
Database Virtualization: A New Frontier for Database Tuning and Physical
Design

Ahmed A. Soror Ashraf Aboulnaga Kenneth Salem

David R. Cheriton School of Computer Science
University of Waterloo

{aakssoro, ashraf, kmsalem}@cs.uwaterloo.ca

Abstract
Resource virtualization is currently being employed at

all levels of the IT infrastructure to improve provisioning
and manageability, with the goal of reducing total cost of
ownership. This means that database systems will increas-
ingly be run in virtualized environments, inside virtual ma-
chines. This has many benefits, but it also introduces new
tuning and physical design problems that are of interest to
the database research community. In this paper, we dis-
cuss how virtualization can benefit database systems, and
we present the tuning problems it introduces, which relate
to setting the new “tuning knobs” that control resource al-
location to virtual machines in the virtualized environment.
We present a formulation of the virtualization design prob-
lem, which focuses on setting resource allocation levels for
different database workloads statically at deployment and
configuration time. An important component of the solu-
tion to this problem is modeling the cost of a workload for
a given resource allocation. We present an approach to this
cost modeling that relies on using the query optimizer in a
special virtualization-aware “what-if” mode. We also dis-
cuss the next steps in solving this problem, and present some
long-term research directions.

1. Introduction
Technologies for resource virtualization are currently

being employed at all levels of the IT infrastructure to im-

prove provisioning and manageability, with the goal of re-

ducing total cost of ownership. This means that database

servers – like other types of software systems – will in-

creasingly be run in virtualized environments, inside vir-

tual machines. This raises two new questions that need to

be addressed by the database research community: (1) How

can the capabilities provided by virtualization environments

be leveraged to improve the deployment, flexibility, and re-

silience of database systems? and (2) How should the ad-

ministration, management, and tuning of database systems

change to adapt to the new world of virtualized environ-

ments? Both of these questions are of interest to database

researchers. In this paper, we focus on the second question,

and we present preliminary results of our work towards ad-

dressing it.

1.1. Why Virtualization?
The basic idea behind resource virtualization is to de-

couple the user’s perception of hardware and software re-

sources from the actual implementation of these resources.

Resource virtualization technologies add a flexible and pro-

grammable layer of software between “applications” (in our

case database systems) and the resources used by these ap-

plications. This layer of software maps the virtual resources

perceived by applications to real physical resources. By

managing this mapping from virtual resources to physical

resources and changing it as needed, the virtualization layer

can be used to transparently allow multiple applications to

share resources and to change the allocation of resources

to applications as needed. This makes resource virtualiza-

tion an excellent tool for flexibly deploying and managing

database servers and other software systems (such as web

servers or application servers) [1].

One of the most prominent examples of resource virtu-

alization is machine virtualization, which is the focus of

this paper. Machine virtualization technologies, such as

Xen [3, 23] or the different VMware products [21], provide

the capability of creating different virtual machines that

share the resources of one real physical machine (or some-

times even many machines [20]). Each one of these virtual

machines runs its own separate operating system, and the

operating system and applications in each virtual machine

perceive that they are using dedicated machine resources

(CPU, memory, and I/O), whereas in reality the physical

resources are shared among all the virtual machines. The

virtualization layer, known as the virtual machine moni-
tor [15, 17], controls the allocation of physical resources

to virtual machines and can change it as needed. The vir-

tualization layer also provides other capabilities such as the

ability to save an image of a running virtual machine, and

to restart the virtual machine from a saved image on the

3881-4244-0832-6/07/$20.00 ©2007 IEEE.
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

same physical machine or a different one. Some virtualiza-

tion layers even provide the ability to migrate live, running

virtual machines between physical machines [5, 16].

The capabilities provided by machine virtualization tech-

nologies can potentially be used to reduce the total cost of

ownership of software systems, including database systems.

For example, the ability to save virtual machine images can

be used to simplify the process of software distribution and

deployment. A virtual machine image can be created with

a software system and any other required software modules

already installed and running. A user can then deploy the

full software system by simply copying the virtual machine

image and starting the saved virtual machine. Such ready-

to-deploy virtual machine images are known as “software

appliances,” and there are currently repositories of these ap-

pliances that can be found on the web [19]. This software

appliance model eliminates many of the problems of soft-

ware installation and makes it possible to flexibly deploy

the same software system on different machines. It is easy

to see that it would be very useful to have a “database appli-

ance” that is ready to deploy on different physical machines.

Another benefit of machine virtualization is in the area of

server consolidation. An organization typically has differ-

ent software systems for different operational and business

activities. Instead of having different server machines for

the different software systems, each provisioned for peak

load, we could run the software systems in virtual ma-

chines and have the virtual machines share the same physi-

cal resources, thereby reducing the amount of hardware that

needs to be provisioned, operated, and maintained. Since

organizations typically have multiple database servers, it is

easy to see that database systems would stand to benefit

from such server consolidation.

1.2. Tuning and Virtualization
In addition to the two examples above, there can be other

ways for database systems to benefit from virtualization.

Indeed, developing ways for database systems to leverage

the capabilities of virtualization is in itself an interesting

research problem. However, in this paper we focus on an-

other class of interesting research problems: How to tune a

database system and the virtual machine in which it is run-

ning, starting from deployment and throughout operation.

Virtualization introduces some new “tuning knobs” that

affect the performance of the database system. These tun-

ing parameters must be set either by the database adminis-

trator or automatically in a self-managing way. The most

important of these tuning parameters are the ones that con-

trol the share of each physical resource (CPU, memory, and

I/O bandwidth) that each virtual machine gets. These vir-

tual machine parameters also interact with database system

tuning parameters such as buffer pool sizes, which means

that the two sets of parameters should be tuned simultane-

ously.

Figure 1. Tuning and virtualization.

The importance of tuning these virtual machine parame-

ters becomes apparent as soon as we decide to run multiple

database systems inside virtual machines that share physi-

cal resources. We are immediately faced with the question

of how to allocate physical resources to each virtual ma-

chine. This static version of the problem, which we refer

to as the virtualization design problem, is our focus in this

paper. The virtualization design problem can be defined as

follows: “Given N database workloads that will run on N
database systems inside virtual machines, how should we
allocate the available resources to the N virtual machines
to get the best overall performance?” In this context, we

use throughput as our measure of performance (i.e., we are

interested in using the least amount of resources necessary

to fully process a given query).

We face the virtualization design problem, for example,

when we are consolidating multiple database servers onto

one physical machine by running each database server in a

virtual machine (Figure 1). In this paper, we motivate the

virtualization design problem and present a general frame-

work for its solution. An important challenge in solving

this problem is how to model the performance of a database

system inside a virtual machine. We present an approach for

addressing this challenge that relies on using the query opti-

mizer in a new “what-if” mode that is virtualization-aware.

We also discuss the next steps in solving this problem and

other, more general virtualization tuning problems.

Note that we face the virtualization design problem

whenever we run multiple virtual machines on the same

physical machine, regardless of the applications running

in the virtual machines. However, we may be able to

find a better solution to the problem when these applica-

tions are database systems due to several factors. First,

database workloads consist of SQL queries with constrained

389
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

and highly stylized resource usage patterns. Second, these

queries are highly variable in the way they use resources.

For example, some queries heavily use CPU while others

heavily use I/O. This makes database systems sensitive to

– and able to benefit from – changes in resource allocation.

Third, database systems already have a way of modeling

their own performance, namely the query optimizer.

Note also that the virtualization design problem is simi-

lar to the problem of capacity planning that is already faced

by database users even without considering virtualization:

How much resources do I need (or what kind of machine

should I buy) for a given database workload? However, our

problem is much more constrained because the underlying

machine parameters are fixed in advance. This makes the

problem more tractable than the general capacity planning

problem, which is notoriously difficult to solve.

The rest of the paper is organized as follows. In Sec-

tion 2, we present an overview of related work. Section 3

outlines the virtualization design problem. Sections 4 and 5

describe our approach to cost modeling. Section 6 presents

an experiment illustrating the effectiveness of our cost mod-

eling. In Section 7 we present discussions and next steps.

Section 8 concludes the paper.

2. Related Work
We are not aware of any work on the problem of vir-

tualization design, whether for database systems or other

types of applications. However, our work builds on the large

body of recent work on providing the necessary infrastruc-

ture for machine virtualization [3, 15, 17, 21]. Our work is

also related to work on capacity planning and allocating re-

sources to applications in non-virtualized environments [9],

although this work cannot easily be extended to the problem

of determining an optimal sharing of resources, especially

for database workloads in virtualized environments. Tuning

database systems for the available resources has been the

focus of much work [22], but in this paper, we are tuning

the resources to the database system. And since we change

the resources available to the database system, work on au-

tomatically adapting the database system to the available

resources is relevant [2, 7, 10, 13, 18].

3. Virtualization Design
In this paper, we focus on the problem of statically al-

locating physical machine resources to N different virtual

machines running N different database workloads. We re-

fer to this problem as the virtualization design problem, and

we view it as an extension of database physical design. In

non-virtualized environments, determining the best physi-

cal design for a database given a workload involves setting

parameters such as how much memory can be used for the

database and how this memory is partitioned into different

memory pools. In virtualized environments, we can also set

the amount of resources given to a database workload (more

precisely, we can set the amount of resources given to the

virtual machine that contains the database system running

the workload). These resource settings are physical param-

eter that affect performance, and hence we consider setting

them to be part of the physical design process.

Setting the resource allocation parameters becomes chal-

lenging only if there are multiple virtual machines running

different database workloads and sharing the same physical

machine. If there is only one virtual machine, then that ma-

chine should get all the available physical resources. If there

are multiple virtual machines but they are all running simi-

lar database workloads, then the available resources should

be divided equally among the virtual machines. The chal-

lenge is if the different virtual machines are running work-

loads with different characteristics and different resource

usage profiles. It is common for different database work-

loads to have different resource usage profiles, which makes

the virtualization design problem relevant and challenging

for database systems.

The virtualization design problem can be formulated as

follows. We are given N database workloads, W1, . . . ,WN ,

where each workload is a sequence of SQL statements

against a separate database. The N workloads will be run

on database systems that reside in N different virtual ma-

chines. For simplicity, we will assume that we are using

different instances of the same database system for the dif-

ferent workloads. The virtualization environment allows us

to control, for m different physical resources, the share of

each resource that is allocated to each virtual machine. Ex-

amples of resources that can be controlled in this way are

CPU, memory, and I/O bandwidth. Each workload gets

a fraction of each resource. We denote the fraction of re-

source j that is allocated to workload Wi by rij . We denote

the overall resource allocation for workload Wi by a vector

RT
i = [ri1, . . . , rim]. The fractions of all resources allo-

cated to all workloads can be represented as an m×N ma-

trix, which we denote by R. For each workload, Wi, there is

a cost for running the workload that depends on the resource

allocation, Ri. We denote this cost by Cost(Wi, Ri), and

our goal is to minimize the overall cost for all the work-

loads. Thus, our problem is to find

arg min
R

(
N∑

i=1

Cost(Wi, Ri)

)

subject to rij ≥ 0 for all i, j, and
∑N

i=1 rij = 1 for all j.

This is a combinatorial optimization problem, and the

framework to solve it is presented in Figure 2. To solve this

problem, we need (1) a search algorithm for enumerating

candidate solutions, and (2) a method for evaluating the cost

of a candidate solution. For the search algorithm, we should

be able to use any standard combinatorial search algorithm

390
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

Figure 2. Framework for virtualization design.

such as greedy search or dynamic programming. What is

more interesting, and unique to virtualized environments,

is the modeling of the cost of a database workload for a

given resource allocation, i.e., the function Cost(Wi, Ri).
We focus on this function for the remainder of the paper.

4. Cost Modeling
Modeling the cost of a workload for a given resource

allocation is important for all kinds of workloads, not just

for database workloads. However, database systems have

the unique advantage that their query optimizer already pro-

vides a model for the cost of workload execution. Thus, our

approach is to make the query optimizer aware of virtual

machine resource allocation, and to use the optimizer to es-

timate the cost of workload execution for different levels of

resource allocation in the virtual machines. This follows the

same lines as traditional physical design work, which also

uses the query optimizer for cost modeling. The query opti-

mizer is especially suitable for modeling costs in the virtu-

alization design problem, since query optimizers typically

optimize for minimizing total resource consumption, which

corresponds to our goal of maximizing throughput.

Thus, our value for Cost(Wi, Ri) is the sum of the esti-

mated execution times for all the queries in Wi as computed

by the query optimizer in a special mode in which it is aware

of the resource allocation, Ri, and its effects on query per-

formance. What remains now is defining this new “what-if”

mode in which the optimizer can model the effects of a par-

ticular level of resource allocation to the virtual machine.

We denote the level of resource allocation by R.

To define this new mode, we note that the query op-

timizer models costs and chooses query execution plans

based on (1) the available access paths, (2) database statis-

tics, and (3) parameters that describe the physical environ-

ment. The first two factors are not affected by changes in R,

but the third factor is significantly affected by such changes.

Thus, to make the optimizer aware of the effect of a certain

R, all we need to do is find the appropriate values for the

parameters that the optimizer uses to model the physical en-

vironment. We refer to this set of optimizer parameters as

P . Once we set P for a given R, we can simply optimize

the workload queries with this P , using the available access

paths and database statistics without change, and we can use

the optimizer cost estimates for modeling costs in the virtu-

alization design problem. We only use the optimizer cost

estimates to rank alternative execution plans, just as the op-

timizer normally does when choosing an execution plan for

a query. This is important because the optimizer cost esti-

mates are based on many simplifying assumptions, and so

may not match the actual costs, but they can still be used to

rank different alternatives.

We note that P for a given R depends only on the ma-

chine characteristics and does not change with the database

or the query workload. Thus, we can obtain P for different

R’s off-line, and then use the different P values for all vir-

tualization design problems, regardless of the database or

query workload. This speeds up the process of using the

optimizer for cost modeling, since the required P values for

different R’s are always readily available.

5. Calibrating the Optimizer
To obtain P for a given R, we use an experimental cal-

ibration process, which has to be performed only once for

each R. In this process, we create a virtual machine on the

physical machine that we will run our workloads on, and

we run the database system inside this virtual machine. We

set the level of resource allocation to this virtual machine

as specified in R, and we run carefully designed synthetic

queries on a synthetic database inside this virtual machine.

The queries are designed so that measuring their actual ex-

ecution time allows us to deduce the different values of pa-

rameters in P for this R. In effect, we are calibrating the

query optimizer for the physical environment specified by

the physical machine and R.

The query optimizers of some commercially available

database systems have a built-in calibration process, and we

can run the database system inside the virtual machine with

resources set to R and simply invoke this calibration pro-

cess. But many query optimizers do not have such a cali-

bration process, and hence we must develop one by analyz-

ing the query optimizer cost model and designing synthetic

queries on a synthetic database so that the optimizer chooses

specific plans for these queries and the cost of these plans

is easy for the optimizer to estimate. We can then form

equations that match the estimated costs obtained from the

391
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

query optimizer cost formulas that have the parameters in

P as variables with the actual, measured costs, and we can

solve these equations to obtain P . It should be possible to

use this method to obtain P for any database system, al-

though the calibration process will vary depending on the

details of the query optimizer cost formulas.

For our work, we use PostgreSQL as the database sys-

tem, and we have designed an extensive set of calibra-

tion experiments based on the PostgreSQL cost model. As

an example, consider two parameters in P , namely the

cpu tuple cost and cpu operator cost parame-

ters. These parameters are the query optimizer’s mea-

sures of the CPU cost of processing each tuple and SQL

where clause item (respectively) during a query, expressed

as a fraction of the cost of a sequential page fetch. We

can accurately calibrate these parameters by measuring the

cost of the simple query select max(R.a) from R.

If we ensure that there is no index on R.a, the opti-

mizer will choose a plan that accesses R using a sequen-

tial scan. When executing this plan, the database system

will pay a cost of cpu tuple cost for every tuple in R,

in addition to another per tuple cost for the aggregation,

cpu operator cost. The aggregation eliminates any

overhead for returning the result, so the measured execution

time of this query can be modeled as the weighted sum of

these two per tuple costs. We can formulate another query

whose execution time can be modeled as another equation

in these two cost parameters, and we can simultaneously

solve these two equations to obtain cpu tuple cost and

cpu operator cost.

To illustrate this technique, we present the results of ap-

plying it in our experimental test bed. For our experiments,

we use a machine with two 2.8GHz Intel Xeon CPUs (with

hyperthreading) and 4GB of memory running SUSE Linux

10.0, kernel level 2.6.16. The database system we use is

PostgreSQL 8.1.3. We use the Xen 3.0.2 hypervisor as our

virtualization technology [23]. Xen enables us to vary the

amount of memory allocated to a virtual machine during

initial configuration and at run time. Xen also enables us to

vary the amount of CPU allocated to a virtual machine by

varying the scheduling time slice of this virtual machine at

run time. Figure 3 shows the result of using our calibra-

tion process to compute cpu tuple cost for different

CPU and memory allocations, ranging from 25% to 75%

of the available CPU or memory. The figure shows that the

cpu tuple cost parameter is sensitive to changes in re-

source allocation, and that our calibration process can detect

this sensitivity.

6. An Illustrative Experiment
We illustrate the importance of virtualization design and

the effectiveness of our cost modeling using the TPC-H

benchmark. We use the OSDB implementation of the TPC-

Figure 3. The cpu tuple cost parameter.

H benchmark [14], which includes an extensive set of in-

dexes to boost performance. The database size is 1GB, and

with indexes it is 4GB. The software and hardware config-

uration is as described in the last section.

Consider two “workloads,” one consisting of TPC-H

Query 4 and the other consisting of TPC-H Query 13. If

the two workloads will be run in virtual machines on the

same physical machine, we need to determine the optimal

resource allocation for each virtual machine. In this exper-

iment, we focus on CPU and we give each virtual machine

50% of the available memory. The default CPU allocation

would be to also give each virtual machine 50% of the avail-

able CPU. We will see next that this is not the best alloca-

tion.

We used the process described in Section 5 to calibrate

the optimizer and obtain a cost model for a memory alloca-

tion of 50% of the available memory and CPU allocations

of 25%, 50%, and 75% of the available CPU. Using these

cost models, we estimated the execution time of Q4 and

Q13. Figure 4 shows the estimated execution times, nor-

malized to the estimated execution time of the default CPU

allocation of 50%. The figure also shows the corresponding

actual execution times measured for the queries, normalized

to the actual execution time at the default CPU allocation.

The estimated and actual execution times in the figure both

show that Q4 is not sensitive to changing the CPU alloca-

tion. Most likely it is an I/O intensive query. On the other

hand, Q13 is very sensitive to changing the CPU allocation.

Thus, one possible virtualization design decision is to take

CPU away from Q4 and give it to Q13. If we give 25% of

the available CPU to Q4 and 75% to Q13, the performance

of Q4 would not change significantly from that under the

default CPU allocation of 50%, while the performance of

Q13 would improve by a factor of two. This decision is

made based on the estimated execution times shown in the

figure, and the figure shows that the actual execution times

validate this decision.

392
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

Figure 4. Sensitivity to varying CPU share.

Figure 5. Effect on total execution time.

To test the effectiveness of allocating 25% of the avail-

able CPU to Q4 and 75% to Q13, we construct two work-

loads, one consisting of 3 copies of Q4 and the other con-

sisting of 9 copies of Q13. We include multiple copies of

the queries in our workload to reduce any effects of startup

overheads, and we choose the number of copies of the

queries so that the execution times of the two workloads are

close to each other when they are each given equal shares

of the CPU. Figure 5 shows the execution time of the work-

loads when they are each given an equal share of the CPU

(default allocation), and when 75% of the CPU is given to

Q13. The figure shows that the latter allocation improves

the performance of Q13 by 30% without hurting the perfor-

mance of Q4, and so is a better allocation than the default.

From this experiment we can see that (1) there can be

better resource allocations than simply giving each work-

load an equal share of the available resources, and (2) our

cost model is able to identify good resource allocations and

can therefore be effectively used to solve the virtualization

design problem.

7. Discussion and Next Steps

The cost modeling approach that we describe represents

a key component to the solution of the virtualization design

problem. This cost modeling can be refined by developing

techniques to reduce the number of calibration experiments

required, since cost model calibration is a fairly lengthy pro-

cess. Speeding up cost model calibration may in itself be an

interesting area for refinement.

As the optimizer is at the core of our modeling approach,

we recognize that we inherit the well identified shortcom-

ings of its cost modeling process (for instance, its weak

modeling of the effect of concurrent query execution [11]).

We can explore the application of more sophisticated tech-

niques [4, 6, 8, 12] for modeling the relationship between

resource allocation and query performance to the virtualiza-

tion design problem.

Beyond the cost modeling, there remains the problem of

developing a combinatorial search algorithm to search the

space of possible resource allocations and find the best one.

We envision this to be a straightforward task, and we believe

that standard techniques such as dynamic programming will

apply here.

An important next step in the area of tuning and virtu-

alization, beyond the static virtualization design problem,

is to consider the dynamic case and reconfigure the virtual

machines on the fly in response to changes in the work-

load, database, number of virtual machines, or extra load

on the physical resources. Adding different service-level

objectives to the different workloads is also an interesting

direction for future work.

Under our current approach, the database system need

not be aware of the fact that it is running inside a vir-

tual machine. We foresee that making database systems

virtualization-aware, and allowing them to communicate

with the virtualization layer, would enable a better configu-

ration for both the virtual machine and the database system.

The mechanisms for communication between the database

system and the virtualization environment, and also the na-

ture of the information exchange, are still open issues.

8. Conclusions

Resource virtualization can provide many benefits to

database systems. But it also introduces new tuning and

physical design problems that are of interest to researchers

in self-managing database systems. In this paper, we dis-

cuss these problems, and we focus on one specific problem,

namely virtualization design. We present a formulation of

this problem and describe an approach to cost modeling,

which is a key component in the solution to this problem.

We also describe the next steps to solving this problem and

present some directions for future work.

393
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

References

[1] A. Aboulnaga, C. Amza, and K. Salem. Virtualization and

databases: State of the art and research challenges. In Proc.
Int. Conf. on Data Engineering (ICDE), 2007. (Advanced

Technology Seminar).

[2] R. Agrawal, S. Chaudhuri, A. Das, and V. R. Narasayya. Au-

tomating layout of relational databases. In Proc. Int. Conf.
on Data Engineering (ICDE), 2003.

[3] P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the

art of virtualization. In Proc. ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[4] M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS

resource scheduling. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), 1989.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live migration of vir-

tual machines. In Proc. Symposium on Networked Systems
Design and Implementation (NSDI), 2005.

[6] D. L. Davison and G. Graefe. Dynamic resource brokering

for multi-user query execution. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1995.

[7] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and

G. Wood. Automatic performance diagnosis and tuning in

Oracle. In Proc. Conf. on Innovative Data Systems Research
(CIDR), 2005.

[8] M. N. Garofalakis and Y. E. Ioannidis. Multi-dimensional

resource scheduling for parallel queries. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, 1996.

[9] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Stein-

der, M. Sviridenko, and A. N. Tantawi. Dynamic placement

for clustered web applications. In Proc. Int. Conf. on World
Wide Web (WWW), 2006.

[10] P. Martin, H.-Y. Li, M. Zheng, K. Romanufa, and W. Pow-

ley. Dynamic reconfiguration algorithm: Dynamically tun-

ing multiple buffer pools. In Proc. Int. Conf. Database and
Expert Systems Applications (DEXA), 2000.

[11] D. T. McWherter, B. Schroeder, A. Ailamaki, and

M. Harchol-Balter. Priority mechanisms for OLTP and

transactional web applications. In Proc. Int. Conf. on Data
Engineering (ICDE), 2004.

[12] M. Mehta and D. J. DeWitt. Dynamic memory allocation for

multiple-query workloads. In Proc. Int. Conf. on Very Large
Data Bases (VLDB), 1993.

[13] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous

resource monitoring for self-predicting DBMS. In Proc.
IEEE Int. Symp. on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS),
2005.

[14] The Open Source Database Benchmark.

http://osdb.sourceforge.net/.

[15] M. Rosenblum and T. Garfinkel. Virtual machine moni-

tors: Current technology and future trends. IEEE Computer,

38(5), 2005.

[16] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,

and M. Rosenblum. Optimizing the migration of virtual

computers. In Proc. Symposium on Operating System De-
sign and Implementation (OSDI), 2002.

[17] J. E. Smith and R. Nair. The architecture of virtual machines.

IEEE Computer, 38(5), 2005.

[18] A. J. Storm, C. Garcia-Arellano, S. Lightstone, Y. Diao, and

M. Surendra. Adaptive self-tuning memory in DB2. In Proc.
Int. Conf. on Very Large Data Bases (VLDB), 2006.

[19] Virtual Appliances. http://www.virtualappliances.net/.

[20] Virtual Iron. http://www.virtualiron.com/.

[21] VMware. http://www.vmware.com/.

[22] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-

tuning database technology and information services: from

wishful thinking to viable engineering. In Proc. Int. Conf.
on Very Large Data Bases (VLDB), 2002.

[23] XenSource. http://www.xensource.com/.

394
Authorized licensed use limited to: IEEE Xplore. Downloaded on January 5, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

