Holmes – <u>Hybrid Ontological & Learning ME</u>dical <u>System</u> Decision Support System

(Atif Khan, John A. Doucette and Robin Cohen)

WATERLOO CHERITON SCHOOL OF COMPUTER SCIENCE

Introduction

Scenario

Can Alice be given DrugX?

Treatment Considerations

- who is Alice? (black swan theory)
- missing information
- Alice's medical history
- nature of the prescription
- who is administering the drug?
- knowledge & time constraints

Objectives

- patient-centric evidence-based medical decision support
- ▶ tolerant to noise in patient data → information challenge
- automated machine-processable decision making
- operates in constraint environments
- decisions are easy to explain & verify

Proposed Construction

1) Knowledge-based Decision Support System

- structured data representation (knowledge base)
- ► expert knowledge → inference rules
- ► mimics human thinking
- heuristic based, evidence based etc.
- reasoning capability (inference engine)
- decisions are based on rules (axioms) and can be easily explained
- decisions are easy to verify/validate
- quite **powerful** & robust only when knowledge-base is complete

2) Learning-based Decision Support System

- ► learns from raw data and past past examples/cases
- -patterns in the clinical data
- utilizes machine learning techniques
- requires training process to create inference models
- -training is specific to a line of inquiry
- -training is expensive
- system decisions are often hard to explain & verify
- ► tolerant to noise in data
- effective in finding latent relationships between data attributes

Holmes

automates reasoning

- using semantic knowledge representation and inference
- system-made decisions are easy to verify & explain
- extremely tolerant to noise in data
- ► suitable for a diverse set of medical personal & settings

Architectural Components, Knowledge Representation and Automated Reasoning

Hybrid Decision Making use a semantic reasoner for knowlede-based reasoning over the structured data using inference

if knowledge is missing then predict missing information using machine learning techniques.

reevaluate using semantic reasoner

Algorithm 1 Hybrid Decision Making Algorithm 1: Let query be the user query, KB be a knowledge base and rules be set of inference rules.

- Let reasoner be the semantic reasoner and mlrecommender be an imputation model. {First the reasoner attempts to answer the query by
- 3: $reponse[r, p] \leftarrow reasoner.doProof(query, KB, rules)$
- {If the reasoner is successful, return the result.} 4: **if** $reponse[r, p] \notin \emptyset$ **then return** reponse.r, reponse.p, with confidence 1.
- {Otherwise, if the query answer is negative, return an
- 7: $noresult \leftarrow inspectForFalseModel(proof)$ 8: $unknownresult \leftarrow inspectForCounterModel(proof)$ 9: **if** noresult and not unknownresult **then**
- 10: **return** null response, null proof, confidence of 1; {If the query is presently unanswerable, impute the miss
- ing values and answer it. $predictedValues[] \leftarrow mlrecommender.impute(KB)$
- 14: $KB \leftarrow KB \cup predictedValues[]$ $reponse[r, p] \leftarrow reasoner.doProof(query, KB, rules)$
- $conf \leftarrow \Pi_{p \in predicedValues[]} p.conf$ return reponse.r, reponse.p, conf

System Evaluation — OMeD Vs. Machine Learning Techniques

(average # of missing patient attributes) Result: AdaBoost classifier performance is highly tolerant to noise in data

Result Summary

- 1. Machine learning techniques performed to poorly on their own to be used as the decision support engine.
- 2. Performance of the knowledge-based solution (OMeD) degrades quite rapidly as data "missingness" increases.
- 3. Ada-Boost based classifier is very resilient to data "missingness".
- 4. The hybrid construction of Holmes is noise resilient and performs better than both OMeD and the best machine learning classifier.

Step 1: Selection of a machine learning algorithm for BRFSS

(b) AdaBoost classifiers performs the best

Test Performance for Experiment 2

Result: AdaBoost classifier performance is highly tolerant to noise in data

Step 2: Impact of data "missingness" on the selected machine learning algorithm