"A Semantic Approach to Secure Exchange of Patient Information"

WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

cs.uwaterloo.ca

Presented By: Atif Khan April 25th, 2011

Motivation

Calgary General Hospital

Toronto General Hospital

Motivation

Calgary General Hospital

Toronto General Hospital

Outline

Overview

(Basic building blocks)

Framework

Future Extensions

Conclusion

Overview

Building Blocks

- Access control
 - role based access control (RBAC)
 - policy based access control
- Knowledge management
 - representation, sharing, inference & reasoning
- Multi-agent systems (MAS)

Knowledge Sharing

Representation

- Unique names
 - unambiguous concepts
 - "universe of discourse"
 defines knowledge boundaries

Motivation

- Easy to work with information
 - acquire
 - maintain
 - communicate & share
 - reasoning

"Now! That should clear up a few things around here!"

Knowledge Sharing

Ontology

- Definition
 - "an ontology is an <u>explicit</u> and <u>formal specification</u> of a <u>conceptualization</u>" - Rudi Studer

Components

- concepts (e.g. Patient)
- individuals & objects (e.g. John a patient)
- relationships & properties (restrictions, disjointness)
 - e.g. (John hasPolicy optin)

Knowledge Sharing & Semantic Web

Representation & Storage

- Knowledge represented as <u>triple</u> statements
 - subject verb object.
 - Resource Description Framework (RDF) / Notation 3 (N3)
- Knowledge is stored in <u>triple stores</u>
 - collection of triples

```
:John a :Patient; :hasPolicy :optin.
:HIV_MR a :MedicalRecord; :belongsTo :John.
:DrSmith a :Physician; :isTreating :John.
```

N3 Triple Store

Knowledge Inference

Which statement is true

- a. Mary is a woman.
- b. Mary is a grandmother
- c. Mary is a grandparent

How do we know that Mary is a grandparent?

- has Child \rightarrow parent
- parent of parent \rightarrow grandparent

Rules

- evidence (from the knowledge store)
 - John is a parent & Mary is a parent of parent
 - \rightarrow Mary is a grandparent

Result

Example (Access Control)

Knowledge-Store

:John a :Patient; :hasPolicy :optin. :HIV_MR a :MedicalRecord; :belongsTo :John. :DrSmith a :Physician; :isTreating :John.

Rule

```
{?P :haspolicy :optin.
?MR :belongsTo :?P.
?DOC :isTreating ?P} ⇒ {?DOC :hasAccess ?MR}.
```

Query

_:WHO :hasAccess :HIV_MR.

Reasoner

Proof

```
{{:John :hasPolicy :optin} e:evidence <knowledgebase#_2>.
{:HIV_MR :belongsTo :John} e:evidence <knowledgebase#_4>.
{:DrSmith :isTreating :John} e:evidence <knowledgebase#_6>} =>
```

Result

{{:DrSmith :hasAccess :HIV_MR} e:evidence <rules#_1>}.}.

System Components

Multi-agent System (MAS)

Intelligent Agent (IA)

- Autonomous entity capable of acting on its own
- Interacts with its environment
 - via observations & <u>actions</u>
 - goal oriented (maximize <u>utility</u>)
 - capable of **learning** (using knowledge) to achieve goals

Multi-agent System (MAS)

Multi-agent System (MAS)

- Environment of **interacting** intelligent agents
 - IAs working towards an equilibrium
- Decision making
 - **perfect** vs. **partial** information
- Communication
 - auctions, voting, market, contract-nets
 - agent communication language (ACL)
- Types of interactions
 - cooperative interactions to maximize overall utility
 - non-cooperative interactions to maximize self utility

Multi-agent System (MAS)

Inter-agent Trust Consideration

Proposed Solution

Policy Based Access Control

- Patient consent
- Institutional security & privacy policies

Semantic Knowledge Representation

- Patient consent and other security & privacy policies
- Based on one or more ontolgies (information sharing)
- Can be reasoned with (knowledge inference & reasoning)
- Machine processable

Proposed Solution

Healthcare Entities as IAs

- Ontology based agent communication language
- Cooperative environment
- Overall utility is patient centric
- Dynamic trust establishment

Representing Consent

Sample Policies

Patient Consent

Institutional Policies

Toronto General Hospital

- employee has access to patient records
- employee must be treating the patient
- employee must be on shift
- employee must be a physician

<u>Calgary General</u> <u>Hospital</u>

 all hospital employees have access to patient records

MAS Environment

Intelligent Agents

MAS Environment

3-Phase Protocol

Request for Information – Phase 1

- Dr request for P's medical record from H1
- H2 (institutional agent) propagates the request to
 H1

H1 (institutional agent) receives and processes the request

Proof Generation – Phase 2

- H1 identifies protection set PS
 - PS {patient consent **C**, H1 privacy & security policies **H1Policy**}
- H1 requests H2 for provable validation of PS
 - C & H1Policy
- H2 generates the proof and returns to H1

Proof Generation – Phase 2

TGH security & privacy policy

- employee has access to patient records
- employee must be treating the patient
- employee must be on shift
- employee must be a physician

Required Proof:

•confirm that patient is indeed in an emergency situation

Required Proof:

- •DR is an employee of the hospital
- •DR is treating the patient
- •DR is on shift
- •DR is a physician

Proof Validation – Phase 3

- H1 computes the proof
 - locally
 - using a trusted third party proof checker
- Information is exchanged
 - upon <u>successful</u> validation of proof (of consent & other policies)

Future Extensions

Local Ontology

Mapping (dynamic vs. static)

Context Based Retrieval

- Include search context to enhance access
 Information Caching
- Proof attributes, patient consent, hospital policies
- Privacy-aware Proof Validation
- Utilize cryptographic primitives

Conclusion

Patient Consent Management Framework

- Policy based access control
- Consent & other policies have semantic representation
 - enhanced policy exchange
 - ability to reason about access decision
- Multi-agent System
 - collaborative agent environment
 - agent utility is a function of patient utility
 - trust per request

Thank You!