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Introduction

1. Preface

Factorization, Similarity and Matrix Normal forms over certain Ore domains — as the
reader could already see in the table of contents, this thesis works off all three of those
topics chapter by chapter.

As incoherent as those topics may seem from the first look, they all have connecting
concepts. The topic of similarity — all the notions will be defined later — plays a role in the
question of factorization in Ore domains, as well as in the topic of matrix normal forms in
noncommutative rings. In the first it is known that the factors of different factorizations are
unique up to similarity, and in the so-called Jacobson normal form, which is a generalization
of the Smith normal form for commutative principal ideal domains, the diagonal entries
are also unique up to similarity. Therefore, the second chapter is the connecting trajectory
between the first and the last one.

The motivation for dealing with factorizations in certain Ore extensions came from
the Bachelor thesis that was written by the author in 2010. There was a new technique
developed to approach the factorization question in graded skew polynomial rings. An
implementation especially for the first Weyl algebra was written in the computer algebra
system SINGULAR, and due to its good performance especially for homogeneous polyno-
mials, it was added to the SINGULAR distribution. By now, we also added an algorithm
to factorize homogeneous polynomials in the first ¢-Weyl algebra. The main ideas will be
presented here.

The design of the algorithm for the first Weyl algebra was not yet optimal, and for
complexity reasons the implementation was not able to factorize a special family of poly-
nomials, even though they are reducible. In this thesis we will optimize the approach and
make use of some new insights we gained about the first Weyl algebra. This will lead to a
modification of the original algorithm that fixes the old problems. Also an experimental
implementation is given, and it will appear that it beats the old one in performance as
well as in the accuracy of the solutions.

We will also discuss the question about factorization in the rational first Weyl algebra,
as it seems to be the most relevant for practice regarding some current problems in the
field of computer algebra. For example, a factorization of an element in the rational first
Weyl algebra is needed in an approach for the computation of the differential Galois group
for a given operator. We will show that there exists actually a generalization of the Gauss
Lemma for the noncommutative case; this means, we will show that it suffices to deal
with a polynomial factorization in order to obtain representative factors for the rational
factorizations.
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The motivation for dealing with similarity of polynomials came actually from the last
chapter. There, a polynomial time algorithm for computing the Jacobson form of a given
matrix in the rational first Weyl algebra is presented. This is the outcome of a joint
work with Prof. Mark Giesbrecht during a research internship the author did in 2011 at
the University of Waterloo, Ontario, Canada. As already mentioned above, the diagonal
elements in the Jacobson normal form are unique up to similarity. As we will see, the size
of the polynomials in terms of coefficients can differ enormously between normal forms
of the same matrix. An empirical monitoring of different similar polynomials lead to the
observation, that not so much various degree notions, but the coefficients in the underlying
field K form the main difference. We will try to find an explanation for that strange fact
using our knowledge we gathered from the factorization problem. In the end, we will
obtain a point of view for that problem that has a potential to lead to a way to simplify
a given polynomial to a certain extent using similarity transformations.

In the last chapter, we will talk about techniques for finding the Jacobson normal
form using noncommutative generalizations of concepts like the Smith normal form and
divisibility conditions. It will also serve as a little round trip through the field of matrix
theory in Ore domains. We will see a generalization of old friends like the resultants, and
some concepts for algorithms using random parameters will be presented. The thesis will
end with a notion of a strong Jacobson normal form that we developed for the rational
first shift algebra. We will also give a family of algebras for which the same structural
property of the Jacobson normal form is given.
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2. Basic Notations, Definitions and Results

We are going to make — besides some new ones — highly use of the notations, definitions
and results that were already stated in [Heil0]. We will not give much details here, as
the reader can find them and references for further reading on that topics in the Bachelor
thesis. We will have as a general assumption that the reader is familiar with the contents
of that thesis. Therefore, we will run through the basics. In this section, we will give an
overview of what we will use in the proceeding of this thesis.

Further General Assumption: The reader is familiar with the computer algebra
system SINGULAR (see [GPO0T7]) and its noncommutative subsystem SINGULAR:PLURAL
(see [Lev05]). Also a general knowledge about MAPLE and REDUCE is useful.

e If not specified otherwise, R (and any otherwise named ring) will denote a nonzero
not necessarily commutative ring with 1.

e N represents the natural numbers without zero.

e 7,Q,R, C denote the sets of the integer, rational, real and complex numbers.

e K represents an arbitrary field of characteristic zero, F,, denotes a finite field with
n € N elements.

e A ring homomorphism ¢ : R — S always maps 1g to 1g.

e Given a ring R, let R[zy,...,x,] denote the associated polynomial ring. The
leading coefficient of a polynomial f — with respect to a given order — will be
denoted by le(f), and the leading monomial (without the coefficient) by lm(f).
For the degree, we will write deg(f) (if not specified, we will always mean the
total degree).

e Let n € N. Then n denotes the set {1,...,n} C N.

DEFINITION 2.1. Let r,s € R. We say r is a right divisor of s (or s is a left multiple
of r), if there exists at least one ¢ € R with s = gr. We then write r |, s. Left divisibility
is defined in a similar way and denoted by r |; s. When we write r | s, then it will either
be specified in the text whether we mean division on the left hand side or on the right
hand side or if no context is given, it means that r |, s as well as r |; s.

DEFINITION 2.2. For a,b in a domain R, lclm(a,b) denotes the least common left
multiple of a and b, lerm(a, b) the least common right multiple. The — unique up to
multiplication by a unit — element lclm(a,b) is defined by the property that there exist
r,s € R, such that ra = sb = lclm(a, b) and for every other common left multiple f of a
and b it holds that lclm(a,b) |, f. The definition for lerm(a,b) is given in an analogous
way. If we do not care from which side we multiply or if it is clear from the context, we
will just write lem.

A greatest common left divisor of a,b is denoted by gcld(a,b) and a greatest
common right divisor by gerd(a,b). An element geld(a, b) is defined in the way that
geld(a, b) |; a, geld(a,b) |, b and for every other left divisor g of a and b it holds that
g |1 geld(a,b). The greatest common right divisor is defined in a similar way. If we do not
care on which side we are searching for a common divisor or if it is clear from the given
context, we will just write ged(a, b).
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DEFINITION 2.3. An additive subgroup I of R is said to be a left ideal of R, if the
following condition holds:

Vre Rxel:rxel.

Analogously we define a right ideal. If I is both a left and a right R-ideal, then we call
I a two-sided ideal of R.
If a left ideal I in R is generated by elements eq,...,e, € R,n € N, we denote that by

I=:grler,...,en).

Analogously, if a right ideal I in R is generated by those elements, we denote that by
I=:{e,...,en)r.

Now we will introduce a new notion of divisibility, namely the concept of total divisi-
bility. This definition appears to be nonintuitive at the first glance. It is motivated by the
so-called Jacobson normal form mentioned in the preface.

DEFINITION 2.4 (see [Jac43], Chapter 3). Let R be a left and a right principal ideal
domain. We call a € R a total divisor of b € R, if there exists a two-sided ideal I in R,
such that (b)gr C I C (a)g. (In this definition, we can also work with left ideals instead of
right ideals).

DEFINITION 2.5. An abelian group (M, +) endowed with a scalar multiplication
RxM — M: (r,m)—rm

satisfying the following properties for any r,s € R and m,n € M:
(1) (r+s)m=rm+ sm
(2) r(m+n) =rm+ sn
(3) (rs)m = r(sm)
(4) Im=m
is called a left R-module. Right R-modules are defined similarly.

REMARK 2.6. Recall that for a one sided ideal I C R, the set of residue classes R/I is
in general not a ring as it is common if R is commutative, but a module over R.

Convention: If we are talking about an ideal or a module without specifying whether
we mean a left, right, or two-sided one, then it will always be a left one.

DEFINITION 2.7. Let R be a domain and let 0 # f, g € R. We call f and ¢ similar, if
one of the following equivalent conditions are fulfilled.
(a) R/r(f) = R/r(g)
(b) R/(f)r = R/(g)r (compare [BGTVO03], Definition 4.9 and Lemma 4.11)
(c) There exist elements a,b € R, such that af = gb and g(f,b) = (a,9)r = R. (see
[Jac43], Theorem 31)

If R is furthermore a principal ideal domain, then those conditions are also equivalent to

(d) There exists a u € R, such that g = lelm(f,u)u™! (also due to [Jac43], Chapter
3).
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REMARK 2.8. Item d) in the definition above might be confusing in the sense that we
seem to multiply by an inverse of u in g = lelm(f, u)u™!. What we actually mean by that
is the extraction of the coefficient — in this case g — that we need to multiply to u from the
left in order to obtain lelm(f, u).

DEFINITION 2.9. Let o be a ring endomorphism of R. A o-derivation of R is an
additive endomorphism ¢ : R — R with the following property:

Vr,s € R:6(rs) =oa(r)o(s) + do(r)s.

We will call the pair (0,0) a quasi-derivation of R. For our purposes, we will assume o
to be an automorphism if not specified otherwise.

DEFINITION 2.10. Let (0,6) be a quasi-derivation on R. Then there exists a ring S
with the following properties:

(1) R is a subring of S.
(2) There exists an element « € S, such that S is freely generated as a left R-module
by the non-negative powers 1,z, 22, ... of x.

B) Vre R:ar=o(r)z+0(r).

This ring S is a skew polynomial ring and called an Ore extension of R, and is further
denoted by R|x;0,6]. (Convention: If ¢ is the identity function, then we will just write
Rlz;6]. If § =0, then we will denote S by R[z;0].)

Most of the time we are going to deal with Ore algebras in this thesis. Those are Ore
extensions of the polynomial ring K[zy,...,z,]. The most relevant for us will be defined
now.

DEeFINITION 2.11. The nth ¢-Weyl algebra @), for n € N is defined as the n times
Ore extension of K[z, ..., z,| given by

Qn :=K[zq,...,2,][01,...,00;(01,01), ..., (0n, 0n)]
where ¢ is a unit in K, the o; are defined by

qr;, ifi=j
Uz’(%‘)Z{ ’

xj,  otherwise

and ¢§; := 6%1_ for all 7,7 € n. )1 is the operator algebra associated to

flgz) — f(x)
(q=Dz
also known as the g-derivative, where f € Kz]. For further reading consider [KCO02].

For ¢ = 1, the operator is still well defined. This can be seen in the following way. Let
[ =" ,ax", where n € Ny and a; € K. Then

0t f(z)

n

flgr) — f(x) = Zai(qﬂf)i - Zaﬂi = Zaixi(qi —1).

=0



2. BASIC NOTATIONS, DEFINITIONS AND RESULTS 8

The expression ¢ — 1 is clearly a divisor of ¢' — 1, and we obtain
n i—1
flgz) — f(z) _ i—1 j
(q— 1)z _;W j;q '

For the special case where ¢ = 1 we have the nth Weyl algebra, which is denoted by A,,.

If we are dealing with the Ore extension given by the same (0;,0;) as above for
K(z1,...,x,), we call this the nth rational ¢-Weyl algebra resp. for ¢ = 1 the nth
rational Weyl algebra.

DEFINITION 2.12. The nth ¢-shift algebra Q, for n € N is defined as the n times
Ore extension of K[z, ..., z,] given by

Qn =Klzy,...,x,][S1,. .., Sn; 01, .., 00,

where ¢ is a unit in K and the o; are defined by

o)) = {q(acj +1), ifi=j

xj, otherwise

for all 4,5 € n.

For ¢ = 1, we have the special case of the nth shift algebra, which is denoted by S,,.

Again, if we are dealing with the Ore extension given by the same ¢; for i € n as above
for K(z1,...,x,), we call this the nth rational ¢-shift algebra resp. for ¢ = 1 the nth
rational shift algebra.

If we slightly modify the commutation rules for x; and S; above to S;z; — qx;S; = 0,
we call the resulting algebra the ring of nth quantum polynomials.

REMARK 2.13. Different to ),, and A,,, the nth quantum algebra and the nth ¢-shift
algebra are isomorphic. This was proven by Levandovskyy, Koutschan and Motsak in
[LKM11].

DEFINITION 2.14. Let R[xy,...,z,],n € N be the ring of multivariate polynomials
with coefficients in R, and let w € R™. Then the weighted degree with respect to w of
a monomial [[ 2", a; € Ny for all i € n is defined by

i=1
degw(H ) = sz- -
i=1 i=1
The degree of a nonzero polynomial is as usual defined as the maximum of the degrees of
its monomials. We will further call w the weight vector. We will also denote deg,,(f) for
f € R[xq,...,z,] and a given w as the w-degree of f.

For our work we will also need a more general concept of degree for an element in a
ring R, which is also applicable if we assume an indeterminate in a polynomial ring to be
given rational — like in the rational Weyl algebra.

DEFINITION 2.15. Let I' be an ordered group and R be a ring. A valuation on R — if
it exists — with values in I' is a function

v:R—TU{oo},
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where the symbol oo satisfies the conditions

® 00 > a,

eat+o0=00+a=00+00=o00forallaeR,
and v satisfies the following properties for all a,b € R:

e [im(v)| > 2,

e v(a+b) > min(v(a),v(b)),

e v(ab) = v(a)+ v(b).

EXAMPLE 2.16. There exists a Z-valuation v on the polynomial ring K(x) given by

y(%):d%ﬁ)—@ﬂm>

where f and ¢ are in K]z].

DEFINITION 2.17. A graded ring is a ring R = (R, +, ) with a family {7,,,n € G} of

subgroups of (R, +), where G is a commutative ordered monoid, such that for all (7, j) €
G xG@G:

(1) TLT; € Tiy,
The family {7,,} is called a G-grading or simply a grading on R. Elements of T,, are then
called homogeneous of degree n € G (with respect to this grading).

As already known, there is a nontrivial Z-grading on the first Weyl algebra A; induced
by the weight vector w := [—u, u] for u € Z \ {0}. For simplicity, we always set u := 1.

DEFINITION 2.18. The graded parts of A; with respect to the weight vector [—1, 1] are
denoted by Agk) for k € Z and we have

A® { Z ri 2 i,j € No,ri; € K} :

j—i=k

Convention: Let f € A;. If not specified otherwise, we set deg(f) := deg_;1)(f)-
With a slight abuse of notation, we write deg, (f) for degp o (f) and deg,(f) for degjy 11(f)-
Furthermore, if we are dealing with the rational first Weyl algebra, we denote by deg, (f)
the maximum of the valuations of the coefficients of 9 given by the valuation v introduced
in Example 2.16.

DEFINITION 2.19. If we talk about € in the context of the first Weyl algebra A, we
always mean

0 = 20.
LEMMA 2.20 (Compare with [SSTO00]). In Ay, the following equations do hold:
O™ = ™0+ m)
o™ = 0™(@—m),m e N.
COROLLARY 2.21. Consider f(0) := f € K[0]. Then for all n € N:
fO0)z" = 2"f(0 +n)
[0 = 06 n)
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We are going to use those formulas from Corollary 2.21 frequently, especially in Chapter
2 and Chapter 1. They will appear in context of larger terms. Therefore it is advisable to
introduce a notation in order to distinguish between the multiplication by a #-polynomial
and the application of a affine transform of # in a given function.

Convention: Given f := > " fi0',p := >." pif" € K[f], where n,7 € Ny and
fi,pi € K. If it is not clear from the context whether we mean by fp the multiplication of
f and p or the application of p to f, i.e. fp =31 fi(p)’, we will denote the application
by

fop.
The o will bind stronger than the multiplication operator. Furthermore, the o just refers
to the rightmost function on its left hand side.

THEOREM 2.22. Let m € N. Then the following identities in Ay are true:

m—1 m
2o =[O0, omam =[O+
=0 =1

THEOREM 2.23. A§°) 1s a ring and finitely generated, as a K-algebra, by the element 6.
Agk) are finitely generated Ago)—modules by the element x=%, if k <0, or by 0%, if k > 0.

LEMMA 2.24. The polynomials 6 and 6 + 1 are the only irreducible monic elements in
K[0] that are reducible in A;.



CHAPTER 1

Factorization

Overview

In this chapter, we will first deal with the current developments of the implementation
for factoring elements in the first Weyl algebra from the Bachelor thesis. This contains
the approach to factor homogeneous polynomials in the first g-Weyl algebra and some
additional algorithm we implemented in SINGULAR. We will see, that the techniques for
that are very similar to the ones we had for homogeneous polynomials in the first Weyl
algebra. After discussing that, we will go on with the modification of our current algorithm
for inhomogeneous polynomials in the first Weyl algebra. This will contain the main idea
and benchmarks of an experimental implementation against the old one and others in
MAPLE and REDUCE. We will finish this chapter with the factorization question for the
rational first Weyl algebra, which contains also a little excursion into localization theory
of noncommutative rings and an application from the field of differential Galois theory.

1. Homogeneous Polynomials in the First ¢-Weyl Algebra

“There’s just a slight difference in the spelling between Hard working and
Hardly working but once either is followed can lead to results with greatest
variations.” — Ritika Bawa Chopra, Indian author

In the Bachelor thesis [HeilO] we dealt with the factorization question especially for
the first Weyl algebra and we presented an ansatz how we can use similar techniques for
the first shift algebra.

In the shift algebra, dealing with homogeneous polynomials — using the [0, 1] weight
vector — appeared to be even easier than in the first Weyl algebra. But when we consider
the first ¢-Weyl algebra, things become a little bit more complicated in terms of formulas
we are using. We are going to discuss some properties the first ¢-Weyl algebra has and at
the end we will see how we can factorize homogeneous polynomials there.

1.1. Properties of the First ¢-Weyl Algebra. Here, we are going to find analogous
statements for the first ¢-Weyl algebra as we have them for the first Weyl algebra.

First of all, the first g-Weyl algebra possesses a nontrivial Z-grading using the weight
vector [—v, v] for a v € Z. For simplicity, we will choose v := 1. Therefore, the nth graded

11
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part of )y is given by
§”) = { Z i Pi,j € No,1yij € K(q)} :
j—i=n

Define 6 := z0. Our aim is to obtain Theorem 2.25 from [Heil0] also for the first
g-Weyl algebra. Some preparational work is needed for that.

DEFINITION 1.1. For n € N, we define the ¢-bracket [n], by

n—1
1—q" ,
[]q = =) 4

LEMMA 1.2. In @4, for 0 := x0, the following commutation rules do hold:
0z" = 2"(q"0+ [n],)

1) _ —n+2 __
09 — 3_<9 11_q q).
qg \ 9" l—gq

PROOF. We prove our claim using induction by n:
n =1: We have

00 = 200 =

Or —1 0 0 o (0—1 ¢ 2 —g

q q q qa \q

and

l—q1

o)
q

Now let the equations be true for an arbitrary, but fixed n € N. We prove it for n + 1:

Ox = 20x = x(qvd + 1) = 2(q0 + 1) = 2(q"0 +

go™ = (00™)0

- ()

1=0

o [e0—0 2 .

= _ —a -t

s
o (20-1)-0 2
= _ ——a -t
q ( qnfl ;q
n—2

an+1

an+1

(
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Ozt = (92™)x
n—1
- (I”(qn@ + Zqi)> x
i=0
n—1
= " (q”@x +x Z qi>
i=0
n—1
= " (q"(qxﬁ +z)+x Z ql>
i=0
n—1
_ anrl <qn+19+qn + Zqz>
i=0
= gnt! (q"“@ + Zq’) :
i=0

Using the equalities

n—1 ) 1— n fn+2 q
VA — d
> d =7 an Z ¢ T
=0
we obtain the desired results. O

COROLLARY 1.3. Consider f(0) := f € K(q)[0],0 := x0. Then for all n € N:
f(0)z" = 2" f(q"0 + [n],)

’ ’ = q_m_q))
9 pr—
f8) af(Q(q“ l—¢q

In the case of the first Weyl algebra, we tried to write each element of the zero homo-

geneous part ASO) as a polynomial in K(q)[f]. The next lemma and its corollary will show
(0)
1 .

that this is also possible for

LEMMA 1.4. We have

"o =

(9 Zq) ﬁ(e—[i]q)

q =0

=0

for n € Ny, where T; denotes the ith triangular number, i.e.
(i)
T, .= ="
=2 =Ty
7=0
for all v € Ny.

Proor. Using induction by n.
n=1:
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Now let n € N be arbitrary, but fixed.

n—n+1:
xn+1 8n+1 xnean
o (0—1 &2 _i)

= n—I1 - Z q

q ( q P
_ o (0=

q qn—l

n—1 i-1 i n—1
. H’LIO (9 - j=0 q]) 0 — 22—01 q
o an,1+1 qn—l
TS

q™
Therefore our statement follows. O

COROLLARY 1.5. Every element in Q\”) can be rewritten as a polynomial in K(q)[6).

1.2. Factorization of Homogeneous Polynomials in the First ¢-Weyl Algebra.
With the knowledge we obtained up to this point about the first ¢-Weyl algebra, we are
finally able to state Theorem 2.25 from [HeilO] for the first ¢-Weyl algebra. The proof is
done the same way, therefore we dispense ourselves from including it here.

THEOREM 1.6. QEO) is a ring and finitely generated as a K(q)-algebra by the element

0 := x0. The other graded direct summands ng) are finitely generated QEO) modules by the
element v, if k <0, or by O, if k > 0.

Therefore, as in the case of the first Weyl algebra, in order to obtain one factorization
of a homogeneous polynomial in the first ¢-Weyl algebra, we only have to deal with the
factorization of polynomials in K(¢)[¢]. The remaining problem is that elements in K(q)[6]
can be reducible in );. This can easily be seen considering the element 6 = x0.

But fortunately, compare to Lemma 2.24 from the introduction, there are only two
monic polynomials where this case can occur.

LEMMA 1.7. The polynomials 6 and 6 + é are the only irreducible monic elements in
K(q)[0] that are reducible in Q.

ProOF. Let f € K(g)[0] be a monic polynomial. Assume that it is irreducible in
K(q)[0], but reducible in Q. Let ¢, be elements in 1 with ¢y = f. Then ¢ and v are

homogeneous and ¢ € ngk), (NS ng) for a k € Z\ {0}. Without loss of generality let k
be positive. For k being negative we can use a similar argument.
Then

p = @at
v o= o
for ¢, 4 € K(q)[0].
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Using Corollary 1.3, we have
. (1(0—1 g2
f = gakddt = gatory (— ( __— q>) .
q\q"~ l—¢q
As we know from Lemma 1.4 the equation

k-1 i—1

= | (B0

=0 =0

holds.

Thus, because we assumed f to be irreducible in K(¢)[f], we must have @,¢ € K(q)
and k = 1. Because f is monic, we must also have ¢ = ot

As a result, the only possible fis f =0+ é. If we originally would have chosen £ to
be negative, the only possibility for f would be f = 6. This completes the proof. O

This Lemma was the last piece to the puzzle that we needed for the outcome that
we can use the same technique to factorize homogeneous polynomials in the first ¢-Weyl
algebra that we also used for homogeneous polynomials in the first Weyl algebra. The only
differences lie in the commutation rules for 6. Therefore we will not give the complete fac-
torization algorithm again here. The algorithm can be found in the library ncfactor.lib
distributed with the computer algebra system SINGULAR in version 3-1-3 and higher. How
to use the algorithm and a timing can be seen in the next example.

ExAMPLE 1.8. Let h € Q1 be the polynomial
hoi= ¢®2090 4 g1%(g + ¢ + @ + g + 1)%2%8°
+¢°(q" + 3¢ + 7¢"" + 13¢"° + 20¢° + 26¢°
+30¢" + 31¢° + 26¢° + 20¢"* + 13¢” + 7¢* + 3¢ + 1)2°0®
+q*(q° +2¢° + 44" + 6¢° + 7¢° + 8¢* + 6¢° + 4¢* +2q + 1)
(@' + ¢+ ¢ +a+ 1)@ +q+1)2"0"
+q(?+ g+ 1)(¢° +2¢* +2¢° + 3¢ +2¢ + 1)
(0" +¢" +¢* + g+ 1)(¢* + 1)(qg + 1)a°0"°
+(¢" + 5¢° + 12¢° + 214" + 29¢° + 33¢°
+31¢* + 24¢° + 15¢° + Tq + 12)2°0° + 62°0° + 24
We can use SINGULAR to obtain all of its factorizations in the following way.
LIB "ncfactor.lib";
ring R = (0,q), (x,d),dp;
def r = nc_algebra (q,1);
setring(r);
poly h = q"25%x~10%d~10+q"16% (q"4+q~3+q 2+q+1) "2%x~9%d 9+
Q" 9% (q"13+3%q"12+7%q " 11+13%q~10+20%q " 9+26%*q "8+
30%q~7+31%q 6+26*%q~5+20%q"4+13*%q"3+7*q"2+3*q+
1) *xx"8%d"8+q 4% (q~9+2%q~8+4*q~7+6%q ~6+7*q 5+
8xq~4+6%q~3+4*q~2+2q+1) *(q~4+q~3+q"2+q+1) *(q 2+
q+1)*x"7*d"7+q* (q"2+q+1) * (q"5+2%q~4+2%q"3+3%q" 2+
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2xq+1)*x(q~4+q~3+q~2+q+1) *(q"2+1) *(g+1) *x"6%d" 6+
(g~ 10+5%q~9+12%q~8+21%q~7+29%q~6+33*q~5+
31%q~4+24%q~3+15%q~2+7*q+12) *x"5*d "5+
6*x~3*%d"3+24;
homogfacFirstQWeyl_all(h);
[1]:
[1]:
1
[2]:
x5d5+x3d3+4
[3]:
x5d5+6
[2]:
[1]:
1
[2]:
x5d5+6
[3]:
x5d5+x3d3+4

If the user is interested in just one factorization the command homogfacFirstQWeyl
instead of homogfacFirstQWeyl_all can be used.

On my computer — 2 GB RAM, 2.33GHz Dual Core processor — this calculation needs
2.8 seconds. Compared to the factorization of

(2°0° + 6)(2°0° + 2°0* + 4)
as element in Ay, which takes less than a second, this seems to be way more slow considering
that both algorithms have the same complexity. But this slowdown is not due to more steps

that need to be done in the algorithm for the ¢-Weyl algebra, but due to the parameter g
and the speed of calculating in Q(q) as the basefield instead of just in Q.

We will end this section here and leave the question how to factorize inhomogeneous
polynomials in @ for a later point. If we would just use the techniques from [Heil0], the
calculations would be too slow because of the high amount of possibilities we have due
to the parameter ¢q. Better techniques are needed for feasible running times, and we are
going to present them in the section where we will attend to a new algorithm to deal with
inhomogeneous factorizations in the first Weyl algebra.
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2. Factorization in the Polynomial First Weyl Algebra

“If I had some duct tape, I could fix that.” — MacGyver, TV Show from the
80s/90s

2.1. ncfactor.lib. In the Bachelor thesis [HeilO], we presented a new approach for
factorizing the first Weyl algebra. The factorization of [—1,1] homogeneous polynomials
performed efficient and the implementation in SINGULAR is nowadays for a certain fam-
ily of polynomials the only implementation that is able to give a factorization of these
polynomials in a reasonable amount of time.

The factorization of homogeneous polynomials was also used to design an algorithm
to factorize also inhomogeneous polynomials. This was done as a proof of concept, and
in order to keep the complexity on a low level, we did allow the algorithm to have some
families of polynomials it cannot factorize. As an example — as also stated in Chapter 3,
Subsection 2.3.2 of the Bachelor thesis — we can take the polynomial

h = (1+ 2?9)".

The crux was that the highest homogeneous part of A was 1 and not furthermore split by
the combinatorial subalgorithms (for complexity reasons as said before).

Now we are going to deal with the question how we can redesign the algorithm so that
it is also able to find factorizations of polynomials like h and does not lose performance in
factoring the other kinds of polynomials it was already able to factorize. On our way we
are trying to reduce problems to commutative rings as often as possible.

2.1.1. Quick Reference of ncfactor.1tb. The ideas from the Bachelor thesis for factor-
ization were implemented in the SINGULAR library ncfactor.lib and after some testing,
it was part of the distribution of SINGULAR since version 3-1-3. Meanwhile, among some
bugfixes and code optimization, the library has grown and got some additional functions.
Currently, it contains the following procedures.

e facFirstWeyl — an algorithm for factorization of polynomials in the first Weyl
algebra.

e testNCfac — testing of correctness of a given factorization.

e facSubWeyl — an algorithm that factorizes polynomials in the first Weyl algebra
as a subalgebra of a bigger algebra.

e facFirstShift — factorization of polynomials in the first shift algebra.

e homogfacFirstQWeyl[ all] — factorization of [—1, 1]- homogeneous polynomials
(all or just one) in the first ¢-Weyl algebra.

The procedure for factoring polynomials in the first shift algebra uses the same tech-
niques as the procedure for factoring polynomials in the first Weyl algebra. The equivalent
ideas for the first ¢-Weyl algebra were already shown in the previous section. The other
procedures are just some sugar for the practical use of the library.

The algorithms that are presented here are not yet contained in the library. But they
will be distributed as soon as possible.
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2.2. A New Approach.

2.2.1. Preliminaries. From now on, h € A; denotes the polynomial we want to factor-
ize. Its factorization is denoted by h = hy - - - h,, where the h; are again in A;. We can
make the general assumption that there exists no homogeneous f € Aj, such that f |, h
or f |; h. This is due to the fact that we can — as a step of preprocessing — exclude all
possible homogeneous right resp. left divisors.

We will briefly sketch how this exclusion can be done. Let us start with restricting
ourselves to exclusion of homogeneous factors on one side, namely on the left. There, the
following algorithm can do the work.

Algorithm 1 extractHomogeneousDivisorsLeft: Extraction of homogeneous polynomials
from the left.

Input: A polynomial h in the first Weyl algebra, h = k,, + ...+ k,,, where

lEN,n >...>n €7, ky € A",

Output: If h is homogeneous, all possible factorizations of h are returned. If h is
inhomogeneous, the algorithm returns the set {[hy, ..., hy||h1 -+ h, = h, by, is
inhomogeneous and has no homogeneous left divisors, h; are homogeneous polynomials
foralli e {1,...,n—1}}.

Preconditions:

e Existence of an algorithm homogfacFirstWeyl_all to calculate all factorizations
of a homogeneous polynomial in A;.

e Existence of an algorithm divl to divide a given polynomial p; by another given
polynomial p, from the left in the first Weyl algebra.

. if h is homogeneous then

return homogfacFirstWeyl all(h)

. end if

: for ¢ from 1 to [ do

L; < homogfacFirstWeyl_all(k,,)

: end for

. tempResult < {[h1,...,hs]| for all i € [ there exists [hy,..., ha,p1,...,Pm] € L; for
m € N and p; € A; homogeneous}

8: return {[h1, ..., hy_1, hy)|[h1, ..., hoe1] € tempResult, h, =divl(h,hy---hy,_1)}

An algorithm extractHomogeneousDivisorsRight can be designed in an analogous way.

The termination and the correctness of that algorithm is clear, as we are only perform-
ing loops over finite sets and every homogeneous left factor of h has to be a left factor of
every homogeneous summand contained in h.

In order to deal with all possible factorizations of a given polynomial A that has left
and right homogeneous divisors, it is not enough to first extract the left and afterwards
of the remaining inhomogeneous polynomial the right homogeneous factors, as we would
then loose some factorizations. The next example shows why.

ExAMPLE 2.1. Consider
h:= 2*(x0 + 0).
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If we would first extract all homogeneous factors from the left, we would obtain the only
possibility [z, z,x0 + 0]. Afterwards extracting the homogeneous right factors from the
inhomogeneous polynomial 0+ 0 would yield [z, z,z+1,0]. All those are irreducible and
one could assume that these are all factorizations. In fact, they are not all of them. If we
would start extracting from the right, we could see this quite easy. There, we have two
possibilities [z 4+ 1,20 — 1,z] and [z 4+ 1,2, x,0] and there is no further exclusion to the
left possible any more.

This example should sensibilize the reader to be careful with the extraction of homo-
geneous factors. In fact, to find a way to get around this is a not so hard combinatorial
problem, which we will not consider deeply here.

After we have found all possible ways to exclude homogeneous factors from the left and
from the right, we obtain a set of inhomogeneous ones, that might still be reducible. The
factorization of them will be our task for the rest of the section.

REMARK 2.2. Again, if we are interested in all factorizations, we have to add to that
set the original h, as extracting homogeneous factors could make possible factorizations
disappear. An example where this can happen will appear in Chapter 2, Example 1.9.

For that, we also assume that we have an algorithm computeCombinationsMinMaxHomog,
that computes for a given inhomogeneous polynomial all possible tuples

((pmaxa pmin)7 (Qmaxa szn))a

such that deg(pmax) > deg(pmin) and deg(gmax) > deg(gmimn) is true and the operation
h — (Pmax + Pmin) (¢max + ¢min) makes the highest and the lowest homogeneous summands
of h disappear. Such an algorithm was already designed in the Bachelor thesis.

REMARK 2.3. In the Bachelor thesis, we actually calculated not just tuples, but n-
tuples ((P1max + Pimin)s - - - (Prmax + Pomin)) Of combinations doing that work for us.
For simplicity, we will just work with tuples here and obtain the missing factorizations
by recursively calling the factorization algorithm on every factor again. On the existing
algorithms in ncfactor.lib for computing such tuples there are just slight modifications
to be made in order to obtain just tuples.

2.2.2. Determine the Rest of the Homogeneous Summands. We will start with some
discussion about the form of a factorization of h consisting of two factors. Let us denote
those factors by

h = (pn1 +. +pnk)(qm1 +.oo+ le)a
where k,l € Ny ny >ng > ... >niand my > mg > ... >my € Z, py, EAgni) for all 7 € k,
G, € AV for all j € L.

Candidates for p,,,, D, , @m, » Im, are already given by computeCombinationsMinMaxHomog.
It remains to deal with the rest, i.e. p; and ¢; for i € {no,...np_1},5 € {mo,...,my_1}.
And the knowledge of the candidates for the minimum and maximum homogeneous sum-
mands is the only knowledge that we have so far. Of course, most of them are not belonging
to any factorization of h. We might first check if given ((Pmax, Pmin); (¢maz, Gmin)) can be
the maximum resp. minimum homogeneous summands of the factors in order to minimize
our computations later for combinations, that will not lead to a solution anyway.
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2.2.3. Preliminary Filtering of Combinations. A first way how we can check if a com-
bination ((Pmax, Pmin); (Gmazs Gmin)) leads to a valid result is checking whether deg(pmax) =
deg(pmin) + 1 (respectively deg(gmax) = deg(gmin) + 1). If this is true, it must already be
a left factor (respectively a right factor), since we cannot add homogeneous summands of
a degree between deg(pmax) and deg(pmin) to the factor any more. If it is not a factor,
we dismiss this combination and go on with the next one; if it is a factor, we have a first
nontrivial factorization and we are done.

Therefore, we assume from now on that deg(pmax) > deg(Pmin) + 1 and deg(gmax) >
deg(gmin) + 1. The next condition we can check is motivated by the following fact:

The polynomial we get by multiplying

using the notions above with ny > ... > ng, my ... > myand p,, # 0 # Du,, Gy 7 0 # @y,
has at least 2 and at most kl different homogeneous summands.

This can be seen as follows. As p,,¢n, and p,,¢n,, cannot be eliminated for degree
reasons by the other terms in the product and they are not zero by assumption, we have at
least those two homogeneous summands in the product. The upper bound is clear, because
we have kl different products of homogeneous polynomials from the left with homogeneous
polynomials on the right.

REMARK 2.4. A pair of polynomials having this upper bound can also always be
reached, because we can simply choose the m; and n;, (i,7) € [ x k, such that m; + n; #
my =+ nj/ Wlth (Z,j) 7é (Z:/7j/>.

Therefore the next condition can be the following. If A has at most two homogeneous
summands, then one of the factors has to have two homogeneous summands. Using this
condition for that special case tells us that we have just to go through the complete output
of computeCombinationsMinMaxHomog and check whether we have already divisors in there
and no further calculations are needed.

EXAMPLE 2.5. Let
h = 220" 4 220° — 1.
The polynomial h has just two homogeneous summands, namely 220* + 2203 and —1. The
output of computeCombinationsMinMaxHomog is the following:
> computeCombinationsMinMaxHomog(h) ;

[1]:
[1]:
d-1
[2]:
x2d3+1
[2]:
[1]:
d+1
[2]:
x2d3-1
[3]:
[1]:
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xd2-1
[2]:
xd2+1
[4]:
[1]:
xd2+1
[2]:
xd2-1
[5]:
[1]:
xd2+d-1
[2]:
xd2-d+1
[6]:
[1]:
xd2+d+1
[2]:
xd2-d-1
[7]:
[1]:
x2d3+2xd2-1
[2]:
d+1
[8]:
[1]:
x2d3+2xd2+1
[2]:
d-1

Only combination 3 and 4 lead to a result and we do not have to make further checks.

On the other hand, if A has more than 4 homogeneous summands, it is also not needed
to check whether (Pmax + Pmin) (¢maz + ¢min) are already factorizations, as their product has
at most 4 summands.

2.2.4. Determination of the Remaining Homogeneous Summands. If we filtered our
output of computeCombinationsMinMaxHomog due to the preliminaries above, we know
that there is at least one nontrivial p,, and one nontrivial g,,, for 1 <i <k and 1 <j <l
between p,, and p,, and g, and ¢y, in (Puy, + -« + Py ) Gy + -+ - + @my)-

As we already Know puax, Pmin, Gmax and ¢min and therefore know their degrees, we
consider the possible homogeneous summands between them as indeterminates. Therefore
k = deg(pmax) — deg(Pmin + 1) and I = deg(¢max) — deg(gmin + 1). Set pn, = Pmax; P, =
Prmins Gmi = Gmax> @my = Gmin a0d 141 = n; + 1, mj; = m; + 1 for all n; and m;.

We define for all ¢ € k the polynomial p,, by p,,0™ = p,,, if n; > 0 and p,, ™™ = p,,,
it n; < 0, where the p,, € A§O>. In the same way we define ¢,,, for all 7 € [.

Thus we are actually only searching for the p,, and the ¢,,;. An ansatz that could be
tried out is the following.
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Let h = Z?;;:’fﬁnk hlcpl | s =, ifi < 0, p; = O otherwise, h; € A\” the decorriposition

of h in homogeneous summands, where we also allow zeros to appear among the h;. Then
we know, that our p; and ¢; have to fulfill the following set of equations.

Z pn]1 an 9 + n]l)’Ynjl,mn hz|nk +my <i<n+my ,

J1,92€kX1

njy m, =i
where (
ifi,7>20Vvi,7<0
H" 0 (0 — k), ifi<0,j>0i <l
Yog = QT 0 — 5 — [l + 1)), ifi < 0,5 >0, > 4] -
TT._,(6 + k), ifi>0,7<0,li <[]l
H'J' 0+ k+i| =), ifi>0,j<0,i|> ]l

As the reader recognizes. these are a couple of shift equations with a lot of indeterminates.
The nice thing about it is that those computations can be made in K[f], a commutative
ring. One can even recognize that the solution is obtained step by step. For example

hn1+m1*1 = ﬁnlqm2 o (9 + n1)7n1,m2 + ]571267711 o (9 + n2)7n27m17

where only p,, and ¢,,, are unknown. Of course, the solution set is given by the syzygy
module of the generators of the ideal (A, m -1, Pny Gm, © (0 + 1)), with the restriction
that the coefficient of A, 4,1 is 1. This is in general an infinite set, which will only later
be restricted by more equations it has to fulfill. One can continue with the next equation,
namely for A, m,—2, where again just two new indeterminates appear that fulfill another
relation as syzygy vector. But we will not follow that path, as we consider later another
similar — yet using other properties of the homogeneous summands — approach that we
think might be the best way to deal with that problem. We will show an example where
we would face some difficulties using the described approach.

ExXAMPLE 2.6. We consider the polynomial
h = (00+6°+2)((0+1)0— (0 —1)° +2)
= (0> 420)0° 4+ 6°0 — 010 + 56° — 106° + 100" — 50° + 65 + 26 + 6
(1060* — 406° + 806* — 800 + 32)z + 2%,
and assume that we are right now checking the combination, where

pgl’olgx - 9 pmln =1= q§r11)n7 qmax - 0 + L.

Therefore, we set k :=1:= 3, p; := pﬁngx,p_l =q1:=1,¢q = qr(r?ix and thus it remains
to solve for ¢y and py.
We have the following equations:
Ogo0 (04 1) +po(0+1) = 6> (deg = 1)
00+ 1)+ 6% +pogo = —0'° +50° — 100% + 1007 — 50° + 60° + 20> + 0 (deg = 0)
Po+qo(d—1)= 106* — 4060° + 806% — 806 + 32. (deg = —1)
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Here, we see a lot of approaches we can try out. As the example is very simple, it
would be enough due to the second equation to check all factorizations of —6'° + 509 —
106% + 1007 — 565 + 0° + 26? + 6 — (6 + 1) — 6? and find our ¢y and py among the solutions.
But this is not possible in general, if we have more than one indeterminate on both sides.

To obtain ¢y and pgy, we would start off with the first equation. There, we are searching
for all a,b € K|[6], such that af + b(6 + 1) = 6°. We consult SINGULAR with this task and
obtain
> ring r = 0,theta,dp;
> LIB "nctools.lib";
> def r2 = makeModElimRing(r);
> setring(r2);
> module m = syz(ideal(theta"5,theta,theta+1)); m;

_[1]1=[0,theta+1,-thetal]
_[2]=[1,-1,-thetad+theta3-theta2+theta]

The solution we are actually searching for is of course contained in that module as we
can check by

> NF([-1,-theta”5,theta~5],std(m));
0

But it is very hard to computationally extract the right solution out of this set without
evaluating the further equations. Therefore we have to take a general solution set (which
is an affine set given by one solution plus the syzygy module) with us to the next equation
we want to solve.

As said before, we will choose another ansatz from this point on. From the equation
set we know that

Enl—&-ml—l - ﬁnl ng o (8 + nl)’)/nl,mg + ﬁnzgml o (‘9 + n2>7n2,m1

hm+m171 - ﬁm qmz © (9 + n1)7n17m2
Gy © (‘9 + n2)7n2ﬂm

As we see here, the only unknown factor on the right hand side is G-
The third equation is

= Pp, =

;Ln1+m172 = PryGms © (0 4+ 11)Yny,ms + Png@my © (0 +13)¥ng,ma + Prodms © (0 + 12)Vns,my

hng +my—2 = Py Gmg © (0 + n1) Y01 ,ms — PnoGms © (0 + 12)Vng,my
dm, © (0 + n3)Yng,ma

= Pny =

The indeterminate p,, on the right hand side can be replaced by the term above and
we only have ¢,,, and ¢,,, as indeterminates there. Going on in this fashion we obtain a
set of expressions for all p,,,7 € {2,...,k — 1} which carry only the ¢;,j € 2,...,l —1 as
indeterminates.

The same can be done starting from the bottom. This means that we know that

Pong+mi+1 = PryGm,_; © (0 + nk)%lk,mz—l + Pny_1Gm, © (0 + nk—l)’)/nk—l,ml

Prg+mi+1 — PrgGm,_, © (0 + nk)’YHk,mzfl

= Pn._, = -
e am, O(9+nk—1)'7nk717mz

)
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and in the same way as above we get another set of equations for p,,,i € {2,...,k — 1}.

Those equations have to coincide of course. This leads to & — 2 shift equations for the
Gm;,J €42,...,1 =1}

Now we use another knowledge. As we have a degree restriction in x and 0 given
by degy(h) and deg,(h), the degrees of the ¢, are limited. Therefore, we can assume
that they have a certain degree and set their coefficients as new indeterminates. The rest
is solving a nonlinear system of equations, which can be done using Grobner bases (see
[Buc97]). We show this in the following example.

EXAMPLE 2.7. Let us consider
p=00+0+1+(0+5)x, q:=0*+1)0+0+3+(0+7)z.
We want to find the factorization of the product
hi=pg = (6°+207+20)0°+ (6° + 207 + 50 + 1)0 + 0" + 40° + 20* + 220 + 3
+(20% + 1560 + 17)z + (6> + 110 + 30)2”

and assume, that we do not know p and ¢ yet.
From the first step of the algorithm, the combination

Pmaxz = eaapmzn = (9 + 5)%, Qmaz = (‘92 + 1)87 Gmin = (0 + 7>.§C
will appear as output of computeCombinationsMinMaxHomog. The polynomials p,,q. +Dimin
and ¢mae + Gmin are no factorizations of pq yet, therefore we will have to solve for one more
homogeneous summand.
In pq, we have k := min(deg,(pq), degy(pq)) = 4. Furthermore, we already know using
the notations of the algorithm that

p = 0,
p-1 = 0+5
o = *+1
g1 = 0+4T.

The remaining unknowns are py and ¢o. As kK = 4 we can assume that they have the form
po=p3 0" + 050 + pP0? + 00+ 0, qo = a6"0" + 067 0% + 06707 + ¢6V0 + ot

with p{, ¢ € K for i € {0,1,2,3,4}.
The product (p10 + po + p_12)(¢10 + qo + q¢_1x) does look like
prq1o (6 +1)0?
p1go © (0 4+ 1)0 + poq10
pi(g-—10 (0 +1))(0 + 1) + pogo + p-1(q1 0 (0 — 1))0
p-1qo© (0 — 1)z + pog_1x
+ po1g10(0— 1)]}2.

b

Replacing p1,p_1,q1,q_1 by the known factors, we have
(00 + po + (0 + 5)z)((0° + 1)0 + qo + (6 + 7)),
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which is equal to

0(6% + 20 + 2)9*

0qo o (0 + 1)0 + po(6* + 1)0

0(0 + 8)(0 + 1) + pogo + (6 + 5)(6> — 20 + 2)0
(0+5)go0 (0 —1)x+po(6 +7)x

+ (0+5)(0+6)2>.

+ o+ o+

We know h. Therefore, we obtain starting from the top the equation

03 +20°+50+1—0gy0 (04 1)
Po = 0211

and starting from the bottom the equation

20° 4150+ 17— (04 5)go o (0 — 1)
bo= 0+7 '

Thus ¢ has to fulfill the equation
(03 +20° +50 +1—0goo (0 +1))(0+7) = (20> + 150 + 17 — (0 + 5)go o (0 — 1))(6* + 1).

For the coefficients q(()i) with ¢ € {0,1,2,3,4} we get the system of equations
(4)

(2.1) L@~ g
(2.2) L = 0
(2.3) L g pug® = o
(2:4) —g5” — 245" + 215" + 75" +1 = 0
(2.5) =3¢ + 1765 + 845" + 794" +6 = 0
(2.6) —4ay” + 1245 + Ta6” + 3905 — 205" = 0
(2.7) 6ay” + 3" + 165 — 7qp” +26q5" —21 = 0
(2.8) —5q5” +5g5” — 5 + 5g5” — 55" +10 = 0.

Side note: That the system above is given linear is only due to the shape of the given
example. In general we would expect nonlinear terms to appear in the system of equations.

Calculating a reduced Grobner Basis of this system, we obtain

o) =0,¢" = 0,47 =0,¢" =1,¢)" =3,

which means that ¢ = 6 + 3. Comparing this to our original factors, we see that this
unique solution coincides with the homogeneous summand of degree 0 in our originally
chosen ¢. Therefore, we find this solution using our technique.

Let us formulate the technique which we described informally above as an algorithm.
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Algorithm 2 determineRestOfHomogParts: Determination of the rest of the homoge-
neous summands in two factors given the maximal and the minimal ones. PART 1

Input: PolynomialS prax, Pmins Gmaxs Gmin and A.

Output: A list of right factors g of h that have ¢u.x and g, as their maximum
respectively minimum homogeneous summand. Empty list, if those elements are not
existent

Preconditions:

e Existence of an algorithm solveNLS to compute the solution of a nonlinear
system of equations in a multivariate polynomial ring over K
b deg(pmax> > deg(pmin) + 1
b deg(Qmax) > deg(Qmin) + 1
® Dmaxqmax = hmax
® DminGmin = Ponin
ny = deg(pmax)
k= deg(pmax> - deg(pmin>
N, 1= deg(Pmin)
n;:=mny—iforalie{2...,k—1}

0
5: Pny = pr(I(l)z)),Xypnk = pl(-m)n

for ¢ from 2 to k —1 do
if n; > 0 then
ki := min(deg, (h), degy(h) — [ni|)

else
10: ki := min(deg,(h) — |n;|, degy(h))
end if ' '
Pri =D g P67, where pY) are variables
end for

my = deg(qmax)
15: [ := deg(qmax) — deg(¢min)

my = deg(Qmin)
— (0) . .— (0
le L qmax? le T qInin

for 7 from 2 tol — 1 do
if m; > 0 then

20: ki := min(deg,(h), degy(h) — |n;])
else
ki := min(deg,(h) — |n;|, degy(h))
end if | |
Gmi = D5ty ¢$)67 . where ¢4 are variables
25: end for

The termination of this algorithm follows as we do only iterate over finite sets. The
correctness follows from our preparatory work about the equations the different g,,,.

The only problem we are facing is that our set of solutions in line 13 in Part 2 of the
algorithm might be an infinite set. But after several experiments with the solution sets we
were solving we have the following conjecture.
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Algorithm 3 determineRestOfHomogParts: PART 2
for ¢ from 2 to k — 1 do

lhs L h"1+m17i+1—zn]~1 +mj2:nl+m1—i+1 pnjl Qm]2 O(O—Tbjl )’leij

3 e qmlo(efni)’yni,ml

Substitute all p,, by the formerly calculated terms in p,, and qm; 0 lhs;
end for

5. for ¢ from k — 1 to 2 do
h”k+mz+i—1_2"h +mjy =ngtmyti=1 Py Imj, °(0—151)%1.32
amy (0—=1) ¥ m,
Substitute all p,, by the formerly calculated terms in p,, and q,,; in rhs;
end for
for i from 2 to £k — 1 do
10:  temp := lem(denominator(lhs;), denominator(rhs;))
eq;_, = (lhs; — rhs;) - temp
end for '
solveNLS({eq; =0]i = 1...k — 2}) for the coefficients ¢ in Qrm; -
if Solution(s) do(es) exist then
15:  return The different solutions for ¢ that are right divisors of h
end if

return ()

rhs; ==

CONJECTURE 2.8. For the sets of equations appearing in the algorithm there exists
always a finite solution set.

Together with computeCombinationsMinMaxHomog and the extraction algorithm for
homogeneous factors, this algorithm can be embedded in a complete algorithm to factorize
a polynomial h in A;. Of course, a recursive call on the factors is needed since we are only
computing tuples of factors. We have an experimental implementation of that algorithm
in SINGULAR which will be subject of the next subsection.

2.2.5. Experimental Implementation and Timings. First of all, we are interested how
much better this technique is compared to the existing one stated in the Bachelor thesis.
Furthermore, we will check how fast we obtain our results compared to existing imple-
mentations of factorization algorithms in REDUCE (version 2.8, [MA94|) and MAPLE
(version 16, [VH9IT7]).

EXAMPLE 2.9. Let us start with the counterexample for our former implementation,
namely h; := (1 + 229)*. Our new algorithm finds 24 different factorizations for that
polynomial. The complete output of SINGULAR can be found in the appendix.

The “original” factorization there is in the 6th entry. The computation took 55 minutes
and 54 seconds. This timing does not come from Groébner Basis computations, but from
the huge amount of combinations for the maximum homogeneous part of h;.

Asking REDUCE, we did not get any result after 9 hours of computation and quit the
task.

MAPLE tells us in less than a second, that there is one factorization, namely

hy = (x88+x6(—1+3x))-(a+ﬂ) - (a+ﬂ) - (a+ﬂ).

z2 z2 2
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ExXAMPLE 2.10. Another interesting example is the polynomial
hy = (2% + 22" — 32%)0% — (42® — 42 — 1227 — 122)0 + (62" — 122° — 62 — 242 — 12).

It is taken from [T'sa00], Example 5.7.
Our old implementation was able to find just one factorization, namely

hy = ((z* — 2® + 32 — 32)0 — 32° + 62° — 3z + 12) - ((2® + 2)0 — 3z — 1)

and it took around 5 minutes to obtain that result.
Our new implementation finds two factorizations; the one above and the additional
factorization

ho = ((z* + 2° + 32 + 32)0 — 42® + 32> + 62 + 3) - ((2° — x)0 — 2z + 4).

The calculation did take 8 seconds.

REDUCE returns in less than 10 seconds a result, if we only ask for one factorization
(i.e. applying the command nc_factorize instead of nc_factorize_all). The output is
the second factorization above. If we ask for all factorizations, REDUCE did not find any
result after more than 9 hours of computation; so we cancelled the task.

MAPLE again takes less than a second and returns one factorization, namely

ho = ((2° + 22" — 32%)0 — 22%(2® — 2* — 2 — 3)) - <(9 — %) :

EXAMPLE 2.11. A third interesting example is
hy = (z* — 1)z0* + (1 + T2*)0 + 82°.

This example is taken from [Koe98], page 200.
Our old algorithm was able to find only one factorization, namely

hy = (2°0 + 32° — 20 + 1) - (220 + 22 + 0)

and it took around 3 minutes. The new approach finds 12 distinct factorizations in less
than a second. The output can be found in the appendix.

REDUCE returns in 3 seconds 60 factorizations. But some of them contain reducible
factors. If those are factorized again and the double entries in the result are removed, we
obtain the same 12 different factorizations as we had as output of SINGULAR.

MAPLE finds within a split second one factorization, which is given by

5 4 A’
hs = ((2° — 2)0 + 3z +1).(a+(:c—1)(:c+1)(:c2+1))'

ExAMPLE 2.12. The last example we want to present here is given by the polynomial
hy :=102°9" + 262'0° + 472°0% — 9720°.
It was suggested by a reviewer (Martin Lee) of our algorithm in the SINGULAR team as a
hard example for our previous implementation.
In fact, also after a couple of hours of computation our old algorithm did not terminate.
Our new implementation takes two minutes and 46 seconds to find 8 distinct factorizations.

Those can be found in the appendix.
REDUCE takes less than one second to find one factorization. It is given by

hy = (102*0% 4+ 262°0° 4 472* — 11720 — 78220 + 1172* + 15620 — 156) - - 0 - 0.
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Trying to find all factorizations, the algorithm did not terminate after 9 hours of compu-
tation.
MAPLE takes less than a second and returns one possible factorization

4 5 9 10z 97
hy = (262" 4 472°) - (8 + 26—1—47:156_ 26—|—47x) -0-0-0.

As a conclusion we can say, that our new approach is better than our old one in terms
of timing and amounts of possible factorizations found. An illustration of that fact is
provided by the table below. Compared to other computer algebra systems our algorithm
provides the user sometimes with more factorizations in a reasonable time than the other
implementations. Therefore it broadens again the amount of polynomials that we are
able to factorize with a computer algebra system nowadays. For a future TODO-List one
should add some dealing with the question whether the nonlinear system we have to solve
in between might lead to an infinite set and — if so — why this happens and how we can
extract the correct solution for our algorithm from it.

Poly old new # fact. old | # fact. new
hy — 55:54min — 24
hy | 4:30min | 0:08min 1 2
hs | 2:35min | 0:00.6min 1 12
hy — 2:46min — 8

3. The Rational First Weyl Algebra

“Change your opinions, keep to your principles; change your leaves, keep
intact your roots.” — Victor Hugo

The next question on the path is how one can use our techniques to probably find
factorizations in the rational first Weyl algebra. This ring has compared to the polynomial
first Weyl algebra some handy properties. One is for example, that it is an euclidean
domain and therefore also a principal ideal domain. We have therefore several more tech-
niques for dealing with this algebra. The factorization algorithm by Mark van Hoeij —
which is the factorization algorithm used in MAPLE — for example computes factorizations
in the rational first Weyl algebra. For further reading on that algorithm consider [vVH97],
and the usage of the algorithm in MAPLE is presented in [Heil0], Chapter 3, subsection
1.1.

As nice as the properties may seem, there is also a flipside of the coin, as the next
example shows us.

EXAMPLE 3.1. Let h := 0% be an element in the rational first Weyl algebra. One can
easily derive a factorization of that element. But h has in fact infinitely many factorizations



3. THE RATIONAL FIRST WEYL ALGEBRA 30

in the rational first Weyl algebra. For example, we have for all ¢ € K
O+ @+e)™)(0—(z+0)7")
= P -0@+o)y ' +(x+e)t0— (v +c)?
F—(z+o)0—(z+0) )+ (@+0)'0— (x+¢)?
= 9%

This is an infinite set of factorizations — more explicitly: a one-parametric family depending
on ¢ € K — of h in the rational first Weyl algebra.

REMARK 3.2. After this example the reader is maybe shocked and thinks that the
factorization question in the rational first Weyl algebra might be completely out of control.
Fortunately, there are some properties our factorizations do have.

Due to Loewy in [Loe03] and [Loe06], the number of irreducible factors of an ordinary
differential operator are always the same. Therefore in our example above we will always
deal with two different factors of h, and never more or less.

Furthermore, Tsarev has demonstrated in [TL11] based on his work in [Tsa96] that
there actually exists an enumeration algorithm for all distinct factorizations of a differential
operator. If there are finitely many, this algorithm can tell exactly how many do exist.
If there are infinitely many, the algorithm will also return that. Therefore we have some
kind of information on the number of different factorizations.

In order to be more general, we are going to deal with localizations of the first Weyl
algebra. As we are noncommutative, the classical notion of localization needs some more
concepts.

3.1. Localizations in Ore Algebras. As a reminder, in the commutative ring a
localization is defined as follows.

DEFINITION 3.3. Let R be a commutative ring with 1 and S C R be a multiplicatively
closed subset of R containing 1. We define on R x S the equivalence relation

(r1,81) ~ (12, 89) & I € S : t(r1s9 — rasy) = 0.
Defining addition and multiplication by
[(7’1,81)] + [(TQ,SQ)] = [(T132 +T28178182)],

[(r1,81)] - [(r2, 82)]  := [(r172, s152)],

we obtain a ring which is denoted by S™'R.

Informally speaking, one is generalizing the concept of constructing quotient fields,
which is in general only possible if R is a domain.

For the case where R is noncommutative, we are facing some problems. For example
we have to specify how a set of denominators acts on both sides. If we would take S C R
as a set of denominators, and S™!R as our ring of fractions, we have to be able to give a
reasonable definition of how the product sy'r; - 5575 of two elements s;'r; and s, 'ry in
S7IR is defined. It appears that we have to put more conditions on our set S than just
being multiplicatively closed.



3. THE RATIONAL FIRST WEYL ALGEBRA 31

THEOREM 3.4 (Compare to [BGTVO03], Chapter 8, Theorem 1.3). Let 1 € S C R\ {0}
be a multiplicatively closed subset of a ring R. The following assertions are equivalent:

(1) R admits a left ring of fractions S™'R with respect to S.
(2) S satisfies the following properties:
(a) (left Ore condition) for any s € S and r € R there exists s € S and ' € R
with s'r = r's;
(b) (left reversibility) if rs = 0 for some s € S and r € R, then there exists some
s’ € S with s'r = 0.

We will not give the proof to that here. The interested reader can find it in the
literature.

DEFINITION 3.5. A multiplicatively closed subset 1 € S C R is called a left Ore set
if it satisfies the left Ore condition introduced in the theorem above. If it furthermore
satisfies the left reversibility, we call it a left denominator set.

REMARK 3.6. One might think about what happens to ¢ and 4, if we localize an Ore
extension of a ring R with the quasi-derivation (¢,0). [BGTV03], Chapter 8, Lemma 1.10
states that if o(S) C S, our pair (o,§) canonically extends to a quasi-derivation (7,§) on
the ring of fractions S™!R.

ExAMPLE 3.7. Even though we are already using that fact, we are going to show that
S :=K][z] \ {0} can be chosen as a left denominator set for the first Weyl algebra A;.

Left Ore condition: Let s € S and r € A; \ {0} be arbitrarily chosen elements. We
need to find an element ', such that s |, s'r. If s (respectively r) is a constant or already
a right divisor of r (respectively r a left divisor of s), this is trivial. If neither of these
properties is given, we can choose s’ := s"™! where n = degy(r). Then s |, s'r, because
we know that

° s j—;s’ = j—;s"“ for every 0 < ¢ < n and we can apply that knowledge to

o S0 =" (—1)I (M (Ls'), m € N, which means that s |, s'0™ if m < n.
Those formulas — in a more general fashion — can be found in [LS12].

Left reversibility: As A; is a domain, there is no s € S such that rs = 0. Therefore
this condition holds.

3.2. Relations between Factorizations: Polynomial vs. Rational. Given h €
SR, where R is a domain and S C R is a denominator set and S~'R denotes the
corresponding ring of fractions, and its factorization h = hy - - - h,,, where hy,... h,, in
S7'R. The next theorem will show that a multiplication by a unit suffices to obtain a
factorization in R.

THEOREM 3.8. For the setting as given above there exists a unit q € S7'R such that
we have a factorization qh = hy - - - h,,, where the h; are in R.

Proor. We will prove this using induction by m € N. For m = 1 the statement is
trivial as h = hy is given as an element of S “IR and we can just multiply by an element
of S to obtain an element A; in R.

Now let the claim hold for m € N arbitrary, but fixed. We prove our statement for m+1.
Therefore let h = hy - - - hy,41. By induction hypothesis there exist invertible ¢;, ¢ € SR,
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such that gy = hy and qohy -+ hipsy = by -+ hyy, where by, hy, ... byt € R. By the left
Ore condition satisfied by S, there exist q3 € S and h € R such that higs = q3h1
Therefore we choose our ¢ to be equal to ¢gz¢; and we have

qgh = q@qihy - hypyr = Q3il1h2 c g = ;quth c g = ill c P
This completes the inductive proof. [

The techniques used in the given theorem are leading to an algorithm to lift a rational
factorization into a polynomial one.

EXAMPLE 3.9. As shown in Example 3.1, 9 can be factorized in the rational first Weyl
algebra by

F=0+@x+ec) ) (O@—-(x+0)7")
for all ¢ € K. Using the techniques of the Theorem above, we can transform it as follows:
(04 (z+ c)*l) (0= (z+¢)7h)
+c)0+1)-(x+e) - ((xr+c)d—1)
r+c)dxt+e) (o)) - (z+c)d—1)
(O—(z+e) (o)) (z+c)d—1)
-0((x 4+ ¢)0 —1).

Thus here we have ¢ := z + ¢ and hy := 9, hy == (x4 ¢)0 — 1.

By now, we have seen that we can “lift” a rational factorization of an element h € S™'R
into a polynomial one. The next question is, whether we always have a fraction free
factorization of h if h is already given with denominator 1, i.e. h € R. Then, if we are just
interested in one factorization, lifting would not be necessary any more.

This thought is motivated by the so-called Gauss’s Lemma in commutative algebra.

LEMMA 3.10 (Gauss’s Lemma). Let R be a commutative factorial ring und R[x] the

polynomial ring over R in one variable.
Let f in R[x]\ R be irreducible. Then f as an element in Quot(R)[z] is also irreducible.

This lemma appears to be very useful when dealing with the factorization question of a
polynomial in Q[z] whose coefficients are given in Z. Due to this lemma, we are searching
for factorizations where the factors also have all their coefficients in Z. It is moreover the
underlying idea of irreducibility criteria like Eisenstein or the reduction criterion.

The next lemma will give us a similar result for the noncommutative case. But before
that, we need a proposition dealing with links between left ideals in R and those in S™'R.

PropoOSITION 3.11 (Compare to [ BGTVO03], Chapter 8, Lemma 1.12). Let I be a left
ideal of R. Then we call the ideal I¢ := {s™'r|r € I,s € S} the extension of I to ST'R.
The set I¢ is a left ideal in ST'R and N R={r € R|3s € S : sr € I}.

REMARK 3.12. If [ is given by a finite set of generators ey,...,e, € R, then by
construction we have ¢ = g-1g(eq, ..., €n).
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LEMMA 3.13. Let R be an integral domain and f be an element in R. Let further S
be a denominator subset of R that does not contain f. If f is irreducible in R, then it is
irreducible in ST1R.

PROOF. Assume that there exist irreducible s™1f;,..., s 1f, € ST'R with

f=s"fi--s fn, neN\{1}

Due to Theorem 3.8, there exists a ¢ € S such that ¢f = fl e fn, where fl, cee fn €
R\ S, not units in R.
Therefore, we have the equality of left ideals

sa{f) = s-ir(fi- fu)
in ST'R. . .
Consider the left ideals I} := r(f) and Iy := g(f1--- fn) in R. Then their extensions
to ST'R are

It ={s'rlrel,secS}=g1r{f),

126 = {S_1T|T’ € _[27 S € S} = S*1R<f1 s fn>
Due to Proposition 3.11, the intersections I N R consist of those elements r in R, such
that there exists an s € S with sr € I;. If we extend Iy to I§, then this is equal to
s-1r(f1 -+ fa), which is by assumption equal to s-1z(f) = I. Therefore If "R =I5 N R
and we have f = spfi--- f,, s € S, € R. But this contradicts fi,..., f, being not units
and f being irreducible. Therefore our assumption was not valid. [

COROLLARY 3.14. Let f € R be an irreducible element, where R is an integral domain.
Then for any localization on a denominator set S the element f is either a unit (i.e.
f €S), oritis again irreducible. Therefore it suffices to check for irreducibility in R if we
want to determine irreducibility in S™'R.

The conclusion we can draw is that while dealing with the factorization question in
the polynomial first Weyl algebra, we are actually already dealing with the factorization
question in the rational first Weyl algebra. If we cannot find any factorization in the
polynomial first Weyl algebra, there is no need to search for it in the rational Weyl algebra.

If we find factorizations in the polynomial Weyl algebra, the irreducible factors are also
irreducible in the rational first Weyl algebra. If one is interested in more factorizations
than those of polynomial type then we would suggest to check if the factors are so-called
interconvertible (see [Tsa96]) and get to all the other factorizations this way.

3.3. Applications. One application for the factorization of elements in the rational
first Weyl algebra was shown to me by Daniel Rettstadt, who is currently writing his Ph.D.
thesis at RWTH Aachen University. His topic is computing the so-called differential Galois
group of an operator L in the rational first Weyl algebra. As a reference on differential
Galois theory we recommend [vdPS03]. He deals with concretizing an idea introduced by
E. Hrushovski in [Hru02|. We will not go into much details here, as this topic huge on
its own. In the paper, there is an algorithm simply called “B”. Proposition 4.1. proves its
correctness. According to what Daniel Rettstadt has told, in its second step, this problem
can be seen as calculating different right factors of a symmetric power of the given operator,
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where factorization comes in. As one is just interested in different right factors here, the
use of the techniques presented in this chapter can be applied.



CHAPTER 2
Similarity

Overview

In this chapter, we examine the similarity of two polynomials from the point of view of
looking at the algebra as a graded ring. We will mainly concentrate on the first polynomial
Weyl algebra and try to state some structural properties two polynomials have to fulfill in
order to be similar.

As already said in the introduction, the original motivation was the following.

When we inspect a set of similar polynomials — may as output of the factorization
algorithm for some examples, may as the nontrivial entry of a Jacobson normal form (see
next chapter) — we can see, that most of the time the difference between them is not a
much higher degree in x of the coefficients. Very often we are facing the elements of the
underlying field in the coefficients to transform in an exploding way. We are going to try
to find explanations why this is happening, and this is the leitmotif of this chapter.

ExaMPLE 0.15. The most drastic similar yet coefficient-wise exploding polynomials
come from the computation examples to find the Jacobson normal form over matrices in
the rational first Weyl algebra (Chapter 3). One of the examples of two different outputs
using the same input matrix are the two polynomials

p1 = 22°0 4 22%0% + 22° + 3270 — 192307 — 2 — 12230
+92°0° + 22°0 — 112* + 1020 + 452 — 10

and

py = 883602°0 + 883602°0% + 883602° — 311142%0 — 100307427 0?
—384554x° — 948071270 + 21333432°0% 4 24328527
45093247250 — 25532322°0% + 11040362° — 75384582°0
+17697742* 0% — 44283562° + 5740077210 — 739659207
+2474570x* — 193519020 + 1372492%0* + 353353723
—203532%0 + 503120 — 391503922 + 15479720 + 1431017z
+106210 — 150930.

There are way more wild examples out there. But here we can already see: Even
though the degrees do not seem differ a lot, our coefficients become enormous.

For the rational first Weyl algebra, there is a lot of work done in the field to decide
whether two polynomials are similar. Besides Tsarev (|[Tsa96]), also Mark van Hoeij dealt
with similar questions in [vHY10]. But, as the reader will see, we are approaching the
problem from a different point of view. We will not be that much interested in the decision

35
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if two polynomials are similar but more into conditions for them having a chance to be
similar that explain the coefficient behavior mentioned above.

1. Similarity in the Polynomial First Weyl Algebra

“In the end we are all separate: our stories, no matter how similar, come to
a fork and diverge. We are drawn to each other because of our similarities,
but it is our differences we must learn to respect.” — Unknown

Throughout this whole section, R denotes the polynomial first Weyl algebra. We will
start with polynomials we are very secure in dealing with, namely the homogeneous ones.
There, we will already see some interesting relations two polynomials have to bring with
them in order to be similar. Step by step we will go further until we deal with the most
difficult case: finding conditions under which two inhomogeneous polynomials are similar.
The main result will be, that the differences mainly lie in shifts of the homogeneous factors
of degree zero of two similar polynomials.

1.1. Similarity of Homogeneous Polynomials. We have gathered a lot of intuition
dealing with [—1, 1]-homogeneous polynomials in the first Weyl algebra by now. Let us
therefore start our investigation of similarity conditions with those kinds of polynomials
and see what we can find out.

Let f,g € R be [—1, 1]-homogeneous polynomials (in the further course of the section
shortened by the term homogeneous polynomials). The next proposition is a clear but
relevant fact.

ProprosSITION 1.1. Let a,b € R such that af = gb. Then a,b can be chosen homoge-
neous without loss of generality.

PROOF. Since f and g are homogeneous, they are a right respectively left divisor of
every homogeneous summand of af (which equals gb). Therefore we can pick a random
homogeneous summand & of a and the corresponding b of b. Corresponding means that
they must have the same degree after multiplication by f respectively g. Therefore we also
have af = gl;. O

Thus our aim is to find homogeneous a, b, such that af = gb and g(f,b) = (a,g)r = R.
We divide this search into different cases in terms of the degrees of f and ¢g. In what
follows, the variable 6 denotes the term x0 as usual. We are going to use some of the
swapping rules with z and 0, that were given in the introduction, as well as general
properties of factorizations of homogeneous polynomials. The main result of this work will
be Theorem 1.4, which states that a necessary condition for f and g being similar is a
shifted divisibility relation between their factors of degree zero and a product of ascending
shifts of §. If the reader is only interested in the result, he or she can skip the following
pages to that theorem.

Case 1: deg(g) = deg(f) = 0.
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This means that we can regard f, g as polynomials in K[f] due to Lemma 2.23 from
the introduction.
Let a = ape® and b = byy)! be homogeneous polynomials in R, where ¢, ¢ € {9, z} and

ag, by € A§°), such that af = gb. Then we can directly see that ¢ =1 and k = [ for degree
reasons. Furthermore, we have — if we swap " to the right using the commutation rules
in Corollary 2.21 from the introduction —

aof o (0 + k)" = gbo® <= agf o (0 £ k) = gby.

Case 1.1: g1 fo (0 k) for some k € Ny.

This means that on the left hand side ay must contain factors from g, as they are not
completely contained in fo (6 + k). Thus geld(ap, ¢g) is a nontrivial polynomial in €, which
contradicts with our aim to have (a, g)r = R.

Case 1.2: g | fo (0 £k) for some k € Ny.

In this case we have the chance to obtain similarity for f and ¢g. The only thing we have
to assure is that the choice of b does not contradict with our desired condition g(f,b) = R.
But when would that happen? From the equality above, we see that by must contain the
remaining factors of f o (6 £ k). If two factors of f are just shifts of each other, we would
come to this bad situation. But we can verify or falsify this case very easily. Furthermore,
if we can extract ¢ from f (i.e. if § or 0 + 1 is a factor of f), then the condition would
also not hold.

As similarity is an equivalence relation, there must also exist a and b € R such that

fa= l;g if f and g are similar. Therefore, with the same discussion as above, we come to
the result that also f | go (0 £ k) for a k € Ny. Therefore f = go (0 £ k) for a k € Ny.

Case 2: deg(g) = deg(f).

Let again a = agp® and b = bob!, 1, € {x,0} and ag, by € Aﬁ“), such that af = gb.
Furthermore, write [ = fov™, g = gov™, where g, fo € Aﬁ‘” and v € {x,0}. Because of
degree reasons we must have ¢ = ¢ and k = I[.

Case 2.1: p =1 =v

In this case, k,[ have to be zero because of the desired divisibility relations between
the tuple (f,b) and the tuple (g,a). That means, a = ag,b = by. Therefore we must have

aofo = gobo o (6 £n).

Again, we get the subcases go | fo and go 1 fo.

If go | fo, we have to make sure that the choice of b with not violating the r(f,b) = R
condition is possible. This check can be done with not much effort.

If go 1 fo, then f and g have no chance to be similar, since the choice of a would result
in a nontrivial greatest common divisor (in K[]) between aq and go.

Case 2.2: v # o =

Observation: In this case, 1" # v™)* if k is greater than 0. Furthermore, we can
assume k to be smaller than n (otherwise we can just swap some ¢s to the left in the two
products and would compare a shifted g with f). To get a clear image on how those terms
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do look like: In the case ¢ =1 = x,v = 0 we have

k—1

=0

and

i=1
In he case p =1 = 0, v = x we analogously have

ot = oF " = (H(9 + Z)) "k

Vit = orat = o [0+ 1) = (H(@ +i+(n— k:))) o,

i=1

and
k—1 k—1
V”cpk = z"OF = " F H(é’ —i) = (H(Q —i—n+ k:)) vk,
i=0 i=0

One can reproduce those equations above using Lemma 2.20 respectively Corollary 2.21
and Theorem 2.22 from the introduction at the beginning of this thesis.
Our product af = gb would thus either look like

aofo o (0 — k) (H(@ - z')) " = goby o (0+ 1) (H(@ i (n— k))) o,

=1

or it would look like

aofoo (04 k) (H(@ + z)) 2" = gobg o (0 — n) (1:[(9 —i—(n— k))) "

=1 =0
as seen from the equations above.
Case 2.2.1: go 1 foo (0 £k)([L[,(0 £1)) for a k € Ny. Then we will never be able to
choose ag without violating the right ideal condition.
Case 2.2.2: go | foo (0 £ k)([[,(0 1)) for a k € Ny. Only in this subcase f and g
have a chance to be similar. Then we have to make sure that the choice of by is possible
without violating the left ideal condition for the tuple (f,b).

Again due to the symmetry of the similarity relation, there also exist i,b € R, such

that Bg = fa if f and g are possible. In case 2.1 this means fy = gg, whereas in case 2.2
we have fo | goo (0 £ k)([[,(6 £4)) for a k € N,.

REMARK 1.2. The careful reader detects that the first case is just a special case of the
second one. The reason why we split this into two cases is because the degree zero case is
interesting in itself, as we do not have the products of #-shifts in the equation.

Case 3: deg(g) # deg(f). This case again splits into subcases. We will start by working
off a trivial one, namely where we can instantly say that f and g cannot be similar in that
case. Without loss of generality, deg(f) > deg(g) since the weak similarity is a equivalence
relation on R.
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Case 3.1: deg(g) < 0,deg(f) > 0. Therefore, g = goz*, f = fo0', where fy and go
denote the homogeneous factor of degree zero in f and g and k,l € N. There is no chance
of f and g to be similar. This is due to the fact that af and gb have to have the same
degree. Therefore either f has to be decreased degree-wise by a (i.e. a = aoxk,fc € N)
or the g has to be increased degree wise by b (i.e. b = boal,i € N). Then either f has
a common divisor with b — namely 0 — or g has a common divisor with ¢ — namely z.
Therefore we cannot fulfill our left resp. right ideal conditions.

REMARK 1.3. Note, that for the rational first Weyl algebra the polynomials f and g
would still have a chance to be similar in this subcase. We will discuss that in the next
section, albeit not in detail as it is not that much different.

Therefore, similarity has only a chance to occur, if either both are nonnegative or not
positive. As dealing with those two cases is analogous, we will just stick to one case and
leave the other one as an exercise to the reader.

Case 3.2: deg(g) < deg(f) <0.

Thus f = foz™ and g = goz™, where m > n € Ny. We are searching for a, b, such that
af = gb. In order to have (g,a)r = R, we must have deg(a) > 0. For the analogue reason
also deg(b) > 0 must hold. Without loss of generality

b=0b0" a=ayd, k>1eN,.
Therefore we have the equation
aofo o (84 1)0'z"™ = goby o (6 — m)x™oF,

and for degree reasons we must have —n 4+ = —m + k. Furthermore, we can assume that
[ < n and therefore k < m, because otherwise we could extract 0 from the right of the
product and just check a shifted version of f for similarity with g.

Case 3.2.1: got foo (0 +1) H2:1(9 + 1) for an [ € Ny.

In this case, g and f have no chance to be similar, because we have to fill up the missing
divisors in Ago) with the ay on the left hand side of the equation. That would result in a
nontrivial left divisor of @ and ¢ and violate our right ideal property (a, g)r = R.

Case 3.2.2: go | foo (0 +1) Hﬁzl(G + 1) for an [ € Ny.

In this case there is a chance of g and f being similar. As usual, we just have to ensure
that a proper choice of b is possible.

Of course the symmetry remark does hold again here.

This whole running through all the cases might be seen as redundant accounting at this
point, but it actually leads us to the following characterization of similarity of polynomials
for the homogeneous case.

THEOREM 1.4. Let f,g € R be homogeneous polynomials. If f and g are similar, then
there exists n, k € Z, m € Ny, such that

m—1
folgoo (0+n) [J(0+i+k),
=0



1. SIMILARITY IN THE POLYNOMIAL FIRST WEYL ALGEBRA 40

where § = x0 and gy and fy denote homogeneous factors of degree zero of f and g. This
also needs to hold analogously for the other direction, i.e.

m—1
g | foo (0+0) [[(0+i+k)
=0

for h, k € Z,m € Ny.

This result gives us a hint, why we get such a coefficient difference while observing
two different similar polynomials. We see that in the homogeneous case they are related
to each other in the way that their homogeneous factors of degree zero have divisibility
relations up to shifts of the indeterminate #. Those shifts, depending on the degree of
our polynomials, can of course cause an enormous growth of the coefficients. Take as an
example the polynomial #°. If we operate on 6° by three times shifting, we obtain

(0 +3)° = 6° + 150" + 900 + 2700 + 4050 + 243

due to the binomial theorem.
We finish the discussion about similarity between two homogeneous polynomials by
giving some examples of the positive cases above.

EXAMPLE 1.5. Same degree: An easy example would be
fi=204+7 g¢g:=2x0+5.
Since f(0 —2) = g(6), we choose a := b := z? and obtain
22 f = ga’.

Furthermore, using SINGULAR, one can verify that r(f,b) = (g,a)r = R
Different degree: Take as an example

f = (2?0 + 820 + 17)0*, g := (2?0 + 620 + 11)0.

We have fo(0 — 1) = go(f). Then a and b must have degree 1 in = and a possible choice
would be

a:=x, b:=(xd—-1).
Then af = gb and again using SINGULAR one can verify the property g(f,b) = (g,a)r = R.

1.2. Similarity between a Homogeneous Polynomial and an Inhomogeneous
One. In this section, we assume that f € R is a homogeneous polynomial and ¢ is an
inhomogeneous one. We are going to deal with the question, whether we can find a, b,
such that af = gb and where the ideal conditions do hold. Let us first think about if the
construction is possible at all. For the commutative case, we can falsify this existence very
easy, as the following example shows.

EXAMPLE 1.6. Let R be a commutative domain and let f, g € R be similar polynomials.
We will show that f and g being similar in this case is equivalent to f and g being
associated, i.e. there exists a unit u € R such that f = ug. Then it is clear for the
special case R = K[zy,...,x,] that an inhomogeneous polynomial cannot be similar to a
homogeneous one as the units there are elements in K.
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If f and g are similar, there exist a,b, such that af = gb and (b, f) = (g,a) = R.
Furthermore, we have u, v, w,r € R such that ua +vg =1 = wb+ xf. From the equation
af = bg, we can derive

af = bg | u
== ua , f = ubg
=1-vg

and
af =bg |w
— waf = wb g
=l—af

— (wa+wg)f =g.
Thus it is clear that if f = 0 also ¢ = 0 must hold. If f # 0, then f = (vf +ub)(wa+wg) f
according to the equations above. Therefore (1 — (vf + ub)(wa +wg))f =0, and as f was
chosen not equal to zero and R is a domain, we see that (vf + ub), (wa + wg) must be
units in R. Therefore f and g are associated. That associated polynomials are also similar
is clear anyways.

This means, that the construction is not possible with sticking to elements of commu-
tative subrings of R. We have to consider the more complex elements in R and try to
construct a case, where we see the possibility of the construction.

ExXAMPLE 1.7. If we assume b to be homogeneous, we can apply the results we had for
homogeneous polynomials in the previous subsection to every homogeneous part of g and
a. An example, where we succeed in constructing is

f=0, g:=0+ 0%
Then ¢ is inhomogeneous as desired, and we have for
b:=x0+6and a:= (xd+7)+ (z0+ 8)0

the property af = gb with gr(f,b) = (9,a)r = R.

Here we see, that the commutative world is even different in such simple statements.
In the Bachelor thesis this would have occurred in the section “Horrible things happening
in the noncommutative case” if that example was known by that time.

The example above had one interesting property: The chosen b was homogeneous.
The question now arising is whether the b can also be chosen inhomogeneous. The —

unfortunate in the sense of the complexity of the problem — answer to this question is yes,
as the following example shows.

EXAMPLE 1.8. Again consider
f:=0, g¢g:=0+0d
Consider also the two polynomials
b:=0+20+8and a:= 20> + 20+ 0* + 110 + 9.
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Then b, g and a are inhomogeneous as desired and f is clearly homogeneous. Furthermore,
we have af = gb with r(f,b) = (9,a)r = R.

As a result we therefore get that a homogeneous polynomial can be similar to an
inhomogeneous one. From the point of view that f and g are considered to be left resp.
right factors of two distinct factorizations of the same polynomial, this fact is somewhat
surprising. We challenge the reader to find examples where f and g are nontrivial in x
and in 0 to see how ugly the construction can become.

As we used the same f and g in both Example 1.7 and Example 1.8 one can come
to the conjecture that if we can find an inhomogeneous b and an arbitrary a, such that
af = gb, then we can find also a homogeneous one. But we can also falsify that conjecture
using the following example.

EXAMPLE 1.9. Let
fi=20+14, g: =20+ 15+ (z0+ 17)0.

We begin with showing that we cannot find a homogeneous b with g(f,b) = R such that
f |r gb. Assume, we have such a b. Let b := byp™, n € N, where by is the homogeneous
factor of degree zero of b and ¢ € {z, 0}.

We know that f 1 by(# —n) in the case of ¢ = 9 and f 1 by(f + n) in the case p = x
because of the condition on the left ideal generated by f and b. Therefore, for every
homogeneous summand of g, we have to be able to swap a zero homogeneous polynomial
to the right after multiplication with b. The summand x0 + 15 in g tells us, that b has
to be of degree one, i.e. b = byd. But the second summand requires b to be of degree
three. Therefore, the choice of a homogeneous b is not possible. But the choice of an
inhomogeneous one is possible as we can use

a = 220° + 220* + 2229* + 3320% + 1420? + 549° + 2550% + 1969

and
b= 220" + 2020 + 1420 + 349* + 1960.

Verifying with SINGULAR, the polynomials f, g,b and a do fulfill all the desired prop-
erties.

But all hope that we can find as easy conditions for f and g being similar as for the case
where both were homogeneous does not die at this point. We only have to work harder.
Let us begin with some notions we will use throughout this subsection.

For what follows, we write g = gn, +...+gn, and b = b,,, + ...+ by, where n; > ... >
ng,my > ... >my € Z and the g,, and b,,; denote the homogeneous summands of degree
n; of g resp. m; of b for (i,7) € k x L.

The following Lemma will appear to be useful. We are giving it in a more general
context than we need it right now.

LEMMA 1.10. Let f,g,a,b € R be nontrivial polynomials, such that af = gb with
r(f,0) = (g9,a)r = R. Let b be the polynomial b after addition of some left multiple of f.
Then b # 0, r(f,b) = R and there exists a, such that af = gb and (g,a)r = R.
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PROOF. Let us assume b = b+ uf for some u € R. That b # 0 is a trivial consequence,
since otherwise f and b would have a nontrivial gerd, i.e. r(f,b) # R. The same holds for
the desired property that g(f,b) = R, since

r(f.0) = r(f.b+uf) = r(f.0) = R.
That f is a right divisor of ¢b is clear as

gb=gb+guf = (a+gu)f.
The only missing part is if the choice of a suitable a is still possible. We set a to be
i = (gb)f".

It remains to show that (g,a)r = R. But one can see this using the following fact:
g(b—b) = g(—uf) has clearly f as a right divisor. But we also know that

g(b—b) = (a—a)f.

If we divide by f from the right, this would only affect b — b on the left hand side, since f
is a right divisor of b —b = —uf. Therefore g is a left divisor of @ — a. Thus we know that

R = <a?g>R = < (& - d) +dag>R = <&7 g>R7
~——
right multiple of g

which completes the proof. [

REMARK 1.11. Those readers who see a possible reinvention of the wheel here we want
to remind that we are dealing with a noncommutative ring. Usually the statement above
is trivial. One just has to calculate inside R/g(f), and then the existence of such a b can
be derived. The problem why we had to at least discuss it a little bit is because R/g(f)
is not a ring, but only a left R-module. Therefore we cannot multiply elements there and
have no properties of products we can use in general.

What is the benefit the Lemma above provides us with? We will see very soon that it
is crucial for having an idea how one can choose b in af = gb. Usually, one can choose it
arbitrarily, but with that we can assume it to have some more structure.

Now that we are equipped with some additional knowledge, we will discuss when f and
g have the chance to be similar. Recall here that we assumed f to be homogeneous, and
g to be inhomogeneous. We are going to look at different cases for our given f regarding
its degree and reducibility properties.

Case 1: deg(f) = 0.

This case splits into two separately interesting subcases, namely the subcase where f
is irreducible and the subcase where f is reducible.

Case 1.1: f s irreducible in the polynomial first Weyl algebra.

This case will turn out quite interesting, as we can also provide a technique how we
can decide the similarity between f and g in this case (see below).

Assume that we have a,b with af = gb fulfilling the left resp. right ideal properties.
Due to Lemma 1.10, we can assume that we cannot exclude f from the right of any
homogeneous summand of b.
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We furthermore know that gb has the form
ng+m;

gb= Z Z gjlbjz'

i=n1+mi (J1,J2)€kXL,
njl +mj2 =1
The highest homogeneous summand and the lowest homogeneous summand of that product
are just gy, by, and g,,b,,,. In order to obtain f to be a right divisor of those two — and we
need this to happen in order to have af = gb —, we have to be able to swap a homogeneous
factor of degree zero to the right, and after all the shifts during that swapping it has to
result in f. But this zero homogeneous part cannot come from b because of our choice of
b. Therefore, g,, and g,, must contain a shifted version of f as a homogeneous factor of
degree zero.
This is a condition our g has to fulfill in order to have a chance to be similar to f. Let
us formulate that in the following corollary.

COROLLARY 1.12. Consider a homogeneous, irreducible polynomial f € R of degree
zero and an inhomogeneous polynomial g = gn, + ...+ gn, € R. If f and g are similar,

then there exists r,s € Z, such that f o (0 + r)|g££) and fo (0 + s)|gg,)€).

But we get even more out of this knowledge, namely an algorithm to check whether f
and g are similar in this case.

We have finitely many possibilities for the maximum and minimum degrees of b. We
just have to look at the different shifts contained in the highest homogeneous summand
and the lowest homogeneous summand of ¢ (there might be multiple ones.

Just think as an example about f = 20 + 14 and g,,, = (20 + 3)(x0d + 13)(z0 + 7)9°).
Therefore we get a system of terms for the homogeneous factors of degree zero of the
bm;,J € I, which we can solve for right divisibility of gb by f. They have to fulfill the
property that for every homogeneous summand in between gy, b,,, and g, b,,, we must be
able to extract f. Furthermore, f(6 +m;) { bﬁﬁg for all j € [ since we do not want to have
f being a right divisor of any homogeneous summand of b.

Here is a sketch of some steps how one can decide whether a given pair (f, g) is similar.

e If the homogeneous factor of degree zero of g,, or the homogeneous factor of
degree zero of g,, does not contain a shift of f as a divisor, then f and g have no
chance to be similar. Therefore return “False”.

e For all my > m; € Z, such that f | g9 o(@+ny+my) and f | 9 (04 ng+my) :

a) Solve system for by, j € [, such that f does divide gb from the right and
f 4 bm) (0 £ my).
b) M := The solution set of the system above
e Filter the solutions in M where g(f,b) # R or {a,g)r # R, where a := gbf~!.
e Return M.

The solution for a) is not that hard to find as it looks like, even though it is is not a
system of equations we have there, but a system that has to fulfill a divisibility criterion.
Let us perform this algorithm on an example to show how one can use it.

ExaAMPLE 1.13. We take f and g from Example 1.9, i.e.
fi=20+14, g¢g:=20+15+ (xz0+ 17)0.
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We have k =2, ny = 1,ny = 0 and ¢; = (0 + 17)0, go = x0 + 15. We see that a shift of
f is dividing the homogeneous factor of degree zero of every summand of g, and the only
possibility for the tuple (my,m;) is (2,1). Therefore we have b = b,0% + b;9. Unaffected
by the choice of b; and by is clearly gobs and g1b;, since f will be a divisor anyway. We
just already know that (6 + 15) 1 by and (6 4 16) 1 bo. The term that we are interested in
will be

9%(by 0 (8 —2)gy o (8 —2) + by o (8 —1)g” o (0 —2)),

and our aim is that f divides it from the right. Ignoring the 9* on the left hand side and
the shifts of the b;, we have the term

(0 +13)by + (0 + 15)b;.
Here, we know that
(04+13)- (0 +15)0+ (0 +15) - (0 4+ 13) - 14 = (0 + 15)(6 + 13)(6 + 14).

Therefore, we can choose by = 14(6 + 14) and by = (64 17)(6 + 2), which results in the
b of Example 1.9.

How unique was that choice? Well, we had to come up with b;’s not being divisible
by f. At first we regarded the equation (6 + 13)bs + (6 + 15)by, and we wanted to have
(0 4 14), i.e. our f, being a divisor of it. The only restrictions are that

(0+14) 1 by and (0 + 14) 1 by

(recall that we ignored at this points the shifts of the b;). Therefore, possibilities to choose
them were given by by = (0 + 13)51 and by = (0 + 15)52, where b; and by are polynomials
not divisible by f, but their sum is divisible by f. And the possibilities b; having that
shape are infinitely many.

But a clear false statement can be given after a finite amount of steps. If one would
implement it as an algorithm, then the way would be to try to find at least one b and one
a. If the answer is false it will become clear very fast. Otherwise choose just one solution.

Let us proceed with our case discussion. Recall that we are in the case where we assume
f to be homogeneous of degree zero. We finished the discussion about the case where f is
irreducible. Now we proceed with the case where f is reducible.

Case 1.2: f is reducible in the polynomial first Weyl algebra.

We write f = f;--- f, for the factorization of f, where the f; are not units in R. Again,
assume that there exists a,b € R not necessarily homogeneous such that af = gb and the
left resp. right ideal condition does hold. Due to Lemma 1.10 we can assume that we
cannot extract f completely from the right out of one of the homogeneous summands of b.

Furthermore we can make the following observation.

OBSERVATION 1.14. For every i € v, there exists a b,,;, such that f; {, b,,. In
other words: There is at least one homogeneous summand b,,, of b that does not contain
fio (0 —m;) as right factor.

This can be seen using the condition that g(f,b) = R. Would there be an f; that could
be extracted in every homogeneous summand of b then this would be a nontrivial common
right divisor of f and b and the left ideal generated by f and b would not be R.
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Therefore we can use a similar approach as in Case 1.1. We know that we can extract
f from every homogeneous summand of gb. Especially in g1b; and g, b, we see that the
missing divisors f; that cannot be extracted from the right from b, resp. b,,, must appear
shifted accordingly in the zero homogeneous part of g; resp. gy, .

This leads to a condition g has to satisfy in order to have a chance to be similar to f.
We state it in the following corollary.

COROLLARY 1.15. Let f = fi1--- f, € R be a homogeneous polynomial of degree zero
and the f;,i € v, its nontrivial factors. Let furthermore g = gn, + ... + gn, € R be a
inhomogeneous polynomial. If f and g are similar in the sense of Definition 2.7 given in
the introduction, then the homogeneous factor of degree zero of g,, and the homogeneous
factor of degree zero of gy, contain each at least one shifted f; as a factor.

If we have ¢ given and it fulfills the property above, then we have knowledge of the
maximum and minimum degree of b and can solve a system for the different bggzs. This
can be done as described in the previous case. Just the conditions on b are a little bit more

strict, which makes the falsification a lot more easy.

Now we have finished the discussion about the case where f is homogeneous of degree
zero and we go on by discussing the case where it has an arbitrary degree. A specialty of
this case is actually that the common divisors of f with g,, resp. g¢,, can also be = or 0,
not just polynomials in 6.

Case 2: deg(f) # 0.

We will assume that without loss of generality we have deg(f) > 0, i.e. f = fy0delf)
where fy denotes the homogeneous factor of degree zero of f.

The techniques will be similar as in Case 1, but we have here in all cases but f = 0
that f is reducible. Let us by start working off the easy subcase where f = 0. But first
we make the following observation for this case.

OBSERVATION 1.16. In gb we have to be able to extract 9%&(f). Furthermore, in order
not to violate the condition g(f,b) = R there has to be at least one homogeneous summand
of b, where we cannot extract 0 from the right, which also means that it has at least one
of degree less or equal to zero.

Case 2.1: f=0.

As usual, we consider g,,b,,, and gy, by, And our good friend, Lemma 1.10 does hold
again. In this case it means that every homogeneous summand of b has to have degree less
or equal to zero. There are the following possibilities that can occur:

e A power of 0 can be extracted from g,, or g,, from the right. Then b,,, resp. by,
can be chosen such that we can swap one 0 to the right.

e There is no power of 0 that can be excluded from g,, or g,, from the right, but
gn, contains a shift of §. Then we can choose b, resp. b, such that swapping
this factor leads to 6 on the right (i.e. 0 can be excluded from the right) and the
degree chosen for b,,, and b, is less or equal to zero because of Lemma 1.10.

e There is a power of 0 that can be extracted from g,, or g,, from the right, and
there is a shift of 6 in its homogeneous factor of degree zero as a factor. Then we
have the possibility to choose b,,, resp. by, such that we can swap 0 to the right
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or such that the shift of § becomes ¢ when swapping it completely to the right.
Again, b,,, and b,,, have to be of degree less or equal to zero.

Therefore, as a first condition on g for being similar to f would be that we have at
least in the highest and in the lowest homogeneous summand either a power of  as a right
divisor, or a shift of #, or both. In the case where there is a shift of # in it we also have as
a condition that swapping it to the right of g will make it a negative shift of 8, since only
degrees less or equal to zero are allowed for the b,,,.

As we see here, we can again solve systems for different bs, and additionally to the
cases mentioned above, we have some statements for possible highest and lowest degrees
for b. Therefore, everything goes down again to the solvability of the systems with some
side conditions.

Case 2.2: deg(f) >0, f # 0.

In this case we know that f = f,09°8\/) is always reducible with at least two nontrivial
factors.

We can make an analogue observation as in Observation 1.14. The difference is that
we have not only factors in #, but also in 0. The analogue observation is therefore: Given
the homogeneous summands bﬁ,?zwi, ¢ € {x,0}, of b in standard form. Then there exists
at least one b,,, where 0 is not a right divisor, and for every divisor f of fy there exists at
least one bﬁfiz, such that

ged(by) o (0 —my), f o (0 — deg(f))) = 1.
With that we assure that we keep the condition g(f,b) = R.
Moreover, we have f 1, b,,, for all ¢ € [ because of Lemma 1.10.
From now on, everything is similar to Case 1.2. We again look at the highest homo-
geneous summand ¢,, and the lowest g,, and check, whether we can find either a power

of 0 as a right divisor, or at least one shifted version of #, or a shifted divisor of f; in gfﬁ)

resp. g,(l?, or both.

If nothing of that can be found in both g,, and g,,, we can say that f and g have no
chance to be similar. If it can be found, everything reduces to solving systems of terms
with divisibility conditions as before. We will not go again through the details because

there is nothing completely new, but just state an example.
EXAMPLE 1.17. As an example, we choose
f=(0+14)0, g:=(0+13)0+ (6 + 15)0.

We have several choices for possible maximum and minimum degrees for b. We choose for
that example the minimum homogeneous part of b to be of degree 0 due to the observation
that

(04 13)0 = (0 + 13)x0 = z(0 + 14)0 = «f.
The next observation

(0 +15)0 =0(0 + 14)

indicates that a possible choice for the maximum degree of b is one. Therefore we have two
unknown variables by and by in b = by + b10, such that f | gb. We must also have 6 t by,
because 0 would otherwise be a gerd of f and b. In order for f not being a right divisor
of b10, the term 6 + 14 also must not divide b;.
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We have

gb = gobo+ gibo o (0 +1)0 + gob10 + g1by o (6 4+ 1)0?
= boxf+ ((0+15)bgo (04 1)+ (04 13)0b1)0 + by o (6 +1)0f.

Thus, the only term that we have to construct such that f is a right divisor of it is
((0+15)bg o (B + 1) + (6 + 13)61)0.

We can set by := (0 + 15)0 and by := 14(6 + 12). This choice does not violate the
conditions and results in f being a right divisor of the term above. Using SINGULAR, we
can find a, such that af = gb, namely a := 220% + 14220 + x0? 4 2920 + 182x + 169 + 195.
Using SINGULAR again we verify that g(f,b) = (g,a)r = R.

1.3. Similarity between Two Inhomogeneous Polynomials. The case where f
and g are both given inhomogeneous is the most general and generic case. The main
problem is that we do not have as easy conditions to determine whether f is a right
divisor of a given polynomial as we had in the homogeneous case. There, we just had to
determine the degree and whether we could swap certain shifts of the homogeneous factor
of degree zero of f to the right. In the general case different summands of f are affecting
the homogeneous summands of a polynomial if it has f as a right divisor.

Therefore, solving for a b € R such that f |, gb and gerd(f,b) = 1 will appear way
more difficult as we cannot just work off homogeneous part by homogeneous part and try
to extract f there.

Another problem appearing is that our former arguments for bounding the degrees of
the summands in b are not valid in general. Fortunately, as we will see in this section, we
can nevertheless find ways to state some bounds.

For the rest of this section, we denote — partly as it was done before — by

g = gn1+---+gnka
b = by +...+ by,
a ay, +...+a,, and
f = futot o

where ny > ... > ng,my > 0> my g > o > e,y > .. > Vg € Zol,e € Nk d >
1 € N, the representation of the polynomials a,b, f,g € R as sum of their homogeneous
summands of degree p;, respectively m;, v;, and ;.

We always assume f and g to be given and we are searching for a and b such that
af = gband g(f,b) = (g,a)r = R.

First of all, let us work on the degree bounds for b as mentioned above. For that we
will assume that f and ¢ are similar, i.e. a,b with the desired properties do exist, but not
yet known to us. We know from the factorization technique for the first Weyl algebra in
[HeilO] that in order to have af = gb, we can directly conclude that

Ay for = Gnibm, and ay, fo, = G, bm, -

We will make heavy use of that fact.
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As the previous subsection has shown to us, a discussion about the possible shape of
b appears to be very fruitful. We will try to start with that here, too. The following
proposition gives us some statements about the degree range in b.

PROPOSITION 1.18. Using the denotations above, one of the two following possibilities
can occur:

i) my —my <wv—uy

i) my —my > vy — vy and fo, 1 bmys foy 1o bmy-
This means that either the range of homogeneous summands in b is bound by the number
in f, or f,, respectively f,, are no right divisors of b,,, or by, respectively.

PROOF. Assume we have my —my > vy — vy with f,, |, by, or fo, | bm,. Without loss
of generality we will assume f,, |, by, Then

bm1 = l;m1 fl/l

for (;ml € R. Due to Lemma 1.10 our choice of b is invariant up to added left multiples of
f. If we perform the subtraction
b— by, f=:1,
we know thus that we again have an a’ so that o’ f = gb’ fulfilling the left respectively right
ideal condition.
Our new b’ = b’m,1 +... 40, - has the property that its highest homogeneous summand

has a degree lower than that of b, and its range of homogeneous summands decreased. If
after this reduction step for our new b’ already m) —m;_, < v1 —v, does hold, we are done.
If otherwise this new highest homogeneous summand has again f,, as a right divisor, we
can repeat the step above. After a finite amount of steps we will either reach the point
that the highest homogeneous part is not divisible by f; from the right any more, or we
have m} —mj, < vy — vy for the new b with I’ < [ € N, which is possibility i) again. Of
course we can both have m} —mj, <1y — vy and fi |, 0.

In order not to have a too complicated notion, we denote the resulting 4" after the
reduction steps from the top again by b from here on.

If after the top reduction steps we still have m; —m; > vy — vy and f,, | by, for the
new b, we can perform the analogue reduction steps from the bottom until either f,, { by,
or m; —my < vy — Ug. O

We will demonstrate the reduction steps from the proof in an example.

ExaAMPLE 1.19. Choose
f=0*+2% =04+ 1+2°

As a note: Those polynomials do not come from two different factorizations, but we
can use them to demonstrate the concept we were using in the proof above.

The range between the homogeneous parts of f is smaller than those of b and the
highest, as well as the lowest homogeneous summand of f divides the highest and the
lowest homogeneous summand of b. Therefore we can make reduction steps. We will start
from the top and obtain

Vi=b—0f=1—(0+1)z+ 2>
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Now the range between the highest homogeneous summand and the lowest homoge-
neous summand of &’ is smaller than the range in f and we can stop.

REMARK 1.20. In fact, in the previous example we could have made one more reduction
step and decrease the range even more. But this is just due to the nice form b and f had.
In general, if we would keep proceeding, we would definitely run into non termination.

Before we start our discussion about conditions for f and g being similar, let us reflect
a little bit about the proposition above and the two items it contains.

Item ii) gives the impression that the range between m; and m; is not bounded at all
in this case. Fortunately, it is.

Assume case ii) does hold. Therefore f,, { b,,,. Since we must have

a,ul fVl = gn1 bml 9

our remaining factors of f,, on the right hand side have to be taken from g,,.
We either have that a power of 0 (if n; > 0), or that a power of z (if n; < 0) or that

some shifts of factors of the zero homogeneous factor fy(?) are missing in by, .

In the case where only a power s € N of d (respectively a power of x) is missing in by, ,
we know that degy(b,,) < s. Otherwise it would not be missing. Also its degree towards
the negative side is bounded since we have to be able to swap 0° completely to the right.

In the case where we are taking a certain shift of a homogeneous factor of degree zero
of f,s?) from g,,, the degree of b,, is even uniquely determined by that shift.

The analogue discussion can be made for b,,,. Therefore we have bounds on them given
by the structure of g and f.

Still reflecting on Proposition 1.18, another impression is given to us by item i), namely
that in this case the range [mq, m;| with m; —m; < 14 — vy can occur arbitrarily among
the integer numbers. Fortunately again, this is not true.

To see this is not as easy as in item ii), since we do not necessarily have the divisibility
conditions f,, 1y bm,, fu, {r bm, on the highest and the lowest homogeneous summands of
f and b. The following cases are possible.

Case 1: vy > 0.

In other words, a power of d is a right divisor of f. In this case, we must have m; < 0 in
order to have a chance not to violate the condition gerd(f, b) = 1. Among the homogeneous
summands of negative degree we then should have at least one given, where we cannot
swap 6 to the right from the homogeneous factor of degree zero. Otherwise 0 would still
be a right divisor (compare Lemma 2.24 from the introduction).

Moreover, we are restricted in our choice of m; towards negativity, since we must be
able to extract a certain power of 0 from every homogeneous summand in gb.

Case 2: v1 < 0. In other words, a power of x is a right divisor of f. Here we have analogue
arguments as in Case 1.

Case 3: 11 > 0,1y <0.

We have either v; # 0 or vy # 0 or both. The further we move [m;,my] towards
positivity or negativity, we have to still be able to compensate this with our given g. This
is due to the fact that we need to have a possibility to extract 0”* from g,,b,,, and x="¢
from gy, by, -
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At this point we are done reflecting on Proposition 1.18 have some statements about
the structure of b in the case where f and g are similar. We will now deal with the question
if arbitrarily given inhomogeneous f and g have a chance to be similar. I.e. our assumption
that f and g are given similar is not necessarily true any more.

The whole discussion above gives us an idea how to construct such a b, if it is existent.
Due to Proposition 1.18 we have two possibilities for the structure of b. Let us make a
sketch how to find such a b or to falsify the existence. It will be a 3-Step approach, where
results can be found in any step.

First of all, we look at f,, and g,, respectively f,, and g,,.

Step 1: If we find a shift of a factor f of f,s? ) within gfmol), we would first try out to choose
our m; to be of an appropriate degree such that swapping that factor in gfﬁ) to the right
of gn,bm, would result in fp”*, p € {x,0}.

EXAMPLE 1.21. Let for example f,, := (0°+6+1)(6+15)0* and g, := (0*+70+13)0>.
Then we have f := (6* + 60 + 1) shifted in gfg) — namely with the factor % + 76 + 13 — and
we know that g,, = 0*(6% + 30 + 3). Therefore we need one more shift to obtain f, and

furthermore we need f82 to be a right factor of Gnybm,. Therefore m; = 3, and a possible
choice of b, is (6 + 16)0°.

Now it is possible that item i) of Proposition 1.18 does hold, and we would try to solve
the system for the range [mq,m; :=my — (11 — vg) + 1].

REMARK 1.22. The term “solving the system” has to be treated in the case where f is
inhomogeneous in another way than before, but we added a discussion about that to the
appendix, since it would be just distracting here.

If we cannot solve it for that range, we can assume that item ii) does hold, and that
we have to take at least one factor of f,, from g,,. If there is furthermore neither a shift
of a factor of f,sg) in gq(f,?, nor a ¢ € {x,0} a common right factor, we can say, that in this
step no appropriate b can be constructed and proceed with Step 2.

If a shift of a factor f of fV‘S) is in g,,, we can determine the degree m; directly and
try to solve the system for that range. If there is a power of ¢ € {z,d} that is a common
right divisor of f,, and g, , then |m,| < |v4| and since we want to be able to swap ¢ to the

right, its degree has a lower bound determined by g,, .

EXAMPLE 1.23. Assume g,, = 2*, f,, = (zd + 13)z%. In the currently considered case
we need to take at least one x from g,,. Therefore m; = —1 at least. A possible solution
such that g, by, has f,, as a right divisor would therefore be b, = (20 + 14)z. A more

general solution is given by b,,, = 5(%8 + 14)z, where be A&O).

With this lower bound, we can again try to solve the system for the b&?ﬁ, and if it is
not solvable, then in this step we cannot find any appropriate b.

Of course for dealing with this case we can also start with the lowest homogeneous
parts. That works analogously.

Let us summarize Step 1 again here:

Precondition: A shift of a factor f of fﬁ?) is a factor of g,(g). Assume that item i) from
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Proposition 1.18 holds.

Approach: Finding different degree bounds for b and try to solve the system such that
f divides gb from the right. If not possible, item ii) might hold or a power of x resp. 0 is
a common divisor of f,, and gy, .

Step 2: If we cannot find any shifted factor of fy1 in gfn) respectively a shifted factor of

fra O iy gnk or our efforts in step 1 were not leading to an appropriate b, we would as a next
step try to check for common right factors in {z,d} for f,, and g,,,.

If f,, and g,,, have a power of ¢ € {z,0} as a common right factor, we first assume
that we have to swap a certain power of ¢ out of g,, to the right in g,,b,,,. With that we
also have a degree bound for b,,, .

Again, we first try to check how far we can come with item i) from Proposition 1.18
and try to solve the system for the possible ranges [mq,m; — (11 — vg) + 1].

If that approach was not crowned with success, the last possibility here is that item ii)
does hold.

If there is neither a shifted factor of f, (S) in gv(lk), nor a ¢ € {x,d} a common right factor
of f,, and g,,, we can again declare this step as not succeeding.

If such a common factor can be found, we have again a degree bound for b,,, and we
can try to solve a system of terms to obtain a divisibility condition. If we do not succeed
here, we try our last approach, which is discussed in the next step.

Let us summarize Step 2 again here:

Precondition: Step 1 failed, and f,, and g¢,, have a power of x resp. a power of 0 as
common factor.

Approach: Finding different degree bounds for b and try to solve the system such that
f divides gb from the right. If not possible and we already performed Step 1, item ii) is
the last possibility which can occur.

Step 3: If we reach the point where only step 3 is possible, we are very desperate because
we did either not succeed in the last two steps or we could not find any common divisors
in the highest and in the lowest homogeneous parts.

We can assume without loss of generality that here b,,, is a left multiple of f,, and
by, is a left multiple of f,,. Otherwise we would already have tried out to solve for those
candidates in the previous steps. Moreover, we are from the perspective of Proposition
1.18 in item i), which means, that m; — m; < v; — 1.

The remaining thing to do is to find out how far this range can go towards positivity
or negativity among the integer numbers and try to solve the system for every possibility.

REMARK 1.24. One should not assume that we can leave out those ranges that we
checked in the previous steps before. This is due to our new choice of b,,, and b,,, to be
left multiples of the corresponding f,, and f,,. Before at least one factor in each b,,, and
by, was left out.

After that we either have found our a and b that fulfill all the desired properties, or we
can finally state that this choice is not possible at all. In both possibilities we are done.
Let us also summarize this step:
Preconditions: Step 1 and Step 2 failed. No conditions regarding divisibility of homo-
geneous summands of f with homogeneous summands of g.
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Approach: Finding the degree range for b from item ii) in Proposition 1.18. Those are
finitely many and then we solve for the b.

This 3-step approach is of course written down in an algorithm way more complex than
it seems to be here. The main difficulty lies in the parts where we said that we are solving
a system of terms fulfilling a divisibility condition.

Let us summarize what we have encountered on our path dealing with the question
when two strictly inhomogeneous polynomials f, g € R are similar.

We did not have as clear statements as we had when one of them was homogeneous.
But Proposition 1.18 helped us to at least have some clarification on the b that we are
multiplying to g from the right. Item ii) in this proposition gave us the hint that we are
again dealing with shifts from the homogeneous factors of degree zero of the homogeneous
summands in f if f and g are similar. If item i) from the proposition does hold, we at least
know that in between the solving for an appropriate b we have to take some homogeneous
factors of degree zero out of g, which again means that we are shifting. As an ansatz to
check whether given polynomials f and g are similar, we have provided a 3-Step approach
to do that.

We conclude this subsection with an example.

ExAMPLE 1.25. We take the factors of the different factorizations of hy in Chapter 1,
subsection 2.2.5. We choose

f=2%0—20—-2x+4, g:=a'0—2°0 — 3%+ 32°0 + 62° — 320 — 3z + 12.

Written in terms of A”-modules (i.e. homogeneous factor of degree zero in K[6]), they
have the form

f=—0-4)+(0-3)z,
N e N’
=fo =f-1
g = =300 —-4)+30—2)x—(0—8)x*+ (0 —6)z>.
=4go =g-1 =g-—2 =g-3

According to Step 1, we would check the highest homogeneous summands of f and g
for (shifted) common factors. In fact, no shift is necessary since (# —4) is already a divisor
of both fy and go. This leads to our first assumption that m; = 0, and for this step that

0 —41by = by,
Now we check the lowest homogeneous summands f_; and g_3. We observe that
g_3 = 23(6 — 3). Therefore, our next assumption is that m; := my = —1, because there is

an x missing on the right in order to have f_; as a right divisor.
Thus our first idea of b is that it is given by

b= bo + bfll',
where by, b_1 € K[Q] and 0 — 4'fb07 0—3 'f b_1.

With this comes our first idea of a to have degree wise components between p; = 0
and pg = —3.
Let us write down af = gb in terms of homogeneous summands.
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Degree [ af [ gb ]
0 ao(—(0 — 1)) —3(0 — )b

-1 (a—1(—=(0 —=5)) +ao(6 — 3))x (B0 —2)bpo (0 —1)+ (—3(0 —4))b_1)x

-2 (a—2(—(0—6)) +a—1(0 —4)2z% | (—(0—8))boo (6 —2)+3(0 —2)b_10 (0 — 1))z
-3 (a—3(—(0—T7)) +a—2(0—5)23 | ((6—6)boo (6 —3)+ (—(0—8))b_10(0—2))a>
—4 a_3(0 —6)x?* (6 —6)b_1 0 (6 — 3)z*

We can use a trick here. Since our b just has two homogeneous summands, it is already
determined by the equations for degree 0 and the equations for degree —4. What we see
there — assuming we take the shifts of factors in f from ¢ —is that a_3 = b_; o (6 — 3) and
ag = 3bg. Since ag and a_3 are also indeterminates, we have a free choice for by and b_; at
this point.

From the equation for degree —1 we get

a_1(—(0—5)) +ao(6 —3) =3(6 — 2)bp 0 (6 — 1) + (—3(6 — 4))b_;
—  a_1(—(0—5))+3bo(6 —3) = 3(6 —2)bg o (0 — 1) + (—3(6 — 4))b

)
= a_1(—=(0—5)) =3(0—2)boo (6 —1) — 3by(6 — 3) + (—3(6 — 4))b

-1
-1

Therefore we must have
(0 —5)|3(0—2)bgo (6 —1) —3bo(0 —3) + (—3(0 —4))b_;.
From the equation for degree —3 we can conclude
a—3(—=(0—7)) +a—2(8—5) = (0 —6)bo o (6—3)+ (—(6 —8))b_10(6—2)
= b0 (0-3)(—(0-7))+a-20—-5) =(0—6)boo(0—3)+(—(0—8)b-10(0—-2)
< a2(0-5)=(0-6)bgo(0—3)+ (—(0—8)b-10(0—2)—b_10(0—3)(=(0-7)).

Thus our by and b_; also have to fulfill
(60 —=5)[(0=6)bgo(0—3)+ (=(0—8))bro(0 —2) =byo(f—3)(=(0—-7))
In the last equation, namely the one for degree —2, we encounter
a_o(—(0—6))+a_1(0—4)=(—(6—8))boo (6 —2)+3(0—2)b_10(0—1)
< ((0-6)boo (8 —3)+(—(0—8))b_10(0—2)—b_10(0—3)(=(0—7)))(~(6 —6))
—(3(6 — 2)bo 0 (6 — 1) — 3bo (6 — 3) + (—3(6 — 4))b_1)(6 — 4)
=(0—5)((—(0 —8))bo o (6 —2) +3(6 — 2)b_y1 0 (6 — 1)),

which is the last condition we have for by and b_,. Now one can solve for polynomial
solutions of those linear recurrency equations with variable coefficients by hand or ask a
computer algebra system that can solve recurrency equations. We find besides some other
possibilities the known factors

b=0—-1)+(0—4)
and the corresponding
a=30—-3+30-3)z+(0—5)2"+(0—T7)"
Those are known from another example as we might remember, when we dealt with the
different factorizations of the polynomial
(2% + 22* — 32%)0* — (42° — 4a* — 122% — 122)0 + 62" — 122° — 62° — 247 — 12.

Therefore, we are ready and we found the certified answer to the question whether

those two polynomials are similar. The answer is — as we already knew before — yes.
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1.4. Summarizing the Results for the Polynomial First Weyl Algebra. As |
called it before: what was happening in the last 20 and more pages was by the very pure
definition accounting. Yet it was necessary to gain some insights about the structure of
two similar polynomials in the polynomial first Weyl algebra. Let us reflect again what
our original motivation was.

We wanted to find out why we observe such a big difference between similar polynomials
considering the size of the coefficients in the underlying field K. Now we have an idea.
Throughout all cases that were discussed in this chapter by now, the existence of shifted
common factors in between the homogeneous summands of similar polynomials were either
a necessary condition (as for example in Theorem 1.4 and Corollary 1.15), or they were
indicators for a possible choice of the cofactors a and b (this subsection). They also
appeared on the path of finding an actual solution once one gained some information
about the degree range of the cofactors.

Therefore, this is an answer to our original question. The coefficient growth in K does
appear because we are dealing with shifts of certain homogeneous factors of degree zero,
and if there are even some powers of # among the factors of the homogeneous summands,
even little shifts can cause large coefficient growth.

A next question would be how we can use that knowledge to get a notion of a normal
form or a canonical form or a special normal form for polynomials in the first Weyl algebra
in terms of similarity. This normal form should be nice in terms of coefficients respectively
degrees, and — if possible — one should also be able to prove that no other polynomial
similar to that one can have a nicer shape. As the reader might recognize here, this is just
a personal wishlist. Christmas does unfortunately not lie in between my beginning and
my handing in of this master thesis. But let us put that question on the agenda for future
work.

2. Similarity in the Rational First Weyl Algebra et al.

“Did you ever hear of a kid playing accountant — even if they wanted to be
one?” — Jackie Mason

Do not worry, we will not do that whole case running as in the previous section again.
We just want to give a quick overview how we can treat other algebras with the knowledge
we gained by now.

For the polynomial first shift algebra for example, we can make use of the fact that
it is a subalgebra of the polynomial first Weyl algebra. This can easily be seen by the
commutation rules we have for 6 and 0 for example shown in the introduction. We have

90 = (0+1)0

and if we set S; := 0 and x := 0, we obtain the first shift algebra. Therefore the discussion
above applies if we restrict ourselves to polynomials in # and 0.

For the rational first Weyl algebra, we can first of all use the following trivial, yet
interesting fact.
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COROLLARY 2.1. Given f,g € Ay. If f and g are similar, then they are also similar
in the rational first Weyl algebra.

PROOF. Since f and g are similar in the polynomial first Weyl algebra, there exist a, b
such that af = gb and (a, g)a, = a,(b, f) = A1. As the coefficients ¢y, ¢z, ¢1, ¢ € A; such
that acy + gco = 1 = ¢1 f + ¢ob and of course a and b do also exist in the rational first Weyl
algebra, we have all the conditions we need for f and g being similar as elements in the
rational first Weyl algebra. (|

But we have more tuples of polynomials that are similar. Our condition that for
af = gb we must have r(f,b) = (a,g)r = R is a little bit weaker than in the polynomial
case. The gerds resp. the gelds do not have to be 1, but are allowed to be a polynomial
in . With this, we can again go through all cases in the previous chapter and weaken
our conditions. But we will recognize, that also here a lot of shifts are responsible for the
coefficient difference of similar polynomials.

Let us, just for the sake of interest, consider the similarity question between polynomials
f and g in the rational Weyl algebra again, that are given polynomial in both x and 0 and
that are — from the definition given for A; — homogeneous. For what follows, by deg we
mean the [-1,1]-degree in A;. We will always make sure that we will only give polynomial
elements to this degree function.

As x is a unit in the rational first Weyl algebra, we can in general assume that both f
and g are given fraction-free.

REMARK 2.2. The last sentence needs a little note here, as it is not that simple as it
seems. We need to fix from which side we multiply elements to f and g. From our previous
notions we usually chose the left hand side for f and the right hand side for g. Making f
fraction-free is easy, but for g the choice of the polynomial making it fraction-free is not
that canonical; one has to think more and it usually has a higher degree than the lem of
all denominators. Take as an example

1
= 0+ 1.
g z+1 +

If we multiply ¢ by =+ 1 (as one would expect it to be the appropriate element) from the
right, we obtain

Iz +1 1
x+1(x+)+x+

1
= I+ﬁ@+na+w+x+l

1
= 0+——+a+1
r+1
2% 4 22 + 2
= 0+ —
r+1
which is not fraction-free at all. The correct element in order to obtain a fraction free
element here would be (z + 1)%. In general, we can say that the least common multiple
of the denominators of the coefficients of an element g to the power of degy(g) + 1 would
be the element that we need to multiply ¢ from the right with to obtain a fraction-free

element (compare Example 3.7 from Chapter 1).
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Case 1 and Case 2 (i.e. f and g being homogeneous — from the definition for A; — of
the same degree) can be copied completely also for the rational first Weyl algebra.

In Case 3 (the case where we considered f and g having different degrees) the first
difference occurs, namely in Case 3.1. Therefore let us discuss this case here separately. As
it was done in the according chapter, without loss of generality we assume deg(f) > deg(g).

Case 3.1: deg(g) < 0,deg(f) > 0.

Recall that we concluded in the polynomial case that we have no chance for similarity
to occur. This is not true now, as we are allowed to have a gerd or a geld in . Thus we
can premultiply f with a power of x in order to obtain a degree less or equal to zero. The
multiplication of g by 0 is not allowed on the other hand.

After this premultiplication of f by a power of z we land on the ground of Case 3.2,
which can again be copied for the case of the rational first Weyl algebra.

Furthermore, as we can equalize the degree using powers of x, we can assume that Case
3 can be completely reduced to Case 2.

As a result, we see directly that more polynomials have a chance to be similar than
in the polynomial case. As mentioned before, we will not go through all the cases again.
But it might be an interesting task for the future, as we see that there is a wider range of
polynomials being similar to each other. Yet the connecting trajectory is still some shifts
of homogeneous polynomials of degree zero.



CHAPTER 3

Matrix Normal Forms

In this chapter, we are going to study an approach for calculating the so called Jacobson
normal form over Ore Domains. The techniques have been developed recently and were
presented at the conference “Symbolic Computation and its Applications” (SCA 2012)
and the conference “Computer Algebra in Scientific Computing” (CASC 2012). This was
a collaborative work with Prof. Mark Giesbrecht (University of Waterloo, ON, Canada).

Our first step will be to discuss some interesting normal forms over noncommutative
rings, and how we can generalize the well known normal forms and concepts from the
commutative to the noncommutative case. It turns out that the matrices will be a lot
more hard to handle than in the commutative case. We will start with matrices over the
rational first Weyl algebra and explain the main ideas using matrices having entries in this
algebra. Later, we are going to extend those ideas to other Ore domains and additionally
provide some structure properties that have been discovered while working in this field.

Of course, this chapter is not detached from the other chapters of this thesis. The
problem of similar polynomials will occur again, but we are going to look at it from another
point of view than we did in the chapter about the factorization. We will furthermore be
interested in how to manipulate elements to change the gerd or the geld, respectively.

There will also be a need for a little excursion to algebraic probability theory, since the
algorithm to be discussed is the so called Las Vegas type. We will define later what this
means.

1. Linear Algebra over Ore Domains

1.1. Basic Notions. Let R := K(z)[0; 0, ] be an Ore domain. We consider matrices
R™™ n,m € N. Recall that we assumed in general that we are only dealing with Ore
extensions, where ¢ is an automorphism. It is easy to verify by hand that therefore R is a
left and right euclidean domain if one chooses the euclidean function given by the degree
in 0.

In commutative algebra, there are several normal forms, e.g. the Smith normal form for
principal ideal domains. In order to make the steps reversible, the transformations are done
by so called unimodular matrices. They are defined in the same way for noncommutative
algebras.

DEFINITION 1.1. A matrix A € R™" is called unimodular, if there exists a matrix
B € R™™ with the property that AB = BA = I, where I denotes the identity matrix.

We will also use those matrices for transformation steps in order to obtain the presented
normal forms. But we are facing some problems in deciding whether a given matrix is
unimodular or not.

58
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EXAMPLE 1.2. In order to decide whether a matrix A over a commutative domain is
unimodular, we just had to compute its determinant. If it is a unit, then A is unimodular;
if it is not, the matrix A is not unimodular. In the noncommutative case the determinant

defined in the classical way

TES, i=1
does not have the nice properties we are using constantly in Linear Algebra. As an example
take the two matrices over the first Weyl algebra

A = diag(0,0), B := diag(x,x).

Then det(A) = 9% and det(B) = x2. Therefore det(A) - det(B) = 0%x? # 2%0? = det(B) -
det(A). Moreover, AB = diag(zd + 1,20 + 1) and

det(AB) = (20 + 1)? = 2°0% + 320 + 1 # 2°0* + 420 + 2 = det(A) - det(B).

REMARK 1.3. The determinant and its properties were useful tools for proving a large
number of theorems in Linear Algebra. Even though we cannot use it any more in the
noncommutative case as shown in the previous example, there are maps R™*"™ — R that
have some of the properties the classical determinant has though. The two most famous
ones are the quasideterminants developed by Gelfand and Retakh in [GR91] and the
Dieudonné determinants presented by Dieudonné in [Die43]. We will not go into details
how they are constructed, as it would take a whole section just to present them.

Despite those obstacles, we have mainly one type of transformation matrix that we
are interested in, where the unimodularity property is not trivially given. Namely the
transformation matrices A € R**? that transform a given vector [u,v]’ € R? in the way

that
A [15] _ [gcrd(()u,v)} .

This means, that the entries of A are given by

|1 G
=l )

where ¢, ¢ € R are the coefficients of the gerd computation of u and v (i.e. cyu+ cv =
gerd(u,v)) and [; and [y are the smallest elements in terms of degree in 0, such that
llu = lQU.

LEMMA 1.4. Let u,v € R, and

A= |G @ € R¥*?,
L =l

such that cyu + cov = gerd(u, v) and lyu = lyv = lelm(u,v). Then A is unimodular.

PrROOF. We can assume without loss of generality that the gerd of w and v is 1. This
is due to the fact that if u and v have a nontrivial gerd g, we can write u as @g, v as vg
for 4,9 € R and then 1@ + co0 = gerd(@, 0) = 1, l1a = ly0.

We are proving the statement by constructing an inverse B € R?*? of A. The first
column of B can be chosen as [u,v]”. For the second column we use the fact, that [; and
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ls have geld(ly,l) = 1 due to the minimality of the least common left multiple. Therefore
there are by, by € R, such that

l1by — by = 1.
Thus we have
A u bl . 1 Clb1+02b2
(% bg o 0 1 ’

and our final inverse B is now given by

B = u bl — U(Clbl + Cgbg)
Tl b2 — U(Clbl + Cgbg) ’

0J

REMARK 1.5. In the proof of the Lemma above also BA = I, does hold, which is in
general not true for noncommutative rings. That it is true here is due to the fact that R
is a Noetherian domain.

The next interesting thing will be the well known Subresultant theory from commuta-
tive Algebra generalized to Ore Polynomials.

1.2. Subresultant Theory for Ore Polynomials. Reminder: Given two polyno-
mials f =" fix',g=> 1" gz € K[z] \ {0}, i.e. the polynomial ring over a field with
one indeterminate. Then the Sylvester-Matrix of f and g is given by

[ fo for 0 fL fo ]
o for oo i So
50 fa far o B fo
fg - —
Im  Gm—1 [ 90
9m  Gm-1 " 5 Jo
L 9m Gm-1 - g1 Yo

The determinant of this matrix was called the resultant of f and ¢. If it is not equal
zero, then f and g are coprime. Otherwise one can calculate the gcd of f and g with the
help of the subresultants.

We are now going to deal with the generalization of this theory to Ore polynomials. We
need this for the later discussion whether two polynomials in R have a nontrivial common
right divisor. The Subresultant theory for Ore polynomials was studied by Z. Li in 1998
in the paper [Li98].

DEFINITION 1.6. Let M be ar x ¢,r < ¢ € N matrix over K[z] given by

mipy - Mip—1 Miy -0 Mic
moy -+ Mor—1 Mo -+ My

My - Myer—1 Mppr -0 My
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We define the determinant polynomial of M by
M| = det(M,)",
i=0

where M; is the r x r matrix with
o (M;)_j:=(M)_j for ker—1,1ie. the first r — 1 columns coincide with M.
b (Mi)—,r = (M)—,c—i-

Now let A : Ay, ..., A, be asequence of polynomials in R and let d := max{deg,(4;)|i €
r}. Then we define mat(A) € R™%! as the matrix, where mat(A);; is the coefficient of
017 in A;, 1 <i<nr1<j<d+1. Ifr <d+ 1, the determinant polynomial of A is
defined to be |mat(.A)|, which is further denoted by |Ay, ..., A,| or |A].

EXAMPLE 1.7. Take the two polynomials A; := 20 + 1 and Ay := 20 + 0 + x in the
first Weyl algebra and let A := Ay, Ay. Then

mat(A) = [O v 1}

z 1 =z

Imat(A)| = det <L(z ﬂ) + det <L(C) ﬂ) 0= —220— x.

With that we can finally give a notion of subresultants in R.

and

DEFINITION 1.8. Let p1,p2 € R with degy(p1) = m and degy(p2) = n, m > n. The
nth subresultant of p; and p, is ps. For j € {n—1,...,0}, the jth subresultant of p;
and po, sres;(p1, pa), is

|an—j—1p17 s 78p17p17 8m_j_1p27 s 7ap27p2|-

The sequence S(p1, ps) : p1, P2, Sres,_1(p1,p2), - - ., sreso(p1, pa2), is called the subresultant
sequence of p; and ps.

The next theorem shows how we can use subresultants to calculate and give statements
about the gerd of two polynomials pq, ps € R.

THEOREM 1.9. Let d be the degree in O of the gerd of p1,p2 € R. Then sres; is a gerd
of p1 and py. Furthermore we have

d=0 <= sresy(p1,p2) # 0.

We will leave the theorem without a proof, since it is not very interesting for our further
path. For detailed reading and further properties of the subresultant theory we recommend
[Li98] and [Cha91].

Now we are done with the basic preliminary work. Let us continue with two matrix
normal forms.
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1.3. The Hermite Normal Form. C. Hermite introduced this normal form in [Her08]
for matrices with entries in the integer ring. It can be seen as an analogue to the reduced
echelon form. The idea can be generalized to matrices over polynomial rings, and also to
matrices over Ore polynomials. We will skip the definition for the commutative rings here
and go directly to the definition for matrices over R. But before that, we need a notion
for the concept of a rank of a Matrix over R. We make use of the fact that our chosen ring
R = K(x)[0; 0, 0] possesses a quotient skew field.

DEFINITION 1.10. We define the row (column) rank of a matrix A € R™" as the row
(column) rank of the A in the quotient skew field of R.

For further readings on Linear Algebra over skew fields consider [Zer06].

DEFINITION 1.11. Let A € R™"™ be a matrix with full row rank. There exists a
unimodular matrix Q € R™*", such that H = QA is an upper triangular matrix with the
property that
e The diagonal entries H;; are monic;
e Each superdiagonal entry is of degree (in 9) lower than the diagonal element in
its column (i.e., degy Hj; < degy H;; for 1 < j <1 <mn)

The matrix H is called the Hermite normal form of A.

REMARK 1.12. The Hermite form (with monic diagonals) is unique in the commutative
case as well as for entries in the Ore domain R.

EXAMPLE 1.13 (compare [GK12]). Let A € R3*3 where R is the rational first Weyl
algebra, be given by
1+ (z+2)0 + 02 24 (22 +1)0 1+ (1+2x)0
A= 2z + 22) + x0 (2+2:L’+2;v2)+8 4z + x2 .
B4+z)+B+2)0+0% (8+4x)+ (5+32)0+ 0% (7+8z) + (2+4z)d

The Hermite normal form H of A is

24x)+0 1+2 _2+2$—;’2x2—%8
H= 0 2+z)+0 1+ 5+50 :
0 0 —2 4 et 4 52
and the unimodular transformation matrix @) is given by
-z 1, 1 1
Py 2rpd
Q= 2732 —3 2

Hij—i-(x—l)@ %—1—1;2"”3—5’2 —%—l—@

How can one compute the Hermite normal form? Well, the easiest yet not the most
efficient way is to eliminate step by step all entries down of the diagonal using matrices as
given in Lemma 1.4. In order to obtain the property that the upper diagonal entries have
smaller degree than the diagonal entries one simply performs a quotient and remainder
computation.

M. Giesbrecht and M.S. Kim presented a more efficient way of computing the Hermite
normal form in [GK12]. Describing their technique would be a very long excursion.
Therefore I just leave this reference here for the interested reader.



1. LINEAR ALGEBRA OVER ORE DOMAINS 63

1.4. The Jacobson Normal Form. The Jacobson normal form is a fundamental
invariant of matrices over a ring of Ore polynomials. Much like the Smith normal form
(see [Smi61] or any random lecture notes in Linear Algebra) over a commutative principal
ideal domain, it captures important information about the structure of the solution space
of a matrix over the ring, and many important properties of the corresponding system of
recurrence or differential equations.

DEFINITION 1.14 (Compare [Jac43|, Theorem 16). For every rectangular matrix A €
R™™ one can find unimodular matrices U € R™*",V € R™*™, such that UAV is associ-
ated to a matrix in diagonal form

diag(eq,...,es0,...,0).

Each element e; is a total divisor of e; if j > 4. This is called the Jacobson normal form
of A.

REMARK 1.15. Unlike the Hermite normal form, the diagonal entries in the Jacobson
normal form are unique up to the very weak notion of similarity introduced and discussed
in the previous chapter. Therefore one can obtain using different algorithms also different
results, which are similar, but they can look arbitrarily ugly.

From now on we set R to be the first rational Weyl algebra. We can state even stronger
structure properties to the Jacobson normal form (compare [Coh85]).

COROLLARY 1.16. For every rectangular matric A € R™™, where R is the rational
first Weyl Algebra, one can find unimodular matrices U € R"™ "™,V &€ R™ ™ such that
UAV s associated to a matriz in diagonal form diag(1,...,1, f,0,...,0), where f € R.

PRroor. This follows from the fact that R is a simple domain. A proof of that can

e.g. be found in [Zer06], Theorem 4.1. Therefore the generator of any non-zero two-sided
ideal is 1. OJ

REMARK 1.17. Recall that we consider throughout the whole thesis that the rational
Weyl algebra has a field of characteristic zero as basefield. The corollary above is not true
in general if the characteristic would not be zero.

ExaMPLE 1.18. Take again A from example 1.13. Then its nontrivial entry of the

Jacobson normal form is (up to similarity) given by
67221202 4 67221203 + 1568x130 + 296821262 + 562119 + 4648:120
—10402'18? — 120821°9% + 1122°9* + 15682'2 — 4004119
—10988x1°9% — 37002°93 — 28289 — 262322108 — 316242°92
—9952280° — 248270 — 4984210 — 693242°0 — 611122852
—1056427 9% — 632¢50* — 141082° — 1194762°8 — 631242792
—9508259° — 1128¢°9* — 281642 — 118614279 — 49298x°92
—68022°9° — 858z19* — 2757227 — 80524258 — 20604x°9% — 8524453
—392239* — 1403625 — 196242°8 + 3692202 + 8422393 — 78225*
+72582° + 8270240 + 2196238% + 702220° — 226* + 7630z
+1018230 4 5642202 + 1442:0° + 388> — 508228 — 13620 + 20°
—248x2 — 42420 — 20° — 142z — 60 — 2.

With this example, one can see how ugly our entries can be compared to the Hermite
normal form. For calculating this result, we made use of the computer algebra system
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SINGULAR (|[GLMS10]) and its library jacobson.lib developed by K. Schindelar and
V.Levandovskyy ([LS11]).

As mentioned before, the output is just unique up to the weak notion of similarity.
That means that there might be a more appealing Jacobson normal form of A, but there
is definitely a more ugly one: Using the canonical approach of calculating a lot of gerds
and gclds to eliminate rows and columns lead to a nontrivial entry, that can fit in 15 pages
of this thesis.

Over the past few years, a number of algorithms and implementations have been devel-
oped for computing the Jacobson normal form. The initial definition of the Jacobson form
[Jac43| was essentially algorithmic, reducing the problem to computing diagonalizations
of 2 x 2 matrices, which can be done directly using gerds and lelms. Unfortunately, this
approach lacks not only efficiency in terms of ring operations, but also results in extreme
coefficient growth.

Recent methods of [LS11] and [LS12] have developed an algorithm based on Grobner
basis theory. An implementation of it is available in the computer algebra system SINGU-
LAR, which we used in the example above. A second approach by Robertz et al. imple-
menting the algorithm described in [Coh85] can be found in the Janet library for MAPLE.
Another approach is proposed by [Mid08] for differential polynomials, making use of a
cyclic vector computation (for cyclic vectors, see [CK02]). This algorithm requires time
polynomial in the system dimension and order, but coefficient growth is not accounted
for. Finally, the dissertation of [Mid11] considers an FGLM-like (for details on FGLM see
[FGLM93]) approach to converting a matrix of differential polynomials from the Popov
to Jacobson form.

The problem with those approaches is that one cannot establish rigorous polynomial-
time bounds on the cost of computing the Jacobson form in terms of the dimension,
degree and coefficient bound on the input. We are therefore going to avoid Grobner bases
and cyclic vectors, because we do not have sufficiently strong statements about their size
or complexity. Grobner basis calculations were even proven to have double exponential
complexity by Mayr and Meyer in 1982 ([MMB82]). Nevertheless, the implementation in
SINGULAR appeared to be very fast in the practical use. Furthermore, as we will see later,
its output is nice in terms of the size of the nontrivial entry in the resulting Jacobson form.
The approach discussed here does not outperform their approach in practice, yet we will
obtain some complexity bounds.

Our approach will be an algorithm of Las Vegas type. We are going to define this
term in the next chapter with some additional preliminary work. The main idea will be a
random preconditioning of the given matrix by a unimodular matrix from the right, such
that we can obtain the Jacobson normal form directly from the Hermite normal form.
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2. Excursion to Vegas

“Las Vegas algorithms are not very well implemented in the system of poli-
tics. It produces failures, does not give a notice of it and certain parts never
seem to terminate.”

For a short glance, let us go back to some old friends: Multivariate polynomials in
K[zy,...,2,], n € N. We are interested in the probability that for a given polynomial
p € K[xy,...,z,] arandomly chosen point [7“1 . rn] € K" is a zero of that polynomial.
This was studied in the 80s by J.T. Schwarz and R. Zippel. They are the name givers of
the famous Schwartz-Zippel-Lemma, which is given as follows (compare [Sch80]).

LEMMA 2.1 (Schwartz-Zippel). Let 0 # p € K[zy,...,x,] of total degree d € N, where
K is a field. Let S be a finite subset of K and let ry,...,r, be randomly selected from S.
Then the probability of

p(r1,...,m) =0

1s less or equal than %.

This lemma has a lot of applications. Some of them are:

i) Comparison of two polynomials
ii) Primality testing
iii) Calculating the Smith normal form of matrices over the polynomial ring K|z].
Ad i): For testing if two given polynomials py,pe € K[z1, ..., z,] are equal, one can just
evaluate both in points chosen randomly. If the evaluation is equal for a certain amount
of these points, one can say, that p; and ps are equal with high probability.
Adii): M. Agrawal and S. Biswas presented a technique in [AB99] for primality testing
using the Schwartz-Zippel Lemma. It makes use of the fact that due to the Frobenius
automorphism we have for all prime numbers n the following polynomial identity in F,[x]:

(I+2)"=1+2"

Therefore we use the Schwartz-Zippel Lemma for determining whether the polynomials
(1+2)" and 1+ 2™ are equal in F,[x] and get a result, that is valid with high probability.
Ad iii): A. Storjohann and G. Labahn developed in the paper [SL97] of 1997 an
algorithm to compute the Smith normal form of a matrix over the polynomial ring K|x].
In order to reduce the amount of expensive gcd computations, they utilized the following
fact, that was first stated by Kaltofen, Krishnamoorthy and Saunders in [KKS87]: Given
polynomials fi, ... f, € K[z] and random elements ks, ..., k, € K. Then we have

ng(fla s 7fn) = ng(f17 Z klfl)
i=2
with high probability.
This fact is used for the computation of the Smith normal form of a matrix A € K[z]"*".
One takes two invertible matrices U,V € K™*" whose entries are randomly chosen, and
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computes the Smith normal form of UAV. The Smith normal form is invariant under this
transformation. Thus the output will be the same. But, if we want to eliminate the first
row and the first column, we have to calculate just one ged with high probability. Then
we proceed with the remaining rows and columns. With intelligent preconditioning we
just have to compute n geds at most (compared to n? ged computations in the worst case
for the naive approach). Of course, the techniques presented in the paper are a lot more
sophisticated and they are fixing a certain way of preconditioning, but this is the basic idea.

The application iii) leads to a certain type of algorithms, namely the algorithms of Las
Vegas type.

DEFINITION 2.2 (compare [MR10]). An algorithm of Las Vegas type is a randomized
algorithm — i.e. it employs a degree of randomness as part of its logic — that has a chance
of failing to produce a result. It either signals its failure or fails to terminate. But if an
output is given, then it will be a correct result.

REMARK 2.3. Informally speaking, Las Vegas type algorithms are gambling with the
input the user is providing, but not with the result. Self-explanatory, those algorithms
are usually designed such that the failure occurs with very low probability and the non
termination is avoided.

REMARK 2.4. The opposite class of Las Vegas type algorithms from the area of ran-
domized algorithms are the so called Monte-Carlo algorithms. In contrast to Las Vegas
type algorithms, Monte-Carlo algorithms have a chance of producing an incorrect result.
Designers of those algorithms are usually trying to bound the error of the output, such
that the results can be used in practice. Here, we are close to the point of entering the
field of numerics.

3. On Divisibility

“Nothing is wrreplaceable, a habit is not a need.” — Paulo Coelho

Now we come to the main idea behind our approach. Let us describe it with the
following observation.

OBSERVATION 3.1. Take the element 9 € R. Then clearly
gerd(0,0) = 0.
But if we multiply x to 0 from the right, we obtain
gerd(0, 0x) = gerd(0, 20+ 1) = 1.
One can see this directly because —z -0+ 1-(z0+1) = 1.

This is pretty wild since z is a unit in R and we are used to the accustomed case (in
commutative algebra) where a multiplication by a unit does not have any effect at all.
This leads to the following lemma.
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LEMMA 3.2. Given h € R, nontrivial in 0, there exists a w € Klx] with deg,(w) <
dega(h), such that
gerd(h, hw) = 1.

PrOOF. Without loss of generality assume % is normalized to be monic and has the
form 0" + h,_10" ' + ...+ hi0 + ho.
Case 1: h is irreducible.

The only monic right divisor of A of positive degree is h itself. Thus, brought into
normal form (i.e., with leading coefficient one), A and hw should be the same polynomial
in order to obtain gerd(h, hw) # 1. We have

le(h) = 1,1c(hw) = w, te(h) = he,

and . . 3

tc(hw) = how + hid(w) + ... + h,0" (w),
where ¢ is the identity-derivation taken from the definition of the Weyl algebra and lc :
R — K(z) and tc : R — K(x) extract the leading and tailing coefficients respectively. The
choice of w, such that the tail coefficients are different, is always possible. If one normalizes
both polynomials from the left and subtract them, then the result is a polynomial of strict
lower degree in 0 and not equal 0. This is due to the fact that the tail coefficient of hw
after normalizing has the form
(3.1) o 4+ Mol T - T md"(w)
and you can choose w such that the fraction above does not equal 0. Since h was assumed
to be irreducible, we can reduce these polynomials further to 1 with a linear combination
of h and hw (otherwise we would get a nontrivial gerd of two irreducible polynomials).

Case 2: h = hy--- h,,, with h; irreducible for 1 <i < m.

In this case the proof is complicated by non-commutativity. Multiplication with w will
affect the rightmost factor. If there is just one possibility to factorize h we can again use
the argument from case 1, and we are done.

If we have more than one possible factorization, things become interesting. We show
that there are just finitely many monic w, such that gerd(h, hw) # 1. We will do this
using an constructional argument of those elements.

Let wy € K[z] be of degree at most degy(h), such that

gerd (A, hypwo) = 1.

This choice is possible due to Case 1. If we already have gerd(h, hwy) = 1, then we are
ready. Otherwise we know that h has another factorization of the form hy -+ By 1 hamwo.
As by assumption gerd(hy,, hpnwe) = 1, we have lelm(h,,, hynwo) |- b and lelm(hy,, hywo)
has a degree in 0 greater than h,, and of course therefore greater than h,,wy.
Thus we choose another wy € Klz] that fulfills gerd(h,,, hpwi) = 1 and gerd(hp,wo, hynwow,) =
1. If we have again that gcrd(h, hw) # 1, then there is again a factorization of h that has
hmwi and h,wow; as right factor. We again conclude that lelm(hy,, hywo, Aywowy) |, h,
and it has again a degree bigger than lclm(h,,, hywp).
Proceeding like that, as the lclm is growing degree-wise and is a right divisor of h, after
at most degy(h) steps we have found the only possible set of w;, such that gerd(h, hw;) # 1.
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As we can choose w from an infinite set, one can always choose w having the nice property

of h not having a nontrivial right divisor with hw. This completes the proof.
0

In the second case of the proof above it was not necessary that we were just looking at
h, because we can consider any left multiple of h and get the same result.

COROLLARY 3.3. For any f,g € R, there exists a w € K[z] with

deg,(w) < max{deg,(f), degy(g)}
such that
gerd(fw, g) = 1.

PROPOSITION 3.4. A randomly chosen w € K[z| of suitable degree fulfills the property
in Lemma 3.2 with high probability.

ProOF. We use the notions of the proof of Lemma 3.2 and assume without loss of
generality that h is irreducible, since otherwise we would just look at the rightmost factors
as above.

A sufficient condition which has to hold for h and hw being the same polynomial after
normalization, is that

o+ 10(w) + ...+ h0™(w) .

which means
(3.2) hd(w) + ...+ hpd™(w) = 0.

We can write w in the form
d
w = E w;x’
i=0

with d > n and w; € K. Thus our polynomial on the left hand side of (3.2) is nothing else

but
~ d—1 . ~ d—n n '
h Y i+ Dwima’ + .+ by Y <H(z +j)> Wign .
i=0 i=0 \j=1
If we regard this as a polynomial in the ring K(z)[wy, ..., wy], we can use the Schwartz-

Zippel lemma and see, that for randomly chosen w; € S, where S is an adequately large
enough subset of K, the probability that the evaluation of the polynomial in the w; equals
zero is very small. [

The proposition above and its proof might be easy to understand, but it lacks a concrete
probability bound, that is needed in order to use it wisely. But using the generalized
subresultants as presented in the section 1.2, we are able to provide a complexity bound.

LEMMA 3.5. Let f,g € R have degy(f) = n and degy(g) = m, without loss of generality
n >m. Letw € K[z]| be chosen randomly of degree n, with coefficients chosen from a subset
of K of size at least nm. Then

1
Prob {gerd(fw,g) =1} > 1 — e
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PROOF. Assume the coefficients of w = wy + wyz + ... + w,z" are independent in-
determinates commuting with 0. Consider the condition that gerd(fw,g) = 1. We can
construct the subresultants sresy(fw, g),...,sres,(fw,g) as stated in section 1.2, where
determinants are calculated in the coefficients of fw and g over K(z)[wy, ..., w,]. Then
D := sresy(fw, g) is nonzero if and only if gerd(fw, g) = 1. By Corollary 3.3 we know D
is not identically zero for at least one w. Let us have a closer look at sresy(fw,g) :

sresy(fw, g) = lam_lfw, L 0fw, fw, 0" g, ..., 0g, gl

It is easily derived from the Leibniz formula for the determinant that the total degree
of D in the coefficients of w is less or equal to m. The probability stated then follows
immediately from the Schwarz-Zippel lemma (Lemma 2.1). OJ

As mentioned before, we want to use random preconditioning of a given matrix in order
to obtain the Jacobson form directly from the Hermite form.

We now use our results to construct a generic preconditioning matrix Q € R**? for a
matrix A € R™ ™. First consider the case of a 2 x 2 matrix A € R>*? — we will expand to
the n X n case later —, with Hermite form

_(f _
H:— (0 i>_UA

for some unimodular U € R**2. We then precondition A by multiplying it with

o-(1 )

from the right, where w € K[z] is chosen randomly of degree
max{deg,(f), degy(g), deg,(h)}

aa- (T4 1)

Our goal is to have the Hermite form of AQ have a 1 in the (1, 1) position. This is achieved
exactly when gerd(f + gw, hw) = 1. The following lemma will thus be useful.

and we obtain

LEMMA 3.6. Given f,g,h € R. Then there exists a w € K[z] with

deg(w) < max {degy(f),degy(g),degy(h)}

such that
gerd(f 4+ gw, hw) = 1.

Proor. We consider two different cases.
Case 1: gerd(g, h) = 1. This implies gerd(gw, hw) = 1 for all possible w. Then there exist
e,l € R such that eqw 4 [hw = 1. Therefore — because we are aiming to obtain 1 as the
gerd — we would proceed by computing the gerd of ef + 1 and hw. Lemma 3.2 shows the
existence of appropriate w, such that gerd(ef + 1, hw) = 1.

Case 2: gerd(g,h) # 1. Without loss of generality, let g be the gerd of h and ¢ (using
the euclidean algorithm we can transform gerd(f 4 gw, hw) into such a system, and f will
just get an additional left factor). Since we can choose w, such that gerd(f, hw) = 1, we
have e,l € R, such that ef + [hw = 1. This means that we just have to compute the gerd
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of hw and 1 + egw. Let h be such that izg = h. If we choose the left factors es, [y, such
that esegw + lahgw = gw, we know that h and e; have no common right divisor. Our
gerd problem is equivalent to gerd(es + gw, hgw), which can be further transformed to
gerd(hey, hgw) (since we have h(ey 4+ gw) — hgw = hey). As we can choose w from a large
set of polynomials, we can adjust our choice of w to fulfill the conditions gerd(f, hw) = 1
and gerd(hey, hgw) = 1. This completes the proof. O

A similar subresultant argument to Lemma 3.5 now demonstrates that for a random
choice of w we obtain our co-primality condition. As the proof is very similar to that of
3.5, we leave it.

LEMMA 3.7. Given f,g,h € R, with
d := max{deg,(f), deg,(g), degs(h)}.

Let w € R have degree d, and suppose its coefficients are chosen from a subset of K of size

at least d*. Then

1
Prob {gerd(f + gw, hw) =1} > 1 — 7

4. From Hermite to Jacobson

“Therefore by their fruits you shall know them.” — Jesus in Matthew 7:20,
Bible

Our final results in the previous chapter imply that for any matrix A € R?**? and a
randomly selected w € K[z] of appropriate degree we obtain with high probability

1 0 1|1 % .41 0
Al =l -l Al
where h € R and U,V € R**? are unimodular matrices. Hence A has as Jacobson normal

form diag(1, h). This is accomplished with one Hermite form computation on a matrix of
the same degree in 0, and not too much higher degree in x than that of A.

REMARK 4.1. Here is an interesting extra result that we obtain for our resulting Her-
mite form: Since we can find a w € K[z]\ {0}, such that gerd(f + gw, hw) = 1, there exist
e,l, k,m, such that

(4.1) {Z l}[f—kgw g]:[l eg—l—lh].
m hw  h 0 kg+mh
Now, we know, that the following equalities do hold:
ef +egw + lhw =1
— egquw+lhw=1—ef

— eg+lh=w" !

_efw77
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and similarly we get
kf + kgw 4+ mhw = 0
— kgw+mhw = —kf
— kg+mh=—kfw .
This means that on the right hand side of our equation (4.1) we have
[1 wt — efwl}
0 —kfwt |-

Therefore, for our next computation (i.e., if we just considered the 2 x 2 submatrix with
this and computed the new Hermite form), we would deal with that same f as right factor
multiplied by a unit from the right in the upper left corner of the next 2 x 2 submatrix
and will perform our computations there.

We now generalize this technique to n X n matrices over R.

THEOREM 4.2. Let A € R"™"™ have full row rank. Let () be a lower triangular, banded,
unimodular matrix of the form

1 0 O 0
w1 1 0 0
0 ERan’
ST
0 ... 0 we 1]
where w; € Klz] fori e {1,...,n— 1}, deg(w;) = i-n-d and d is the mazimum degree

in O of the entries in A. Then with high probability the diagonal of the Hermite form of
B = AQ is diag(1,1,...,1,m), where m € R.

PRrRoOOF. Let H be the Hermite form of A and have the form

_fl hl * *
0 fQ h2 *
Do hly
0 ... 0 0 f|

By [GK12|, Theorem 3.6, we know that the sum of the degrees of the diagonal entries of
the Hermite form of A equals n - d. Thus we can regard nd as an upper bound for the
degrees of the f;. If we now multiply the matrix

1 0 0 ... 0
wq 1 0O ... 0
On—2><1 07’L—2><1 ]n—Q

from the right, we obtain the following in the upper left 2 x 2 submatrix:

{f1+h1w1 h1]
Jowy fa|”
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As we have seen in the remark above, after calculation of the Hermite form of this resulting
matrix, we get with high probability

1 * *

0 k:flwl_l *

0 . )

: .. . Pyt
10 . 0O O fn |

The entry kfiw; " has degree at most 2-n-d, where we see, why we have chosen the degree
2 -n -d for wy. After n — 1 such steps we obtain a Hermite form with 1s on the diagonal,
and an entry in R. O

This leads us to the following simple algorithm to compute the Jacobson form by just
calculating the Hermite normal form after preconditioning.

Algorithm 4 JacobsonViaHermite: Compute the Jacobson normal form of a matrix over
the differential polynomials

Input: A€ R™™ neN.
Output: The Jacobson normal form of A.

Preconditions:

e Existence of an algorithm HERMITE to calculate the Hermite normal form of a
given matrix over R.

e Existence of an algorithm RANDPOLY which computes a random polynomial of
specified degree with coefficients chosen from a specified set.

1. d < max{deg(4,;) | i,7 € {1,...,n}}
2: for ¢ from 1 ton — 1 do
3:  w; < RANDPOLY (degree =i -n - d)
4: end for
5: Construct the matrix W, such that

1 ifi=j

Wiy Qw; ifi=j+1

0  otherwise
6: result «— HERMITE(A - W)
7: if result; # 1 for any ¢ € n — 1 then
8:  FAIL {With low probability this happens}
9: end if

10: Eliminate the off diagonal entries in result by simple column operations
11: return result

4.1. Experimental Implementation and Results. We have written an experimen-
tal implementation in MAPLE as a proof of concept of our algorithm.

Since there are no other implementations of the calculation of the Hermite form avail-
able for Ore rings, we used the standard way of calculating the Hermite form, i.e. by
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repeated gerd computations. Since the Hermite form of a matrix is unique, the choice of
algorithm is just a matter of calculation speed.

One problem with the preconditioning approach is that the diagonal entries become
“ugly” (recall that they are only unique up a the weak notion of similarity). We illustrate
this with an example as follows.

ExAMPLE 4.3. Consider the matrix
1+ x0 % + 20
x4+ (zx+1)0 5+100|"
Its Jacobson form, calculated by SINGULAR, has as its nontrivial entry:
(452 — 10 — 1122 — 2 + 225) + (22° 4 32" — 1223 + 10z 4 22%)0 + (22" — 1923 + 922)9°.

Calculating the Jacobson form with the approach of calculating a lot of gerds or gelds
respectively results in the polynomial:

A=

(=322 + 25 — 422 4 32 + 10) + (=823 + 22 4+ 2° + 2* + 132 4+ 19)0 + (=103 + 822 + 2t + 92)52.

If we precondition the matrix in the described way, the output of SINGULAR stays the
same, but the output of the straightforward approach is the polynomial:

8836027 — 3845542 4 24328527 + 110403625 — 442835625 + 2474570 + 353353723
— 391503922 + 1431017z — 150930

+ (883602° — 3111428 — 94807127 + 50932472 — 75384582 + 57400772 — 19351902>
— 2035322 + 1547972 + 10621)d

+ (—739659x2 4 13724922 + 5031z + 1769774x* — 2553232 + ° + 21333432°
— 1003074z" + 88360z%)H2.

The calculation time was as expected similar to just calculating a Hermite form. Both
answers are “correct”, but the Grobner-based approach has the effect of reducing coefficient
size and degree. An important future task could be to find a normal form for a polynomial
in this notion of similarity. This normal form should have as simple coefficients as possible.

The demonstration here is simply that the algorithm works, not that we would beat
previous heuristic algorithms in practice. The primary goal of this work is to demonstrate
a polynomial-time algorithm, which we hope will ultimately lead to faster methods for
computing and a better understanding of the Jacobson form.

4.2. Degree Bounds and Complexity. There are no clear bounds on complexity
given in nowadays algorithms for computing the Jacobson normal form.

Viktor Levandovskyy’s and Kristina Schindelar’s algorithm does use Grobner Bases,
and one knows that in the worst case those algorithms have double exponential complexity.

Our approach is of Las Vegas Type and its complexity just relies on the complexity
given by the algorithm used for calculating the Hermite form. M. Giesbrecht and M.S.
Kim developed an algorithm for computing the Hermite form and in [GK09]. There was
also a complexity theorem given.

THEOREM 4.4 (M. Giesbrecht, M.S. Kim, Theorem. 5.3). Let A € R™"™ with
degy(Aij) < d and deg,(A;;) < e for 1 < i,57 < n. Then we can compute the Hermite
normal form H € R™" of A, and a unimodular U € R"™" such that UA = H, with
O((n'°d® + n"d?*e) log(nd)) operations in K.
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The cost of the algorithm described for the Jacobson normal form is just the cost of a
single preconditioning step (a matrix multiplication), plus the cost of computing a Hermite
form (for which we use the algorithm of [GKO09]). The growth in the degree of the input
matrix after the precondition is an additive factor of O(n?d), which is largely dominated
by the cost of computing the Hermite form. We thus obtain the following theorem.

THEOREM 4.5. Let A € R™" have full row rank, with degy(A;;) < d for1 <1i,5 <n,
and deg,(A;;) <e.

(a) We can compute the Jacobson form J of A, and unimodular matrices U,V such
that J = UAV, with an expected number of O(nde) operations in K. The
algorithm is probabilistic of the Las Vegas type, and always returns the correct

solution.
(b) If J = diag(1,...,1,s,), then

degy(sn) < nd, and degy(U;;),degy (Vi) < nd.
(¢) deg.H;; € O(n*de) and deg,(Us;) € O(n*de) for 1 <i,j <n.

PRrOOF. Part (a) follows directly from the algorithm and the preceding analysis. Part
(b) and (c) follow from the degree bounds over on the Hermite form over Ore polynomial
rings in [GK09, GK12]. O

Of course a faster algorithm for computing the Hermite form would directly yield a
faster algorithm for computing the Jacobson form of an input matrix.

Given the complexity measure of the calculation steps for computing the Hermite form
in Theorem 4.4, we see that in this case we can discard the last n?, and the complexity to
compute a random polynomial of degree n?d is also possible in O(n?d). Therefore, using
this specific algorithm for computing the Hermite normal form, our algorithm has the same
complexity as the calculation of the Hermite form.

5. Application to other Ore Domains

“Not the mama!” — Baby Sinclair, from the 80s TV-show “The Dinosaurs”.

For the last couple of sections, we assumed R to be the rational first Weyl algebra. It
made some discussions easier, since it is a simple domain and the Jacobson form can be
associated with the one nontrivial entry (as seen in Corollary 1.16).

But is it possible to state also some structure properties of a Jacobson form over other
Ore domains? Fortunately, we can answer this question with yes. Let us start with the
rational shift algebra, where we made our first observations.

5.1. Jacobson Normal Forms over the Rational Shift Algebra. For this sub-
section we denote by R the first rational shift algebra.
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OBSERVATION 5.1. Let p be a polynomial in the rational first shift algebra. It has the
form

D= ZPiSi, pi € K(z).
i=0

Then, by two sided linear combinations with coefficients in K(z), we can transform p
to the polynomial S*, where k := min{i = 0,...,n|p; # 0}.
The transformation steps are very simple. Take the element x € R. Then apply the
following linear combination to p:
p:=(x+n)p—px.

This transformation step is chosen in the way that p has a strictly lower degree in S than
p. The terms of lower degree do not vanish after the application of this step, since we will
have as coefficient of S* for k € {0,...,n — 1}

(z +n)ppS* — (z + k)ppS*
= (x+n—z—k)pS*
= (n—k)pS* #0.
Thus we obtain the desired form after a finite amount of steps.
EXAMPLE 5.2. Take the polynomial
p=5S*+271S+1.

Then
(x 4+ 2)p — px
2 1
= (:[:+2)S2+%S+(az+2)—(az+2)52—I;r S—x
2—x—1
- rhemro ] xl’ S+ (z+2—2)
1
= -S+2,
xr

and the second transformation step results in

(x + 1);54— 2(x +1) — éSw — 2z
= 20+2-—-2zx
= 2.
Therefore the two-sided ideal generated by p is actually R itself.

COROLLARY 5.3. All nontrivial two sided ideals in the rational first shift algebra are
generated by a positive power of S.

PROOF. The rational first shift algebra is a left principal ideal domain. Therefore we
can transform every ideal at first in the form where we just have one generator. After that
we apply the transformation steps as described in the observation above and obtain the
desired result. O
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COROLLARY 5.4. Let a,b € R, and b be given by b:= " b;S",b; € K(z). Thena is a
total divisor of b if and only if a = aS*, where a € K(x) and k < min{i =0, ..., n|b; # 0}.

PROOF. Let us recall the definition of total divisibility. It means, that there exists a
two-sided ideal I, such that bR C I C aR. That a is a total divisor of b if it has the form
as given in the statement is trivial. The more interesting part is the other direction. As
we know from Corollary 5.3 we have I = (S*) and k < min{i = 0,...,n|b; # 0} in order
to obtain bR C I. Since we need I C aR, we see that Sk € aR. There is a grading on R
defined by the weights 0 for z and 1 for S and we see now that a has to be homogenous
in order to generate S*. Thus it has the desired form. [

Now, as a byproduct of the results above, we obtain the strong Jacobson form for
matrices over the rational shift algebra.

THEOREM 5.5. Let A € R™™. Then there exist unimodular matrices U,V € R™"
such that

J=UAV = diag(1,...,1,S,...,5,...,8% ..., 8% £S',0,...,0),
where f € R and | > k € Ny.

PROOF. As the diagonal entries of the Jacobson normal form (we assume the diagonal
entries to be normalized) are total divisors in an ascending order, all entries have to be
a power of S according to Corollary 5.4, except for the last entry before the 0-sequence
starts. The ascending degree of S on the diagonal results also from the total divisibility
criterion. 0J

The question that is now arising: Can we use the same techniques to calculate the
Jacobson form that we used for the rational first Weyl algebra also for the rational first
shift algebra? If we go back, our whole discussion based essentially on Lemma 3.2 and on
the fact, that we basically always wanted to achieve the gerd to be 1.

Therefore, let us state Lemma 3.2 for the shift case.

LEMMA 5.6. Given h:= Y"1  h;S" € R, nontrivial in S. Then there exists a w € K[z]
with deg,(w) < degs(h) such that

gerd(h, hw) = S*,
where k :=min{i = 0,...,n|h; # 0}.

Proor. Without loss of generality, we assume hy # 0, since we can always extract S
and swap it bijectively with an element in K(z). Therefore, our goal will be the gerd 1.
Case 1: h is irreducible. Then we get from the reduction step

(x+n)-h—hx

an element of strictly smaller degree, that is not equal to zero. Due to the irreducibility
of h, further reduction steps will result in 1. So therefore just put w = x in this case.

Case 2: h is reducible. Then h can be written as Ay - - - h,. With analogue arguments as
in Lemma 3.2, there are just finitely many monic w such that right multiplication with a
unit results in another right factor. Therefore we have a lot possibilities for w such that
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any rightmost factor is not a rightmost factor any more after the multiplication by w from
the right. 0

REMARK 5.7. The main difference between the shift case and the Weyl case lies in
the choice of the preconditioning element for the irreducible case. While the element had
to suffice a certain degree in the Weyl algebra, in the shift case the element x is already
suitable.

We could start over again here and build up the argumentation to get an analogous
algorithm for matrices over the shift algebra as we already have for the Weyl algebra. The
only interesting part will be that the choice of the precondition matrix might be more easy,
because we do not have to choose our preconditioning elements to be of such a high degree.
But we will dismiss this part here and leave it as practical exercise for the implementation
to come.

In our experimental implementation mentioned before the algebra was also part of the
input. Therefore we could also try the concept on matrices over the shift algebra, although
the precondition matrix might be too big degree-wise for the shift case. Some empirical
attempts were giving us the expected results. We put the output of the algorithm for one
of them into the appendix.

What we want to deal with now is for which algebras we can use similar arguments as
in the shift case to get similar structure properties for the Jacobson normal form.

5.2. What the Shift Case Has Shown Us. Let us go back to Observation 5.1 and
look at it from a more general point of view. For this subsection, R := K(x)[0; o], where
o is an automorphism on K(z). What was needed, such that the reduction steps did work
as they did?

One of the things having a chance to fail is that after a reduction also lower order terms
do vanish. Therefore we depend on the existence of an element w € K(z), such that for
all 72 < k < n the condition

o*(w) — o'(w) # 0
does hold. In order to have more freedom for the choice of this element w, we are choosing
it dependent on the degree of the polynomial p.

THEOREM 5.8. Let o be an automorphism, such that for alln € N and all v < k < n
there exists an element w € R, such that

of(w) — o' (w) # 0.

Then the two sided ideals of R are either generated by a positive power of O or they are
trivial.

Proor. Following [BGTVO03|, Proposition 4.13, we know that R is a left principal
ideal domain. Therefore we can assume that our two-sided ideal can be generated by one
element after some left sided reduction. Let this element be denoted by p := Y7 p;0", p; €
K(z). Let further k := min{i = 1,...,n|p; # 0}. Now we start the two sided reduction
steps. Take the element w, which exists and fulfills the properties for n stated in the
theorem. Then

o"(w)p — pw
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is constructed in the way, that it has a strictly lower degree in 0 than the original element.
The coefficients of the terms with lower degree ¢ < n now have the form

(o) = o)) pidF 0.

£0

After at most n—k more steps we reach the last element 9%, which proves the statement. [

COROLLARY 5.9. Let the same assumptions on o be true here as in Theorem 5.8. Let
a,b € R, and b be given by b:= Y 7 b0, b; € K(z). Then a is a total divisor of b if and
only if a = ad*, where a € K(z) and k < min{i =0,...,n|b; # 0}.

PRrROOF. The proof of this statement is analogue to the proof of the equivalent in the
special case of the shift algebra (Corollary 5.4). An algebra like that of course also possesses
a grading using the [0, 1] weight vector. O

Thus, if ¢ has the property as stated above, we also have the strong Jacobson normal
form for that kind of algebra as we had it for the shift algebra.

THEOREM 5.10. Let A € R™™™, and o has the properties as stated in Theorem 5.8.
Then there exist unimodular matrices U,V € R"™™ such that

J =UAV = diag(1,...,1,0,...,0,...,0% ...,0% f0',0,...,0),
where f € R and | > k € Ny.

Of course, there are various algebras with that property. One famous example — besides
the shift algebra of course — is the ring of quantum polynomials, where the parameter g
is either an element transcendent over K, or one uses an element ¢ € K that has infinite
order in the multiplicative group of K.

Let us state a counterexample for an algebra, where o does not have the useful property.

EXAMPLE 5.11. Let R := K(x)[0; 0], where

U(Z a;x') = Z a;(—r)", a; € K.
i=0 i=0
Then o is clearly an automorphism as an affine transformation of x.
Let p be given by
p:=0*+0+1.
If we now perform the step
02 ($)p - Dbz,
we obtain 2z0. We still have a generator that is a power of 0, but the condition on its
degree does not hold any longer. This observation does hold for any element w € K|x]
that we choose for that step, that has at least one term that has an odd degree in x. If all
degrees are even, then pw = wp, and we cannot reduce further. But the two sided ideal
generated by p is actually R itself. One can find that out using SINGULAR:
> ring R = 0,(x,d),dp;
> def r = nc_algebra(-1,0);
> setring(r);
> poly p = d"2+d+1;
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> twostd(ideal(p));
_[1]=x
_[21=d2+d+1

Therefore, as a conclusion we can see, that it is possible to use those techniques for
calculating the Jacobson form not only for the Weyl algebra, but we can generalize them
to other algebras, too. The preconditioning element might differ from algebra to algebra
and that should be examined as a future work. And, as we have seen in this section, also
other algebras than the Weyl algebra do have further structure to their Jacobson form.
On this topic there should also be made some investigations in the future.



Conclusion and Future Work

Let us draw a conclusion what we saw in this thesis and where we can see tasks for the
future.

In the first chapter, there were two main topics. The first one is the new approach for
factoring inhomogeneous polynomials in the first Weyl algebra.

Even though it seem to return good results for all the examples we feed to it, there is
still some work to do; mainly some proofs why our resulting set is always finite respectively
how we can derive our answer from it if the resulting set is not finite. Furthermore, we
can also think about the question how to simplify the equations in advance, so that the
calculation of the result becomes more easy.

Another bottleneck is still finding all valid combinations of the highest and the lowest
homogeneous summand of the polynomial-to-factor. This problem occurs when they have
a lot of different homogeneous factorizations. Maybe some more heuristics would result in
a tremendous speedup.

One can also think about using those techniques for factoring inhomogeneous polyno-
mials in the first ¢-Weyl algebra, which was a combinatorial explosion using the old way
of factoring.

The second main topic in the first chapter was the one about localizations in noncom-
mutative rings. We provided an overview on what we have to take care of and the main
result was the generalization of the Lemma of Gauss. This tells us, that it suffices to
deal with the factorization in the polynomial case, if one is just interested in classes of
different factorizations. If one is also interested in the maybe infinite solution space, we
recommend to use the techniques of Tsarev on the factorization we get after factoring in
the polynomial case. For the future we also have to think about how we can use these
facts for current problems involving factorizations of differential operators, as for example
the approach of Hrushovski to determine the differential Galois group of a given operator.

For the second chapter I am deeply apologizing at this point; it was a huge run through
a lot of cases trying to answer a question that is not rigorously stated — namely the one
why the coefficients of two similar polynomials have such exploding coefficient behavior in
the underlying field K.

But it was a fruitful accounting, as we gained new necessary conditions for polynomials
being similar or not in addition to having clues for the coefficient growth — namely shifts
in the zero homogeneous parts. Furthermore we discovered some structural properties our
multiples a,b € A; must have in af = gb. And we discussed how the concept of being
homogeneous relates to the similarity question. The result was that it is possible for an
inhomogeneous polynomial to be similar to a homogeneous one. An interesting task for
the future would be to characterize families of inhomogeneous polynomials that are similar
to homogeneous ones. The motivation for that comes from the fact that homogeneous

80
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polynomials are very nice to handle and by now we have a lot of intuition dealing with
them. Additionally, using the new techniques, one can think about developing an algorithm
to decide whether two polynomials are similar — even though there are a lot of existing
ones, but just for the interest.

Another point on the TODO-list could be to examine similarity also for other graded
noncommutative algebras and see, what properties we do find there.

Moreover, now that we have seen that the coefficient growth comes et al. from shifts of
zero homogeneous factors of two similar polynomials, we can ask the question about the
existence of a normal form of an element in the polynomial first Weyl algebra with respect
to similarity, i.e. if we can simplify a given element to a certain extend. This would be very
useful for our algorithm that computes the Jacobson normal form. Here, we can directly
draw the connection to the last chapter.

The last chapter contributed a polynomial time algorithm of Las Vegas type for com-
puting the Jacobson normal form. We generalized the techniques known for the Smith
normal form in the commutative case to the noncommutative case. The reader got an
overview on how linear algebra over Ore domains does work and what problems we are
facing there, too. The conclusion is that in practice it does not beat current implementa-
tions like the one in SINGULAR, but it is the first one that calculates the Jacobson normal
form of a given matrix provable in polynomial time using random parameters. But the
coefficient growth does not make it applicable yet.

Another contribution in the last chapter was the strong Jacobson form for matrices over
the rational first shift algebra and the generalization to a class of algebras that have the
same property. We have seen that the root for it comes from the notion of total divisibility.
One can examine this concept also for other algebras to find further structural properties
there.

For the TODO-list in this chapter we have also one more point. The preconditioning
in the Jacobson algorithm right now uses polynomials that are fairly huge. For the future
it would be interesting to have some heuristics when we can choose them to be of smaller
degree.

Summa summarum: There is a lot of work to do and some intuition to be gained about
how we can use and extend the results here for dealing with other problems related either
to factorization, similarity or matrix normal forms. Or to answer if it is worth the effort.
One never knows. We can just try and either succeed or fail. On that note let us conclude
this thesis.
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Appendix

From Chapter 1

In Subsection 2.2.5. The output of SINGULAR for h; with our new algorithm is the
following.
ring R = 0, (x,d) ,dp;
def r = nc_algebra(1,1);
setring(r);
LIB "ncfactor.lib";
poly h = (1+x72xd)"4;

facFirstWeyl(h);

L
[1,x2d+1,x2d-x+1,x2d-x+1,x2d+2x+1], [1]
[1,x2d+1,x2d-x+1,x2d+x+1,x2d+1], [2]
[1,x2d+1,x2d-2x+1,x2d+x+1,x2d+x+1], [3]
[1,x2d+1,x2d-2x+1,x2d+1,x2d+2x+1], [4]
[1,x2d+1,x2d+1,x2d-x+1,x2d+x+1], [5]
[1,x2d+1,x2d+1,x2d+1,x2d+1], [6]
[1,x2d-x+1,x2d-2x+1,x2d+2x+1,x2d+x+1], [71
[1,x2d-x+1,x2d-2x+1,x2d+1,x2d+3x+1], [8]
[1,x2d-x+1,x2d-x+1,x2d+2x+1,x2d+1], [9]
[1,x2d-x+1,x2d-x+1,x2d-x+1,x2d+3x+1], [10]
[1,x2d-x+1,x2d+x+1,x2d-x+1,x2d+x+1], [11]
[1,x2d-x+1,x2d+x+1,x2d+1,x2d+1], [12]
[1,x2d-3x+1,x2d-x+1,x2d+2x+1,x2d+2x+1] , [13]
[1,x2d-3x+1,x2d-x+1,x2d+x+1,x2d+3x+1], [14]
[1,x2d-3x+1,x2d+1,x2d+2x+1,x2d+x+1], [15]
[1,x2d-3x+1,x2d+1,x2d+1,x2d+3x+1], [16]
[1,x2d-3x+1,x2d+x+1,x2d+x+1,x2d+x+1], [17]
[1,x2d-3x+1,x2d+x+1,x2d+1,x2d+2x+1], [18]
[1,x2d-2x+1,x2d+x+1,x2d-x+1,x2d+2x+1], [19]
[1,x2d-2x+1,x2d+x+1,x2d+x+1,x2d+1], [20]
[1,x2d-2x+1,x2d-2x+1,x2d+2x+1,x2d+2x+1], [21]
[1,x2d-2x+1,x2d-2x+1,x2d+x+1,x2d+3x+1], [22]
[1,x2d-2x+1,x2d+1,x2d+2x+1,x2d+1], [23]
[1,x2d-2x+1,x2d+1,x2d-x+1,x2d+3x+1] [24]

]

For hs, the corresponding code and the output do look like the following.
ring R = 0, (x,d) ,dp;
def r = nc_algebra(1l,1);
setring(r);
LIB "ncfactor.lib";
poly h = (x74-1)*x*xd"2+(1+7*x"4)*d+8%x"3;
facFirstWeyl(h);
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[
[1,d,xd-2,x+1,x2+1,x-1], [1]
[1,d,xd-2,x-1,x2+1,x+1], [2]
[1,d,xd-2,x2+1,x+1,x-1], [3]
[1,d,xd-2,x2+1,x-1,x+1], [4]
[1,d,xd-2,x+1,x-1,x2+1], [5]
[1,d,xd-2,x-1,x+1,x2+1], [6]
[1,xd-1,d,x+1,x2+1,x-1], [7]
[1,xd-1,d,x-1,x2+1,x+1], [8l
[1,xd-1,d,x2+1,x+1,x-1], [9]
[1,xd-1,d,x2+1,x-1,x+1], [10]
[1,xd-1,d,x+1,x-1,x2+1], [11]
[1,xd-1,d,x-1,x+1,x2+1] [12]

]

And last but not least the output for the polynomial hy.

ring R = 0, (x,d) ,dp;

def r = nc_algebra(1,1);

setring(r) ;

LIB "ncfactor.lib";

poly h = 10x5d4+26x4d5+47x5d2-97x4d3;

facFirstWeyl(h);

[
[1,10x4d2+26x3d3+47x4-117x3d-78x2d2+117x2+156xd-156,x,d,d], [1]
[1,10x4d2+26x3d3+47x4-117x3d-78x2d2+117x2+156xd-156,d,xd-1], [2]
[1,x,x,x,x,10xd2+26d43+47x-97d,d,d], [3]
[1,xd-3,x,%x,x,10xd3+26d4+47xd-107d2-47], [4]
[1,x,xd-2,x,x,10xd3+26d4+47xd-107d2-47], [5]
[1,x,x,xd-1,x,10xd3+26d4+47xd-107d2-47], [6]
[1,x,x,x,x,d,10xd3+26d4+47xd-107d2-47] , [7]
[1,,xd-3,10x3d2+26x2d3+47x3-117x2d-52xd2+52d ,xd-1] [8]

]

From Chapter 2

5.3. In Subsection 1.3. Here, we use all notations and definitions given in Subsection
1.3. As announced before in Remark 1.22, we are now going to look closer at an approach
to solve for b having a trivial gcrd with f and f | gb under the given conditions there.

One general assumption that we can make here is that we already have candidates
(sometimes multiple ones) for b, and b, given. One can see that within the different
steps above.

Dependent on msy (which for system solving reasons we assume to be my = m; — 1)
and ng, the second highest homogeneous part of gb is either given by

- gnlbm27
= Gnybm, OT
- gnlbwm +_gn2bﬂn‘
On the other hand, the second highest homogeneous part of af is also either given by
- aul f V2

- au2fu1 or
- aulfVQ +a’u2fl/1'
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Both of them must coincide.
As we fixed our choice of b,,,, also on the other side a,, is uniquely determined by that,
because we must have

Ay fV1 = gnlbmp
and f,,,gn, and b,,, are given. Therefore, when we are solving for b,,,, we have in the

equation at most b,,, and a,, as indeterminates. This becomes clear when we look at the
possible equations to solve for the second most highest homogeneous summand:

(5.1) Inibmy =y, fon
(5.2) Gnibms = s fr)
(5.3) Gribmy =y fo, + auy [y
(5.4) Gnobmy = au, fo,
(5.5) Gy = Gy fon
(5.6) Inabmy = @ fon + s fr
(5.7) GnaOmy + Gnobmy = fun
(5.8) I bimg + Gnobmy = @y fin
(5.9) 9 by + Gnsbmy = ap fon + ap, fiy

The indeterminates in each equation are underlined. If there is just one, it is of course
uniquely solvable. If both are there, as for example in equation (5.9), you can bring them
on one side. In the example of (5.9), this means

gnlme - au2fl/1 = a,U«lfV2 - gn2bm1'

Here you can see that the element ay, f,, — gn,bm, has to be contained in the set g(f,,) +
(Gn,)r- The indeterminate a,,, is then the cofactor of f,,, and b,,, is the cofactor of g,, in
this sum. Here, one might has some freedom in the choice of those elements. Moreover, as
appeared in the chapter about factorization, we can even put the finding of the solution
down to solve it for elements in K[f]. This also tells us, that finding an element in this sum
that coincides with the right hand side of the equation is possible with high probability.
That means that we should not put much hope in not being able to find it and return
FALSE early.

After the determination of b,,, and a,, we go step by step down the homogeneous parts
of gb and af. For every further step, we will have at most two new indeterminates that
we have to solve for. This can be handled in the same way. Of course, in the end, they
also have to fulfill the equations starting at g, b, = a,.f,,. Finding the solution spaces
for them can be started in a parallel fashion. One also can try to eliminate candidates
in between if it would become clear that for example b would have a nontrivial greatest
common right divisor with f or a a nontrivial greatest common left divisor with g.

The part that makes all of this very hard is: The coefficients of a and b might come
out of infinite sets. It appears to be very hard to proof whether all possibilities would
be violating our left respectively right ideal condition. We will leave that part out here,
since our aim in the first place was not to contribute an algorithm for determining whether
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two polynomials are similar, but having some statements about relations they have. A
complete development of an algorithm dealing with that problem would be worth a whole
master thesis on its own.

From Chapter 3

In Subsection 5.1. We took as an example the matrix

-

And we use it as in input in our experimental implementation.
printf ("%a" ,hermiteToGetJacobson(A, MyShiftAlgebra));
==>Matrix(2, 2,
[

[OrePoly(1) OrePoly(0)],

[OrePoly(0) f ]
D

Here, f is the polynomial
P —4(148x + 73x* + 75) g
13279 4 1833922 + 13090z + 532924 + 1124223
61279 4 18884922 + 166089z + 37887z + 1165972 + 53292°

13279 + 1833922 + 13090z + 5329z + 1124223
As we see, we obtain the Jacobson form.




