
  

Simulated Data
Abnormally dense patient records
Gamma-distributed attributes
Class assigned by OMeD

Classifiers
A single layer decision tree, Decision Stump
An IG-based decision tree, C4.5 R8 (J48)
A bootstrapping meta-classifier, Bagging
An iterative boosting meta-classifier,
AdaBoost
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Introduction

[1] Wolpert, D.H., and Macready, W.G. No Free Lunch Theorems for 
Optimization, IEEE Transactions on Evolutionary Computation, 1997

{{:Alice :condition :Pregnancy} e:evidence <kb#_27>.
{:Warfarin :contraIndication :Pregnancy} e:evidence <kb#_22>

}=>{
 {:Alice :canNotBeGiven :Warfarin} e:evidence <rules#_9>
}.

# Proof found in 3 steps (2970 steps/sec) using 1 engine 
(18 triples) }.

Query

Can we administer Warfarin to Alice?

Knowledge Graph

If a drug is contra-indictive of a 
condition, and some entity has 
that condition, then that entity 

cannot be given the drug. 

Inference Rule

Semantic Proof

{?ANY  :condition ?COND.
 ?DRUG :contraIndication ?COND.
}=>{?ANY :canNotBeGiven ?DRUG }
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Semantic Knowledge-based Decision Making

Result can be easily 
explained to end users as 
it is based on domain 
based concepts and 
terminology

Proof is a First Order 
Logic proof that can be 
independently verified

Semantic Model, Inference Rules & Semantic Proof

No Free Lunch (NFL) TheoremFramework Evaluation — OMeD Vs. Machine Learning Techniques
“in the absence of prior knowledge about 
the properties of the function, all possible 
strategies for optimization must perform 
precisely the same on average” [1]

ML &  Decision Support Systems
● Decision support systems should be 
reliable, interpretable and verifiable.

● ML suffers from fundamental unreliability 
due to NFL.

● OMeD does not rely on empirical 
optimization and is not subject to NFL.

● OMeD is also easy to interpret and 
produces verifiable results.

Conclusion
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OMeD is a knowledge-based medical decision 
support framework that utilizes semantic web 
techniques for knowledge representation and 
reasoning.

We present a proof-of-concept implementation of 
OMeD and compare it to a set of standard machine 
learning techniques across a series of benchmarks 
based on simulated patient data.  

Line of inquiry: "Should Alice be treated with drug X?"

Machine learning techniques perform poorly 
on simulated patient data, even when it is 
comparatively dense (each patient took 25%  of 
all drugs).

OMeD's prototype was constructed and 
verified, demonstrating a working realization of 
the system.

Recent work supports our findings with real 
world data and more complex ontologies.

Future work examines combining OMeD with 
machine learning techniques to produce a 
ontological DSS which is resistant to noise. 

Experiment 1

Goal: find the best classifier
20 drugs, 20 conditions
5, 50, 500, and 5,000 training records
F1 measure (balanced precision and recall)
J48 least affected by data poverty

Experiment 2
Goal: measure effect of increasing sparsity on J48
Add more drugs (more features)
500 training records, 20 conditions, 20, 30, 40, 50, and 60 drugs
F1 measure (balanced precision & recall)
J48 strongly affected by increase in sparsity 
OMeD unaffected
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