

[112] A. Khoumsi and R. Bevelo. A detection method developed after a thorough study of
the contest held in 1998. In Feature Interactions in Telecommunications and Software
Systems VI, pages 226–240. IOS Press, 2000. 19

[113] K. Kimbler. Towards a more efficient feature interaction analysis - a statistical
approach. In Feature Interactions in Telecommunications III, pages 201–211. IOS
Press, 1995. 19, 41

[114] K. Kimbler, E. Kuisch, and J. Muller. Feature interactions among pan-european
services. In Feature Interactions in Telecommunications Systems, pages 73–85. IOS
Press, 1994. 19, 41

[115] K. Kimbler and D. Sobirk. Use case drivem analysis of feature interactions. In Feature
Interactions in Telecommunications Systems, pages 167–177. IOS Press, 1994. 19, 41

[116] M. Kolberg, E. H. Magill, and M. Wilson. Compatibility issues between services and
supporting networked appliances. In IEEE Communications Magazine, volume 41,
pages 136–147, 2003. 22, 43

216

[117] D. Kroening and G. Weissenbacher. Counterexamples with loops for predicate ab-
straction. In International Conference on Computer Aided Verification, volume 4144
of LNCS, pages 152–165. Springer Berlin / Heidelberg, 2006. 103

[118] I. H. Kruger, E. C. Nelson, and K. V. Prasad. Service-based software development
for automotive applications. In Convergence International Congress and Exposition
On Transportation Electronic. SAE International, 2004. 3

[119] R. P. Kurshan. Computer-aided verification of coordinating processes: the automata-
theoretic approach. Princeton University Press, 1994. 29

[120] T. F. LaPorta, D. Lee, Y. Lin, and M. Yannakakis. Protocol feature interactions. In
International Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols and Protocol Specification, Testing and Verification,
pages 59–74. Kluwer, B.V., 1998. 19, 42

[121] E. A. Lee. Cyber-Physical Systems - Are Computing Foundations Adequate? Po-
sition Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation,
Techniques and Roadmap, 2006. 2

[122] N. G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 2001. 5,
10, 68

[123] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Requirements spec-
ification for process-control systems. IEEE Transactions on Software Engineering,
20:684–707, 1994. 66

[124] M. Lochau and U. Goltz. Feature interaction aware test case generation for embedded
control systems. Electronic Notes in Theoretical Computer Science, 264:37–52, 2010.
2, 7, 18, 23, 43, 128

[125] D. E. Long. Model Checking, Abstraction, and Compositional Reasoning. PhD thesis,
Carnegie Mellon University, 1993. 30

[126] J. Lu, J. Rupp, D. S. Rhode, M. Lopez, and L. Tellis. Active safety system. Patent
number US 2008/0147277 A1, 2008. 4

[127] Y. Lu, J. M. Atlee, N. A. Day, and J. Niu. Mapping template semantics to SMV. In
International Conference on Automated Software Engineering, pages 320–325. IEEE
Computer Society, 2004. 66

[128] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, First edition, 1992. 27, 69

217

[129] D. Marples and E. H. Magill. The use of rollback to prevent incorrect operation of
features in intelligent network based systems. In Feature Interactions in Telecommu-
nications and Software Systems V, pages 115–134. IOS Press, 1998. 20

[130] K. L. McMillan. Symbolic model checking. Kluwer Academic, 1993. 9, 28, 30

[131] A. Metzger. Feature interactions in embedded control systems. Computer Networks,
45(5):625 – 644, 2004. Directions in Feature Interaction Research. 23, 35, 43

[132] A. Metzger and C. Webel. Feature Interaction Detection in Building Control Systems
by Means of a Formal Product Model. In Feature Interactions in Telecomunication
and Software Systems, pages 105–121. IOS Press, 2003. 23

[133] S. P. Miller, M. W. Whalen, and D. D. Cofer. Software model checking takes off.
Communications of the ACM, 53(2):58–64, 2010. 65

[134] R. L. Mitchell. Toyota’s lesson: Software can be unsafe at any speed,
http://blogs.computerworld.com/15547/

toyotas lesson software can be unsafe at any speed. 1

[135] M. Nakamura, Y. Kakuda, and T. Kikuno. Feature interaction detection using per-
mutation symmetry. In Feature Interactions in Telecommunications and Software
Systems V, pages 187–201. IOS Press, 1998. 19, 42

[136] M. Nakamura, P. Leelaprute, K. ichi Matsumoto, and T. Kikuno. On detecting
feature interactions in the programmable service environment of internet telephony.
Computer Networks, 45(5):605 – 624, 2004. Directions in Feature Interaction Re-
search. 22, 43

[137] J. Niu, J. M. Atlee, and N. A. Day. Template semantics for model-based notations.
IEEE Transactions on Software Engineering, 29:866–882, 2003. 66

[138] C. Norris Ip and D. L. Dill. Better verification through symmetry. Formal Methods
in System Design, 9:41–75, 1996. 30

[139] J. O’Donnell. Advances in car technology bring high-class headaches,
http://www.usatoday.com/tech/news/2003-11-11-carrepairs x.htm. 1

[140] J. Pang and L. Blair. An adaptive run time manager for the dynamic integration
and interaction resolution of features. In International Conference on Distributed
Computing Systems, pages 445–450. IEEE Computer Society, 2002. 20

[141] J. Pang and L. Blair. Separating interaction concerns from distributed feature com-
ponents. In ETAPS Workshop on Software Composition, volume 82 of LNCS, 2003.
22, 43

218

[142] D. Peled. Verification for robust specification. In Theorem Proving in Higher Order
Logics, volume 1275 of LNCS, pages 231–241. Springer Berlin / Heidelberg, 1997. 29

[143] D. Peled. Software Reliability Methods. Springer, 2001. 12, 26, 28, 29, 133

[144] D. Peled, T. Wilke, and P. Wolper. An algorithmic approach for checking closure
properties of omega-regular languages. In International Conference on Concurrency
Theory, pages 596–610. Springer-Verlag, 1996. 29

[145] P. J. Pingree and E. Mikk. The hivy tool set. volume 3114, pages 466–469. Springer,
2004. 66

[146] M. Plath and M. Ryan. Plug-and-play features. In Feature Interactions in Telecom-
munications and Software Systems V, pages 150–164. IOS Press, 1998. 19, 42

[147] M. Plath and M. Ryan. Defining features for CSP: Reflections on the feature in-
teraction contest. In Language Constructs for Describing Features, pages 202–216.
Springer Verlag, 2000. 19, 42

[148] K. P. Pomakis and J. M. Atlee. Reachability analysis of feature interactions: A
progress report. In International Symposium on Software Testing and Analysis, pages
216–223. ACM SIGSOFT, 1996. 19, 42

[149] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner. Software engineering for
automotive systems: A roadmap. In Future of Software Engineering, pages 55–71.
IEEE Computer Society, 2007. 1, 2

[150] F. Pu and W. Zhang. LTL model checking via search space partition. In International
Conference on Quality Software, pages 418–428. IEEE Computer Society, 2006. 162

[151] F. Pu and W. Zhang. Combining search space partition and abstraction for ltl model
checking. Science in China Series F: Information Sciences, 50(6):793–810, 2007. 162

[152] J. Queille and J. Sifakis. Specification and verification of concurrent systems in cesar.
In International Symposium on Programming, volume 137 of LNCS, pages 337–351.
Springer Berlin / Heidelberg, 1982. 28

[153] S. Reiff-Marganiec. Identifying resolution choices for an online feature manager. In
Feature Interactions in Telecommunications and Software Systems VI, pages 113–128.
IOS Press, 2000. 20

[154] S. Reiff-Marganiec and M. Nakamura, editors. Feature Interactions in Telecommu-
nications and Software Systems X. IOS Press, 2009. 5

219

[155] Z. E. Research. GM recalls on a software glitch,
http://www.zacks.com/stock/news/48854/GM+Recalls+on+a+Software+Glitch.
1

[156] S. M. Rochefort and H. J. Hoover. An exercise in using constructive proof systems
to address feature interactions in telephony. In Feature Interactions in Telecommu-
nications Networks IV, pages 329–341. IOS Press, 1997. 19, 42

[157] N. Scaife, C. Sofronis, P. Caspi, et al. Defining and translating a “safe” subset of
simulink/stateflow into lustre. In International Conference on Embedded software,
pages 259–268. ACM Press, 2004. 66

[158] R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vardi. GSTE is partitioned
model checking. Formal Methods in System Design, 31(2):177–196, 2007. 163

[159] N. Sharygina and D. Peled. A combined testing and verification approach for software
reliability. In International Symposium of Formal Methods Europe, pages 611–628.
Springer-Verlag, 2001. 102

[160] M. L. Shooman. Probabilistic Reliability: An Engineering Approach. Brooklyn Poly-
technic Institute series. McGraw-Hill, first edition, 1968. 5

[161] S. Siddiqi and J. M. Atlee. A hybrid model for specifying features and detecting
interactions. In Computer Networks, volume 32, pages 471–485. Elsevier Science,
2000. 19

[162] K. K. Singh and G. Agnihotri. System design through MATLAB, Control Toolbox
and SIMULINK. Springer Verlag, 2001. 17

[163] B. Stepien and L. Logrippo. Representing and verifying intentions in telephony
features using abstract data types. In Feature Interactions in Telecommunications
Systems III, pages 141–155. IOS Press, 1995. 19, 42

[164] J. G. Thistle, R. P. Malhamé, H. Hoang, and S. Lafortune. Feature interaction
modelling, detection and resolution: A supervisory control approach. In Feature
Interactions in Telecommunications Networks IV, pages 93–107. IOS Press, 1997.
19, 23, 42, 128

[165] M. Thomas. Modelling and analysing user views of telecommunications sevices. In
Feature Interactions in Telecommunications Networks IV, pages 168–182. IOS Press,
1997. 19, 42

[166] S. Trage. Electronics: Driving Automotive Innovation, 2005. 1

220

[167] S. Tsang and E. H. Magill. Detecting feature interactions in the intelligent network.
In Feature Interactions in Telecommunications Systems, pages 236–248. IOS Press,
1994. 20

[168] S. Tsang and E. H. Magill. Behaviour based run-time feature interaction problem
in networked multimedia services. In Feature Interactions in Telecommunications
Networks IV, pages 254–270. IOS Press, 1997. 20

[169] D. B. Tucker and S. Krishnamurthi. Pointcuts and advice in higher-order languages.
In International Conference on Aspect-oriented Software Development, pages 158–
167. ACM Press, 2003. 18

[170] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A conceptual basis for feature
engineering. In Journal of Systems and Software, volume 49, pages 3–15, 1999. 2, 18

[171] K. J. Turner. Validating architectural feature descriptions using LOTOS. In Feature
Interactions in Telecommunications and Software Systems V, pages 247–261. IOS
Press, 1998. 20

[172] G. Utas. A pattern language of feature interactions. In Feature Interactions in
Telecommunications and Software Systems V, pages 98–114. IOS Press, 1998. 20

[173] R. van der Linden. Using an architecture to help beat feature interactions. In Feature
Interactions in Telecommunications Systems II, pages 24–35. IOS Press, 1994. 20

[174] R. Van Der Straeten and J. Brichau. Features and feature interactions in software
engineering using logic. In Feature Interactions in Composed Systems, pages 79–88,
2001. 19

[175] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Symposium on Logic in Computer Science, pages 332–344, 1986. 28

[176] H. Velthuijsen. Distributed artificial intelligence for runtime feature-interaction res-
olution. In Computer, volume 26, pages 48–55. IEEE Computer Society, 1993. 20

[177] A. Walker. Computer, not car, is crash-prone,
http://www.autoworld.co.za/NewsArticle.aspx?Article=1908. 1

[178] M. Weiss and B. Esfandiari. On feature interactions among web services. Interna-
tional Journal of Web Services Research, 2(4), 2005. 22, 43

[179] M. Weiss, B. Esfandiari, and Y. Luo. Towards a classification of web service feature
interactions. Computer Networks, 51(2):359 – 381, 2007. 22

221

[180] M. W. Whalen. A parametric structural operational semantics for stateflow, uml
statecharts, and rhapsody. Technical Report 2010-1, University of Minnesota Soft-
ware Engineering Center, 2010. 49

[181] M. W. Whalen, D. D. Cofer, S. P. Miller, B. H. Krogh, and W. Storm. Integration of
formal analysis into a model-based software development process. In Prc. 12th Int’l
Workshop on Industrial Critical Systems, pages 68–84, 2007. 65, 113

[182] J. B. White. Car talk and talk and..., http://online.wsj.com/article/
SB10001424052748703778104576286631174569232.html. 3

[183] M. Wilson, E. H. Magill, and M. Kolberg. An Online Approach for the Service
Interaction Problem In Home Automation. In IEEE Consumer Communication and
Networking Conference, pages 251– 256, 2005. 22, 43

[184] K. C. Wong, J. G. Thistle, R. P. Malhamé, and H.-H. Hoang. Supervisory control of
distributed systems: Conflict resolution. Discrete Event Dynamic Systems, 10:131–
186, 2000. 23, 128

[185] A. Wright. Automotive autonomy. Communications of the ACM, 54(7):16–18, 2011.
3

[186] A. Wright. Hacking cars. Communications of the ACM, 54(11):18–19, 2011. 3

[187] X. Wu, J. Buford, K. Dhara, V. Krishnaswamy, and M. Kolberg. Feature interactions
between internet services and telecommunication services. In International Confer-
ence on Principles, Systems and Applications of IP Telecommunications. ACM, 2009.
21, 43

[188] J. Yang and C.-J. Seger. Introduction to generalized symbolic trajectory evaluation.
In IEEE Transactions on Very Large Scale Integration Systems, volume 11, 2003.
163

[189] J. yin Zhang, F. chun Yang, and S. Su. Detecting feature interactions in web ser-
vices with model checking techniques. Journal of China Universities of Posts and
Telecommunications, 14(3), 2007. 22, 43

[190] T. Yoneda and T. Ohta. A formal approach for the definition and detection of feature
interactions. In Feature Interactions in Telecommunications and Software Systems
V, pages 202–216. IOS Press, 1998. 19, 42

[191] T. Yoneda and T. Ohta. The declarative language STR (state transition rule). In
FIREworks workshop, pages 197–211. Springer, 2000. 42

222

[192] P. Zave. Feature interactions and formal specifications in telecommunications. IEEE
Computer, 26(8):20–30, 1993. 2

[193] I. Zibman, C. Woolf, P. O’Reilly, L. Stickland, D. Willis, and J. Visser. Minimizing
feature interactions: An architecture and processing model approach. In Feature
Interactions in Telecommunications III, pages 65–83. IOS Press, 1995. 20

[194] P. A. Zimmer and J. M. Atlee. Categorizing and prioritizing telephony features. In
Feature Interactions in Telecommunications and Software Systems VIII, pages 327–
333. IOS Press, 2005. 20

223

	List of Tables
	List of Figures
	Introduction
	Automotive Active Safety Features
	The Feature Interaction Problem
	Thesis Overview
	Feature Interaction Definition in the Automotive Domain
	Translation of Feature Models Designed in Matlab's Stateflow into SMV
	Detection of all Different Feature Interactions at Design-time

	Validation
	Thesis Contributions
	Thesis Organization

	Background
	Feature Interaction Problem
	Feature and Feature Interaction: Definitions and Variants
	Classification of Feature Interaction Approaches
	Approaches to Deal with Feature Interactions for Telecommunications
	Approaches to Deal with Feature Interactions in Internet Applications
	Approaches to Deal with Feature Interactions for Embedded Systems

	Stateflow
	Model Checking
	Modelling
	Temporal Logic Specification
	Verification
	State Explosion Problem
	The Model Checker SMV

	Summary

	Definition of Feature Interactions for Automotive Systems
	Characteristics of Automotive Active Safety Features and their Interactions
	Definition of Feature Interactions
	Immediate Feature Interactions
	Temporal Feature Interactions

	Validation of Definition of Feature Interactions
	Related Work
	Definitions in Telecommunications
	Definitions in Internet Applications
	Definitions in Embedded Systems

	Summary

	Translating STATEFLOW Feature Design Models to SMV: mdl2smv
	Process Overview
	Subset of STATEFLOW Syntax
	Variable Declarations
	States
	Transitions
	Sequential Execution
	Integrating Features
	Related Work
	Summary

	Detecting and Representing all Different Counterexamples to an Invariant: Alfie
	Process Overview
	Extended Finite State Machines (EFSMs)
	EFSM as Kripke Structure (KS)

	Counterexample Paths
	Failed Invariant Paths (FIPaths)
	Counterexample Equivalence Classes
	Level 1: Distinct Paths
	Level 2: Distinct Last Transitions
	Level 3: Distinct Initial and Final States
	Level 4: Distinct Final States
	Discussion

	On-the-fly LTL Counterexample Grouping
	Level 4: Distinct Final States
	Level 3: Distinct Initial and Final States
	Level 2: Distinct Last Transitions
	Level 1: Distinct Paths
	FIPaths

	Case study with Automotive Features
	Related Work
	Summary

	Detecting and Representing all Different Feature Interactions in Concurrent Features: Generalization of Alfie
	Overview of Generalization
	From EFSM to STATEFLOW Models
	Detect Feature Interactions in a big-step
	Report Set of Transitions Taken in a big-step
	Update Definition of FIPaths for Concurrent Models
	Update Definition of Equivalence Classes
	Remove EFSM loops with respect to big-step boundaries
	No Environmental Constraints

	STATEFLOW Model
	Counterexample Equivalence Classes for a Pair of Concurrent Components
	Level 1: Distinct Paths
	Level 2: Distinct Last Transitions
	Level 3: Distinct Initial and Final States
	Level 4: Distinct Final States

	On-the-fly Counterexample Grouping for Concurrent Components
	Level 4: Distinct Final States
	Level 3: Distinct Initial and Final States
	Level 2: Distinct Last Transitions
	Level 1: Distinct Paths

	Related Work
	Summary

	Case Studies
	Overview of the Design Models in the UWFMS
	Scalability via Partitioning
	Same Actuator Feature Interactions
	Feature Interactions between LG and EVA
	Feature Interactions between PSC and EVA
	Feature Interactions between CC and EVA
	Feature Interactions between CA and EVA
	Discussion of Traceability and Manageability for Same Actuator Feature Interactions

	Conflicting Actuator Feature Interactions
	Feature Interactions between CC and EVA
	Feature Interactions between CC and LG
	Feature Interactions between CC and CA
	Feature Interactions between CA and EVA
	Discussion of Traceability and Manageability for Conflicting Actuators Feature Interactions

	Related Work
	Summary

	Conclusions
	Contributions
	Limitations
	Future Work

	APPENDICES
	Non-Proprietary Automotive Feature Set: UWFMS
	Cruise Control (CC)
	Collision Avoidance (CA)
	Park Assist (PA)
	Lane Guide (LG)
	Emergency Vehicle Avoidance (EVA)
	Parking Space Centering (PSC)
	Reversing Assistance (RA)
	Summary

	References

