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G-Algebras

Definition

For n€ N and 1 </ <j < n consider the units ¢; € K* and
polynomials dj; € K[xi, ..., xn]. Suppose, that there exists a
monomial total well-ordering < on K[xi, ..., x,], such that for any
1 <i <j < neither djj = 0 or the leading monomial of dj; is
smaller than x;x; with respect to <. The K-algebra
A=K(xi,...,xp | {xjxi = cjixixj +djj: 1 < i < j < n})is called
a G-algebra, if {x{" ... x5 : a; € No} is a K-basis of A.

Remark

» Also known as “algebras of solvable type” and “PBW
(Poincaré Birkhoff Witt) Algebras”

Definition
If ¢jj = 1 for all i,j in the definition above, then we call the
resulting K algebra a G-algebra of Lie type.
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Examples for G-Algebras

» Weyl algebras (K(xi,...,Xn,01,...,0n | Vi: 0ix; = x;0; + 1))
» Shift algebras (K(x1,...,Xp,S1,--.,5n | Vi :sixi = (x; + 1)s;))
» g-Weyl algebras
(K<X1, ey Xn 81, ey On | Vidq; € K*: 0ix; = q;X,'a,' + ].>)
» g-Shift algebras
(K(x1,...,Xn,S1,---,5n | Vidgi € K* : s;x; = qjx;s;))
» Universal enveloping algebras of finite dimensional Lie
algebras.
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Available Software for G-Algebras

» SAGE (package ore_algebra, Kauers et al. (2014)): Any
G-algebra (and more) can be defined. (depending on SAGE
version; no factorization algorithm provided)

> SINGULAR:PLURAL (Greuel et al. (2010)): Any G-algebra
can be defined (factorization functionality via
ncfactor.lib).

» REDUCE (package NCPOLY, Melenk and Apel (1994)):
Supports G-algebras of Lie type (factorization algorithm
provided).

» MAPLE:

» Package OreTools (Abramov et al. (2003)): Single
Ore-extensions

» Package Ore_algebra: Defining non-commutative rings using
pairs of non-commuting variables.

» Factorization algorithm only for Weyl algebras (via the package
DETools, van Hoeij (1997)).
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Development History of ncfactor.1lib

> In the beginning: First Weyl algebra, first shift algebra. Main
ideas:

» Shift algebra can be embedded in Weyl algebra.

» Z graded structure on Weyl algebra utilized (weight vector
[—1,1] for x, D).

» Factorization of homogeneous elements — factorization in
K[#] (+minor combinatorics).

» Factorization of general polynomials — by ansatz method

(knowledge needed: only finitely many factorizations possible
(Tsarev, 1996)).
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Finite Factorization Domain

Definition (Non-Commutative FFD, cf. (Bell et al., 2014))

Let A be a (not necessarily commutative) domain. We say that A
is a finite factorization domain (FFD, for short), if every
nonzero, non-unit element of A has at least one factorization into
irreducible elements and there are at most finitely many distinct
factorizations into irreducible elements up to multiplication of the
irreducible factors by central units in A.

Remark

Classically, different factorizations in non-commutative rings are
studied with respect to similarity: For a ring R, two elements
a,b € R are said to be similar, if R/aR and R/bR are isomorphic
as left R-modules.
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Definition (Non-Commutative FFD, cf. (Bell et al., 2014))

Let A be a (not necessarily commutative) domain. We say that A
is a finite factorization domain (FFD, for short), if every
nonzero, non-unit element of A has at least one factorization into
irreducible elements and there are at most finitely many distinct
factorizations into irreducible elements up to multiplication of the
irreducible factors by central units in A.

Remark

Classically, different factorizations in non-commutative rings are
studied with respect to similarity: For a ring R, two elements
a,b € R are said to be similar, if R/aR and R/bR are isomorphic
as left R-modules. However, it is a very weak property, as one can
e.g. see in (Giesbrecht and Heinle, 2012).
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G-Algebras are FFD

Theorem (cf. (Bell et al., 2014))

Let K be a field. Then G-algebras over K and their subalgebras
are finite factorization domains.
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Consequences

» We have now more than just the similarity property to
characterize factorizations in G-algebras.

» New algorithmic problem: Calculate all factorizations of an
element in a given G-algebra.

» With this knowledge, study how algorithms from commutative
algebra can be generalized to certain non-commutative
algebras.
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The New Powers of
ncfactor.1lib



What ncfactor.1lib can do...

» Factor elements in all G-algebras, with the following
assumption on the underlying field K:

» Factorization must be implemented in SINGULAR for
K[x1, ..., Xn].

» Currently, this only excludes fields represented by floating
point numbers and finite fields that are not prime (i.e. those
of order p¥ with p prime and k > 1).

» Practical examples of underlying fields where we can factor:

» @, and any field extension of Q(«) with some algebraic a.
» K(x1,...,x,) for x1,...,x, being transcendental, and K an
already supported field.

» Calling the function ncfactor is enough. As a preprocessing,
it will check if a better algorithm for this specific algebra is
available and forward the input there.
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What ncfactor.1lib cannot do...

» Whatever non-commutative ring cannot be directly defined in
SINGULAR:PLURAL:

» Ore extensions of the form K[x; o, d], where o and 6 map
elements in K (Caruso and Borgne (2012) have a good
implementation for that, with implementation of factorization
algorithm by Giesbrecht (1998)).

» Factorize elements in factor rings of G-algebras with respect to
two-sided ideals.

» Non-commutative rings with zero-divisors (like the
integro-differential operators).

» G-algebras over a field K, for which elements in K[xi, ..., x,]
cannot be factored in SINGULAR:PLURAL.

» Factor elements in free algebras

» Generally scale to larger powers for arbitrary G-algebras.

13 /26



What ncfactor.1lib cannot do...

» Whatever non-commutative ring cannot be directly defined in
SINGULAR:PLURAL:

» Ore extensions of the form K[x; o, d], where o and 6 map
elements in K (Caruso and Borgne (2012) have a good
implementation for that, with implementation of factorization
algorithm by Giesbrecht (1998)).

» Factorize elements in factor rings of G-algebras with respect to
two-sided ideals.

» Non-commutative rings with zero-divisors (like the
integro-differential operators).

» G-algebras over a field K, for which elements in K[xi, ..., x,]
cannot be factored in SINGULAR:PLURAL.

» Factor elements in free algebras yet.

» Generally scale to larger powers for arbitrary G-algebras.

13 /26



Functions Overview

>

facWeyl: Returns all factorizations of elements in Weyl
algebras using the algorithm described in (Giesbrecht et al.,
2015).

facShift: Returns all factorizations of elements in shift
algebras via embedding in Weyl algebras.

facSubWeyl: Returns all factorizations of elements in Weyl
algebras which are embedded in a larger ring (comfort
function).

homogFacNthQWeyl[_alll: Returns one (resp. all)
factorization of a Z" homogeneous element in the n" g-Weyl
algebra.

ncfactor: Returns all factorizations of elements in any
supported G-algebra. Automatically chooses a more specified
algorithm when available (like e.g. for Weyl algebras).

For legacy reasons, we still have facFirstWeyl,
facFirstShift, homogFacFirstQWeyl [ all]l. They just
call their bigger siblings, i.e. they can be ignored.
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Software Demonstration



Some New Applications



Factorized Grobner bases — Commutative

» The factorized Grobner approach has been studied extensively
for the commutative case (Czapor, 1989b,a; Davenport, 1987;
Grabe, 1995a,b).

» Application: Obtaining triangular sets.
» Possible extension: Allowing constraints on the solutions.
> Implementations: e.g. in SINGULAR and REDUCE.

> ldea: For each factor g of a reducible element g during a
Grobner computation, recursively call algorithm on the same
generator set, with g being replaced by g.
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Generalization to Non-Commutative Rings

> Ideals in commutative ring <> Varieties
> Ideals in Non-Commutative ring <> Solutions

» Formal notion of solutions: Let F be a left A-module for a
K-algebra A (space of solutions). Let a left A-module M be
finitely presented by an n x m matrix P. Then

Sola(P,F)={f e F™: Pf =0}

» Divisors for commutative rings <+ Right divisors for
non-commutative rings.
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Picking the Right Right Divisors

There are different strategies:

» Split Grobner computation with respect to different irreducible
right divisors.
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Picking the Right Right Divisors

There are different strategies:

» Split Grobner computation with respect to different irreducible
right divisors. = This approach may cause lost of possible
solutions to the whole system.

» Split Grobner computation with respect to all possible
maximal right divisors. = Less possible solutions may be lost.

» Split Grobner computation with respect to all possible
non-unique maximal right divisors. = Our choice!

Remark

This methodology also appears in the context of semifirs, where
the concept of so called block factorizations or cleavages has been
introduced to study the reducibility of a principal ideal (Cohn,
2006, Chapter 3.5).
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Main Difference

In the commutative case, for an ideal / and the output By, ..., Bn
of the factorized Grobner basis algorithm, one has

Vi= (VB

We would like to have something similar for the non-commutative
case.
However, as the next example depicts, we do not have it.
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Example |

Let

p =(x° +2x* —3x%)0% — (4x° — 4x* — 12x* — 12x)0
+ (6x* — 12x3 — 6x% — 24x — 12)
in the polynomial first Weyl algebra. This polynomial appears in

(Tsai, 2000, Example 5.7) and has two different factorizations,
namely

p =(x*d — x38 — 3x® + 3x20 + 6x> — 3x8 — 3x + 12)-
(x20 4 x0 — 3x — 1)

(x*0 + x30 — 4x3 + 3x%0 — 3x% 4 3x0 — 6x — 3)-
(x?

0 —x0 —2x + 4).
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Example Il

A reduced Grobner basis of
(x20 + x0 — 3x — 1) N (x?0 — x0 — 2x + 4), computed with
SINGULAR, is given by
{3x°0% + 2x*9% — x*9? — 12x*0 4+ x39% — 2x?9% + 16x30
+ 9x20% + 18x3 + 4x%0 + 4x0? — 42x° — 4x0 — 12x — 12,
2x40% — 2x*03 + 11x%0% + 12x30% — 2x20* — 2x39?
+ 10x20° — 44x30 — 17x20% + 64x%0 + 12x9? + 66x>
+ 52x0 + 40° — 168x — 160 — 60}.

Remark

The space of holomorphic solutions of the differential equation
associated to p in fact coincides with the union of the solution
spaces of the two generators of the intersection.

22/26



Conclusion and Future Work



Future Work

> Latest ncfactor.lib can be found in the SINGULAR GitHub
repository?.

» More efficient algorithms and implementations to factor
(certain) G-algebras.

» Categorization of rings with respect to the factorization
properties of their elements (as e.g. done for commutative
integral domains (Anderson et al., 1990; Anderson and
Anderson, 1992; Anderson and Mullins, 1996; Anderson,
1997)).

» Study the output of non-commutative factorized Grobner
basis algorithm. What does it say about the ideal structure?
What is the connection to the solution space?

"https://github.com/Singular/Sources/blob/spielwiese/Singular/

LIB/ncfactor.lib
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