
WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Introduction to Introduction to
Unified Modelling Language (UML)Unified Modelling Language (UML)

(part 1 Building Blocks & Use Case Modelling)(part 1 Building Blocks & Use Case Modelling)

CS 446/646 ECE452
May 4th, 2010

Material covered in this lecture is based on
various chapters from UML 2 and the Unified
Process 2nd Edition Practical Object
Oriented Analysis & Design

IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion

2011-05-04CS446/646 ECE452 2WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Outline
Introduction

Use case Modelling

2011-05-04CS446/646 ECE452 3WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Introduction
What is UML
● visual modelling language
● UML is a language not a methodology?

– Q: why is this distinction important?

UML Model
● repository of all things and relationships

2011-05-04CS446/646 ECE452 4WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
Things
● Things are the nouns of a UML model
● Three types

– structural things:
● nouns (class, interface, use case etc.)

– behaviour things:
● verbs (interactions, activities etc.)

– grouping things:
● package

– annotational things:
● note

2011-05-04CS446/646 ECE452 5WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
Relationships
● representation of how things relate to each other
● adds semantics to connections between entities

Dependency

Association

Aggregation

Composition

Generalization

Realization

2011-05-04CS446/646 ECE452 6WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
Diagrams
● views of a UML model
● not a model itself

– things/relationships can be omitted
from diagrams but still be part of the model

2011-05-04CS446/646 ECE452 7WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks

2011-05-04CS446/646 ECE452 8WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
Types of UML Diagrams that
● represent static model

– things
– the structural relationship between things

● represent dynamic behaviour
– how things interact to

generate the required functionality

2011-05-04CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
UML Model
● graphical for visualization
● specifications

– provide meaning to the visual components

Deposit

Class
Specification

Use case
Specification

Dependency
Specification

2011-05-04CS446/646 ECE452 10WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Building Blocks
Extensibility Mechanisms
● stereotypes

– allow defining new modelling elements based on existing
– must define the semantics of the new elements

● or else the new model is just a picture
● usually attach a note to the new element

«entity»
Ticket

«entity»
Ticket

Ticket

Ticket

«control»
JobManager Scheduler

«call»

2011-05-04CS446/646 ECE452 11WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Modelling

2011-05-04CS446/646 ECE452 12WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Modelling
Definition
● formalism to capture system requirements

Purpose
● to capture discrete unit of interactions between

– system components & actors
– not between actors

● Q: is use case diagram a behavioural or structural
diagram?

2011-05-04CS446/646 ECE452 13WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Modelling
Components
● system/boundary

– defines internal (system) & external parts
● actors

– a role that an external entity adopts when interacting with
the systems

● flows
– main & alternative flows

2011-05-04CS446/646 ECE452 14WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Closer Look at Actors
Actors are External
● actors are always external to a system

– your system may contain internal representation
of the external actors

«actor»
Customer

«entity»
Customer

 name
 age
 address

2011-05-04CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Closer Look at Actors
Identifying Actors
● consider who or what uses/interacts with your system

Use Roles not Individuals
● assuming a set of customers {Jim, Mike, Helen}

– Q: who/what should be the actor here?

Other things as actors
● Q: what about time as an actor?

– e.g. scheduled tasks

2011-05-04CS446/646 ECE452 16WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

What are Use case
Definition
● “A specification of sequence of actions, including variant

sequences and error sequences, that a system, subsystem
or class can perform by interacting with the with outside
actors” - UML Reference Manual, 2nd Edition-2004

● A use case defines system behaviour during interactions
with the actors

2011-05-04CS446/646 ECE452 17WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

An Example

2011-05-04CS446/646 ECE452 18WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Actor Generalization

2011-05-04CS446/646 ECE452 19WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Generalization

Child use case may
● inherit features from the parent use case
● add new features
● override inherited features

2011-05-04CS446/646 ECE452 20WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Specification

ID1: use case: PaySalesTaxid & name

Pay sales tax to to the tax authoritydescription

Primary actors: Secondary actorsactors
Pre-Conditions:

1. it is the end of business quarter

pre conditions

Main Flow:

1. determine the amount of tax owed
2. prepare payment & other related documentation
3. send an electronic payment

main flow

Post-Conditions:

1. tax authority receives the amount

post conditions

Alternate flows:

InvalidPaymentAmount
Cancel

alternate flows

one main flow

0 or more alt flows
may not merge with
 the main flow

2011-05-04CS446/646 ECE452 21WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case GeneralizationRevisited

Use case feature Inherit Add Override

Relationship Y Y N

Extension point Y Y N

Precondition Y Y Y

Postcondition Y Y Y

Step in main flow Y Y Y

Alternative flow Y Y Y

2011-05-04CS446/646 ECE452 22WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case «include»
Purpose
● collect common use case steps into a single use case

to be reused by other relevant (base) use cases

2011-05-04CS446/646 ECE452 23WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case «extend»
Purpose
● provides a mechanism to insert new behaviour into

existing (base) use case
– base use case provides extension points (hooks)
– extension use case provides a set of insertion

segments

2011-05-04CS446/646 ECE452 24WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case «extend»
Observation
● base use case does not know

about the extension use case
● extension use cases are

not complete on their own
● base use cases are complete

the first segment in IssueFine
is inserted at overdueBook
and the second segment at
payFine

2011-05-04CS446/646 ECE452 25WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case «extend»
Rules
● «extend» relationship must identify one or more extension

points in the base use case
– otherwise the relationship refers to all extension points

● extension use case must have the same number of
insertion segments as there are extension points
in the «extend» relationship

● it is legal for legal for two extension use cases to
«extend» the same base use case at the same extension
point

2011-05-04CS446/646 ECE452 26WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Conditional Extensions

2011-05-04CS446/646 ECE452 27WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case Modelling

http://en.wikipedia.org/wiki/Use_case_diagram

2011-05-04CS446/646 ECE452 28WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Functional Decomposition
Good or Bad?
● what is functional decomposition?

2011-05-04CS446/646 ECE452 29WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Functional Decomposition
Observations
● focus on capturing the requirements
● it is not object design
● the higher level use cases might not be of interest
● model is complicated
● usually indicates that the analyst is viewing the system in

a procedural way rather the OO paradigm

Verdict
● bad

2011-05-04CS446/646 ECE452 30WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Use Case & Requirements Tracing
Purpose
● link requirements to use cases
● many-to-many relationship

Requirement Tracing Matrix
● validate consistency

– missing use cases
– missing requirements

UC1 UC2 UC3 UC4

R1 X

R2 X X

R3 X

R4 Xre
q

u
ir

em
en

ts

use cases

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

