
WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural BlueprintArchitectural Blueprint
““The 4+1 View Model The 4+1 View Model

of Software Architectureof Software Architecture” ”

by Philippe Kruchtenby Philippe Kruchten

CS 446/646 ECE452
May 30th, 2011

IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion

CS446/646 ECE452 2WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural Model
Definition[1]
● Software architecture = {Elements, Forms, Constraints}

Definition [2]
● “deals with the design and implementation of the high-

level structure of the software.

It is the result of assembling a certain number of
architectural elements in some well-chosen forms to
satisfy the major functionality and nonfunctional
requirements”

[1] D. E. Perry & A. L. Wolf, “Foundations for the Study of Software Architecture,” ACM Software
Engineering Notes, 17, 4, October 1992, 40-52

[2] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.

CS446/646 ECE452 3WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Is this an Architectural Model?

Software/
System

Developers

Designers

Managers

End-Users

Owners

Build
engineers

Test
engineers

Sale reps

Deployment
engineers

Software/System stakeholders Model

What is going on here?

CS446/646 ECE452 4WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Desired Attributes
Addresses & captures
● concerns of various stakeholders

– stakeholders:
● end-users, developers, system engineers, project management
● testers, support teams

● requirements
– functional
– non-functional

● performance, availability, concurrency, distribution, fault
tolerance, security, testing, usability, configuration management,
evolution, monitoring

CS446/646 ECE452 5WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Desired Attributes
An abstraction
● represents the high level view

Is robust
● adaptable
● scalable
● iterative

Meaningful & maintainable
● has to be a live document

– changes with the system

CS446/646 ECE452 6WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Types of Architectural Styles
Box & line model

Architectural definition language (ADL)

View based models
● 4+1 view model (1995)

CS446/646 ECE452 7WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

4+1 View Model
Model
● a model is composed of 5 views

– a single view is not enough

View
● is catered for a set of corresponding stakeholders

– addresses the concerns of its stakeholders
● contains view elements

– components, connectors, notation
● generic representation

CS446/646 ECE452 8WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

4+1 View Model

Logical
View

Development
View

Process
View

Physical
View

Scenario
View

Perhaps it should have been called 1+4 View Model

CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Logical View
Intent
● 'object model' of the design
● is generally the starting point
● addresses primarily functional requirements
● decomposition into 'architectural entities'

Style
● abstract data types / OO

Stakeholders
● end-users, architects, designers

CS446/646 ECE452 10WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Logical View
View representations
● 1. OOA (object oriented analysis)

– entities are analysis classes
– application of OOA principles

● abstraction, encapsulation. inheritance
● association (aggregation, composition)

– class diagrams, state diagrams
● 2. data centric analysis

– entity relationship (ER) diagrams

which is the correct view representation?

CS446/646 ECE452 11WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Example Logical View

CS446/646 ECE452 12WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Logical View
Design guidelines
● a single (object) model across the system (why?)
● avoid premature specialization (of what?)
● UML diagrams

– class, communication, sequence diagrams

CS446/646 ECE452 13WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Process View
Intent
● handles the non-functional requirements
● abstraction of architectural processes

CS446/646 ECE452 14WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Process View
Architectural Process
● grouping of tasks into executable units

– task: thread of control
● task hierarchy: major & minor tasks

– reflects task scope
● types: atomic & distributed
● can be replicated

– to improve performance, availability etc.
● execute on 'process nodes' (what is a process node?)

CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Process View
Communication
● messaging (synchronous, asynchronous, RPC, broadcast)

– usually for major tasks
● shared memory

– for minor tasks
● can we estimate the system load form the inter-process

communication?

CS446/646 ECE452 16WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Process View
Style
● several styles are applicable

– pipes & filters
– layered

● client / server

Stakeholders
● integrators, architects

CS446/646 ECE452 17WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Example Process View

CS446/646 ECE452 18WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Development View
Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements

CS446/646 ECE452 19WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Development View
Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements

management

requirement
allocation

cost
evaluation

progress
monitoring

reuse

technologymanagement resources

<from class>

CS446/646 ECE452 20WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Development View
Style
● layered style

– each layer with well defined interface
– subsystem dependencies on other subsystems

● in the same layer or lower

– each layer provides a development abstraction
(responsibility)

Stakeholders
● managers, architects, designers, developers, testers

CS446/646 ECE452 21WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

CS446/646 ECE452 22WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Development View
Observations
● “complete development architecture can only be

described when all the elements of the software have been
identified.” [1]

● So what things can we define here?

[1] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.

CS446/646 ECE452 23WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Development View
Observations
● “complete development architecture can only be

described when all the elements of the software have been
identified.” [1]

● So what things can we define here?

[1] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.

code
partitioning

inter-partition
dependencies

module
visibility

development
methodology

work
allocation

CS446/646 ECE452 24WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Physical View
Intent
● physical manifestation of process view

– processes are mapped to processing nodes

Concerns
● installation, configuration, deployment & delivery,

networking, messaging protocols

Stakeholders
● system engineers, installers, architects, operators

CS446/646 ECE452 25WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

CS446/646 ECE452 26WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Physical View
Design guidelines
● mapping to be flexible
● minimal impact on source code
● same concerns as process view
● UML deployment diagram

CS446/646 ECE452 27WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Scenario View
Intent
● “one view to rule them all”
● capture system functionality in scenarios

– interaction of objects & processes
– driven by important scenarios

● provides architecture validation

Stakeholders
● all stakeholders from the other views

CS446/646 ECE452 28WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Example Scenario View

Components
from the logical view

Connectors
from the process view

looks like a collaboration diagrams.
what happened to use case diagram?

CS446/646 ECE452 29WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Example Scenario View

Components
from the logical view

Connectors
from the process view

looks like a collaboration diagrams.
what happened to use case diagram?

use cases & use case realization

CS446/646 ECE452 30WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

View Mappings

Logical
View

Development
View

Process
View

Physical
View

Scenario
View

CS446/646 ECE452 31WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Logical to Process View
Objects are mapped to processes
● considerations

– autonomy
– persistence
– subordination
– distribution

Strategy
● inside-out: identify processes for objects
● outside-in: identify processes (based on system requests)

and then allocate objects to these processes

CS446/646 ECE452 32WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Logical to Development View
Architectural component decomposition
● architectural entities are broken down into design

components
– packages, modules
– classes

● mapping is governed by development concerns
● 'distance' between logical and design view

– an indication of the size of the system

CS446/646 ECE452 33WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Process to Physical View
Processes assignment to hardware
● major and minor tasks are assigned to physical machines
● various configurations

– development
– testing
– deployment

CS446/646 ECE452 34WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Model an Iterative Process
Start with a model

In each iteration the architecture is
● prototyped
● tested: under load if possible
● measured & analyzed
● refined

– add more scenarios
– detect abstractions and optimizations

● goal:
– each iteration should takes us a step closer to a stable

architecture

CS446/646 ECE452 35WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Comments
Lacks some fundamental views
● security, user interface, testing
● upgrade, disaster recovery

Are the views ever complete?

Change in architectural style?
● data centric to OO architecture

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

