Discovering conditional Functional Dependencies

Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong ICDE 2009

Amira Ghenai

Outline

- Introduction and Motivation
- Contributions of the paper
- Algorithms description
 - » CFDMiner
 - » CTANE
 - » FastCFD
- Experimental Evaluation
- Summary

Introduction & Motivation

- CFD (as previously discussed) are introduced for data cleaning purposes
- CFDs are more effective than FDs in detecting and repairing inconsistencies

>> Unrealistic to rely on human experts to design CFDs via experiments

>>Automatically discover CFDs
>>The discovery problem is highly non-trivial

Example

cust: (country code (CC), area code (AC), phone number (PN)), name (NM), and address (street (STR), city (CT), zip code (ZIP)).

	CC	AC	PN	NM	STR	СТ	ZIP	
t_1 :	01	908	1111111	Mike	Tree Ave.	MH	07974	×
t_2 :	01	908	1111111	Rick	Tree Ave.	MH	07974	
t_3 :	01	212	2222222	Joe	5th Ave	NYC	01202	
t_4 :	01	908	2222222	Jim	Elm Str.	MH	07974	
t_5 :	44	131	3333333	Ben	High St.	EDI	EH4 1DT	
t_6 :	44	131	444444	Ian	High St.	EDI	EH4 1DT	
t_{7} :	44	908	444444	Ian	Port PI	MH	W1B 1JH	(CC 7IP STR)
t_8 :	01	131	2222222	Sean	3rd Str.	UN	01202	(CC,211,311() /
FDs:						CFDs	5:	
$f_1:[\operatorname{CC},\operatorname{AC}]$	\rightarrow C	Г	Variab CFDs	^{le} -{	$\phi_0:([ext{CC}]$	ZIP] -	\rightarrow STR, (44	ŧ, _ ∥ _))
$f_2: [CC, AC, PN] \rightarrow STR.$			{ .	r	$\phi_1:([\mathrm{CC}]$	AC] –	\rightarrow CT, (01,	908 MH))
			Consta	nt_	$\phi_2:([\mathrm{CC}]$	AC] –	\rightarrow CT, (44, 1	$131 \parallel \text{EDI}))$
	CFDs		$\phi_3:([\mathrm{CC}]$	AC] -	\rightarrow CT, (01, 2	$212 \parallel \mathrm{NYC}))$		

Main Contributions

- Three algorithms for CFDs discovery:
 - 1. **CFDMiner**: for discovering constant CFDs only using depth-first search schema
 - 2. **CTANE**: extension of TANE (presented last week) that uses levelwise approach to discover FDs
 - 3. **FastCFD**: depth-first approach to discover general CFDs and it's an extension to FastFD.
- Experimental study on real life datasets

Problem Statement

• Minimal CFDs

- » A minimal CFD is a non-trivial one i.e. *left-reduced*.
- » A CFD $\varphi = (X \rightarrow A, t_p)$ is left-reduced if:
 - None of its LRS attributes can be removed (X)
 - None of the constants in the LHS can be upgraded to "_" i.e. make t_p "most general". (Applied in variable CFDs only)

Problem Statement

• Minimal CFDs Example

	66		EN.		(TD)		715
	CC	AC	PN	NM	SIR	CI	ZIP
t_1 :	01	908	1111111	Mike	Tree Ave.	MH	07974
t_2 :	01	908	1111111	Rick	Tree Ave.	MH	07974
t_3 :	01	212	2222222	Joe	5th Ave	NYC	01202
t_4 :	01	908	2222222	Jim	Elm Str.	MH	07974
t_5 :	44	131	3333333	Ben	High St.	EDI	EH4 1DT
t_6 :	44	131	444444	Ian	High St.	EDI	EH4 1DT
<i>t</i> ₇ :	44	908	444444	Ian	Port PI	MH	W1B 1JH
t_8 :	01	131	2222222	Sean	3rd Str.	UN	01202

 $\varphi_3 = ([CC, AC] \rightarrow CT, (01, 212|NYC))$

- Only true for t_3
- Even if we remove CC from LRS, still holds
- -> Non-minimal CFD

$$\varphi_2 = ([CC, AC]$$

$$\rightarrow (44,131||EDI))$$

- Constant CFD
- True for t_5 and t_6
- Can't remove CC or AC from LRS
- -> Minimal CFD

Problem Statement

Frequent CFDs

- » Given CFD $\varphi = (X \rightarrow A, t_p)$ in r, there exist a support denoted by $\sup(\varphi, r)$ defined as a set of tuples that $t[X] \le t_p[X]$ and $t[A] \le t_p[A]$.
- » Example:

	CC	AC	PN	NM	STR	СТ	ZIP
t_1 :	01	908	1111111	Mike	Tree Ave.	MH	07974
t_2 :	01	908	1111111	Rick	Tree Ave.	MH	07974
t_3 :	01	212	2222222	Joe	5th Ave	NYC	01202
t_4 :	01	908	2222222	Jim	Elm Str.	MH	07974
t_5 :	44	131	3333333	Ben	High St.	EDI	EH4 1DT
t_6 :	44	131	444444	Ian	High St.	EDI	EH4 1DT
t_7 :	44	908	444444	Ian	Port PI	MH	W1B 1JH
t_8 :	01	131	2222222	Sean	3rd Str.	UN	01202

- Goal: Given an instance r of R and a support threshold k, the algorithm finds a canonical cover of k-frequent minimal constant CFDs of the form X→A, (t_p||a)
- The algorithm users the notion of free and closed item sets for a given item set pair (X,t_p):
 - » Closed set: can't be extended without decreasing support
 - » Free set: can't be generalized without increasing support

Γ	CC	AC	PN	NM	STR	СТ	ZIP
	01	908	1111111	Mike	Tree Ave.	MH	07974
	01	908	1111111	Rick	Tree Ave.	MH	07974
	01	212	2222222	Joe	5th Ave	NYC	01202
L	01	908	2222222	Jim	Elm Str.	MH	07974
L	44	131	3333333	Ben	High St.	EDI	EH4 1DT
L	44	131	4444444	Ian	High St.	EDI	EH4 1D7
	44	908	444444	Ian	Port PI	MH	W1B 1JH
L	01	131	2222222	Sean	3rd Str.	UN	01202

- The relation between free/closed item sets and left-reduced constant CFDs is:
 - » For an instance r in R, any k-frequent left-reduced constant CFD $\varphi = (X \rightarrow A, t_p ||a)$ holds iff:
 - 1. Item set (X, t_p) is a free k-frequent set and does not contain (A,a)
 - 2. Item set $clo(X,t_p) \leq (A,a)$ (less general) and
 - 3. (X,t_p) does not contain a smaller free set (Y, s_p) such that
 - 1. $(X,t_p) \leq (Y,s_p)$ (i.e (Y,s_p) is more general) and
 - 2. Clo $(Y, s_p) \leq (A, a)$

Example

Closed sets and free sets that contain (CT,MH); i.e (A,a) = (CT, MH)

 $\varphi_1 = ([CC, AC] \rightarrow CT, (01, 908 || MH))$ ϕ_1 is extracted from 3-constant 1. CFD and matches the **free** item set ([CC,AC],(01,908)) *2.* ϕ_1 contains a **free** item set ([AC],908) which belongs to a closed set ([AC,CT],908,MH) which is more general -> not left-reduced

- 1. Get top k-frequent closet item sets (X, t_p) and their corresponding free sets
- 2. Associate with every free item set (Y, s_p) the RHS (Y, s_p) = (X\Y, t_p [X\Y])
- 3. An ordered list L will be constructed to keep track of all k-frequent free item sets.
- 4. For each free item set (Y, s_p) in L:
 - a. Replace RHS(Y, s_p) with RHS(Y, s_p) \cap RHS(Y', $s_p[Y']$) where Y' \nsubseteq Y.
 - b. After checking all subsets, CFDMiner outputs Kfrequent CFDs

CTANE Algorithm

- Goal: Levelwise algorithm for discovering minimal k-frequent (variable and constant) CFDs. An extension of TANE algorithm.
- Briefly, the algorithm works as follows:
 - Compute the RHS for minimal CFDs with their LHS in L_l(where L_l is the corresponding level in the lattice)
 - 2. For each $(X, t_p) \in L_l$, we look for CFDs
 - 3. Prune L_l
 - 4. Generate next level L_{l+1}
- The following demonstrative example ...

CTANE Algorithm

10									
	CC	Τ	AC	PN	NM	STR	CT	ZIP	
t_1 :	01	T	908	1111111	Mike	Tree Ave.	MH	07974	
t_2 :	01		908	1111111	Rick	Tree Ave.	MH	07974	
t_3 :	01		212	2222222	Joe	5th Ave	NYC	01202	
t_4 :	01		908	2222222	Jim	Elm Str.	MH	07974	
t_5 :	44		131	3333333	Ben	High St.	EDI	EH4 1DT	
t_6 :	44		131	444444	Ian	High St.	EDI	EH4 1DT	
t_7 :	44		908	444444	Ian	Port PI	MH	W1B 1JH	
t_8 :	01		131	2222222	Sean	3rd Str.	UN	01202	
		1.2		7.1	Ref. 1		- GP - 22		

Assume a support threshold $k \ge 3$ for attributes [CC,AC,ZIP,STR]

Figure showing two levels of the lattice and partial third level showing [CC,AC,ZIP] attributes

- Goal: Find minimal k-frequent variable and constant CFDs in a depth-first search inspired by FastFD algorithm.
- Key idea: Minimal CFDs are minimal covers of difference sets
- Difference Sets:
 - » $D(t_1, t_2; \mathbf{r}) = \{\mathsf{B} \in \mathsf{attr}(\mathsf{R}) | t_1[\mathsf{B}] \neq t_2[\mathsf{B}] \}$

 $D(t_1, t_2; r_0) = \{NM\}$

(the set of attributes which are different in t_1 and t_2)

10	CC	AC	PN	NM	STR	CT	ZIP
t_1 :	01	908	1111111	Mike	Tree Ave.	MH	07974
t_2 :	01	908	1111111	Rick	Tree Ave.	MH	07974

 $\gg D_A^r$ is set {Y\{A}|Y \in D_r, A \in Y}

- 1. <u>FindCover</u> Algorithm:
 - Extract the list of k-frequent free item sets in r (A)
 - II. For each item set, produces the minimal difference sets D_A^m (B)
 - III. Calls FindMin to find the minimal cover of D_A^m
- 2. <u>FindMin Algorithm:</u> (down-left of example)
 - 1. Orders attributes (alphabetically in example)
 - II. All subsets of attributes are enumerated in a depth-first, left-to-right fashion.

Example: for sets{[PN],[AC,CT]}, we can have the possible subsets [AC,PN],[CT,PN]...

III. By getting possible subsets, the algorithm verifies if the CFD is minimal.

For example:

Tree for CC=01 and Y=[AC,PN] and we are looking for STR (input)

 $\varphi' = [CC, AC, PN] - > STR, (01, -, -||-)$

> Discovering Conditional Functional Dependencies

Free pattern $r_{CC=01}$ AND $K \ge 2$ for [CC,AC,PN,CT,ZIP,STR]

	CC	AC	PN	NM	STR	СТ	ZIP
t_1 :	01	908	1111111	Mike	Tree Ave.	MH	07974
t_2 :	01	908	1111111	Rick	Tree Ave.	MH	07974
t_3 :	01	212	2222222	Joe	5th Ave	NYC	01202
t_4 :	01	908	2222222	Jim	Elm Str.	MH	07974
t_5 :	44	131	3333333	Ben	High St.	EDI	EH4 1DT
t_6 :	44	131	444444	Ian	High St.	EDI	EH4 1DT
t_7 :	44	908	444444	Ian	Port PI	MH	W1B 1JH
t_8 :	01	131	2222222	Sean	3rd Str.	UN	01202

Input: $A \in \operatorname{attr}(R)$, $(X, t_p) \in \operatorname{Fr}_k(r)$, $Y \subseteq \operatorname{attr}(R) \setminus \{A\}$, $\mathcal{D}_a^n(r_k)[Y]$, and $\leq_{\operatorname{attr}}$.

Output: Minimal CFDs $\varphi = ([X, Y] \rightarrow A, (t_p, \neg \dots || t_a)),$ where t_a is a constant or "_".

Base case:

- If Ø ∈ D^M_A(r_t)[Y], then return an empty set. By Lemma 4, ([X, Y], (t_p, →, ..., _)) can never lead to a valid CFD.
- 2) If Y contains the last attributes in attr(R) \ {A} w.r.t. <_{attr}, but D^M_A(r_{tp})[Y] ≠ Ø, then return an empty set. By Lemma 4, r ⊭ ([X,Y] → A, (t_p, ,..., || _)) because Y does not cover D^M_A(r_{tp}); moreover, since ([X,Y], (t_p, ,..., _)) cannot be further extended, this pattern does not lead to a valid CFD.
- If D^m_A(r_{tp})[Y] = Ø, then Y is a cover of D^m_A(r_{tp}). There are two cases to consider corresponding to the conditions (a) and (b1-b2).
 - a) If D^M_A(r_{t_p}) = Ø, then by Lemma 4, there exists a constant t_a, r ⊨ (X → A, (t_p || t_a)). In order to check for minimality, we need to verify whether there is no X' ⊂ X of size |X| − 1 such that r ⊨ (X' → A, (t_p[X'] || t_a)). If this holds, then output *constant* CFD (X → A, (t_p || t_a)).
 - b) If D^m_A(r_{ip}) ≠ Ø, then Lemma 4 implies that r ⊨ ([X,Y] → A, (t_p, -, ..., - || _)). In order to check for minimality, we need to verify whether
 - i) there is no Y ⊂ Y of size |Y| − 1 such that Y' covers D^m_A(r_{t_p|X|}),
 ii) there is no X ⊂ X of size |X| − 1 such that Y ∪ (X \ X') covers D^m_A(r_{t_p|X'}).
 - If conditions 1) and 2) are both satisfied, then output *variable* CFD ($[X, Y] \rightarrow A, (t_p, -, ..., \| -)$).

Recursive case:

- 4) For each attribute B that appears after Y w.r.t. <_{attr}, we do the following:
 a) Let Y' = Y ∪ {B} and D^m_A(r_{tp})[Y'] be the difference sets of D^m_A(r_{tp})[Y] not covered by B.
 b) Call FindMin(A₁(X, tp), Y', D^m_A(r_{tp})[Y'], <_{attr})
 - recursively following the depth-first strategy.

Frk: list of free sets, D: minimaldifference set, A: attributes in R

Conditions of checking whether a CFD is valid or no or whether it is minimal or not

- Differences compared to FastFD:
 - » More complicated (constants, unnamed variables)
 - » K-frequent CFDs instead of 1-frequent FD
 - Needs efficient way of computing sets
 - » NaiveFast Algorithm: Stripped partition-passed, Naïve and fast approach

» FastCFD Algorithm:

- Considering the 2-frequent closed item sets only in r which will be computed by CFDMiner algorithm.
- Difference set can be computed more efficiently
- » Reorder attributes such that ones that cover most of the sets are treated first to improve efficiency.

• Two Real-life datasets and a synthetic dataset:

Dataset	Arity	Size (# of tuples)
Wisconsin breast cancer (WBC)	11	699
Chess	7	28,056
Tax	14	20,000

- The experiments studied the effect of:
 - » The support threshold k
 - » The number of tuples DBSIZE
 - » The number of columns (Arity)
 - » The *correlation factor* (average range of distinct values in an attribute domain)

• Scalability wrt DBSIZE

• Scalability wrt Arity and k

Scalability wrt CF

- The results were on synthetic dataset
- Similar results were achieved on real datasets

Summary

- CFDMiner is efficient in discovering constant CFDs.
- CTANE works well with databases where arity is small and support threshold is large.
- NaiveFast and FastCFD are very efficient when arity of relation is very large.
- FastCFD is more efficient than the NaiveFast implementation especially when the arity is large.

