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IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion
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Outline
Introduction

Use case Modelling
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Introduction
What is UML
● visual modelling language
● UML is a language not a methodology?

– Q: why is this distinction important?

UML Model
● repository of all things and relationships
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Building Blocks
Things
● Things are the nouns of a UML model
● Three types

– structural things: 
● nouns (class, interface, use case etc.)

– behaviour things: 
● verbs (interactions, activities etc.)

– grouping things: 
● package

– annotational things: 
● note
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Building Blocks
Relationships
● representation of how things relate to each other
● adds semantics to connections between entities

Dependency

Association

Aggregation

Composition

Generalization

Realization
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Building Blocks
Diagrams
● views of a UML model
● not a model itself

– things/relationships can be omitted 
from diagrams but still be part of the model
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Building Blocks
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Building Blocks
Types of UML Diagrams that
● represent static model

– things
– the structural relationship between things

● represent dynamic behaviour
– how things interact to 

generate the required functionality
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Building Blocks
UML Model
● graphical for visualization
● specifications

– provide meaning to the visual components

Deposit

Class
Specification

Use case
Specification

Dependency
Specification
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Building Blocks
Extensibility Mechanisms
● stereotypes

– allow defining new modelling elements based on existing
– must define the semantics of the new elements

● or else the new model is just a picture
● usually attach a note to the new element

«entity»
Ticket

«entity»
Ticket

Ticket

Ticket

«control»
JobManager Scheduler

«call»
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Use Case Modelling
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Use Case Modelling
Definition
● formalism to capture system requirements

Purpose
● to capture discrete unit of interactions between 

– system components & actors
– not between actors

● Q: is use case diagram a behavioural or structural 
diagram?
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Use Case Modelling
Components
● system/boundary

– defines internal (system) & external parts
● actors

– a role that an external entity adopts when interacting with 
the systems

● flows
– main & alternative flows
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Closer Look at Actors
Actors are External
● actors are always external to a system

– your system may contain internal representation 
of the external actors

«actor»
Customer

«entity»
Customer

 name
 age
 address
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Closer Look at Actors
Identifying Actors
● consider who or what uses/interacts with your system

Use Roles not Individuals
● assuming a set of customers {Jim, Mike, Helen}

– Q: who/what should be the actor here?

Other things as actors
● Q: what about time as an actor?

– e.g. scheduled tasks
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What are Use case
Definition
● “A specification of sequence of actions, including variant 

sequences and error sequences, that a system, subsystem 
or class can perform by interacting with the with outside 
actors” - UML Reference Manual, 2nd Edition-2004 

● A use case defines system behaviour during interactions 
with the actors 
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An Example
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Actor Generalization
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Use Case Generalization

Child use case may
● inherit features from the parent use case
● add new features
● override inherited features
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Use Case Specification

ID1: use case: PaySalesTaxid & name

Pay sales tax to to the tax authoritydescription

Primary actors: Secondary actorsactors
Pre-Conditions:

1. it is the end of business quarter

pre conditions

Main Flow:

1. determine the amount of tax owed
2. prepare payment & other related documentation
3. send an electronic payment

main flow

Post-Conditions:

1. tax authority receives the amount

post conditions

Alternate flows:

InvalidPaymentAmount
Cancel

alternate flows

one main flow

0 or more  alt flows
may not merge with
     the main flow
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Use Case GeneralizationRevisited

Use case feature Inherit Add Override

Relationship Y Y N

Extension point Y Y N

Precondition Y Y Y

Postcondition Y Y Y

Step in main flow Y Y Y

Alternative flow Y Y Y
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Use Case «include»
Purpose
● collect common use case steps into a single use case

to be reused by other relevant (base) use cases
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Use Case «extend»
Purpose
● provides a mechanism to insert new behaviour into

existing (base) use case
– base use case provides extension points (hooks)
– extension use case provides a set of insertion

segments
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Use Case «extend»
Observation
● base use case does not know 

about the extension use case
● extension use cases are 

not complete on their own
● base use cases are complete

the first segment in IssueFine 
is inserted at overdueBook 
and the second segment at 
payFine
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Use Case «extend»
Rules
● «extend» relationship must identify one or more extension 

points in the base use case
– otherwise the relationship refers to all extension points

● extension use case must have the same number of 
insertion segments as there are extension points
in the «extend» relationship

● it is legal for legal for two extension use cases to 
«extend» the same base use case at the same extension 
point
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Conditional Extensions
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Use Case Modelling

http://en.wikipedia.org/wiki/Use_case_diagram
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Functional Decomposition
Good or Bad?
● what is functional decomposition?
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Functional Decomposition
Observations
● focus on capturing the requirements
● it is not object design
● the higher level use cases might not be of interest
● model is complicated
● usually indicates that the analyst is viewing the system in 

a procedural way rather the OO paradigm

Verdict
● bad
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Use Case & Requirements Tracing
Purpose
● link requirements to use cases
● many-to-many relationship

Requirement Tracing Matrix
● validate consistency

– missing use cases
– missing requirements

UC1 UC2 UC3 UC4

R1 X

R2 X X

R3 X

R4 Xre
q

u
ir

em
en

ts

use cases
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