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IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion
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Architectural Model
Definition[1]
● Software architecture = {Elements, Forms, Constraints}

Definition [2]
● “deals with the design and implementation of the high-

level structure of the software. 

It is the result of assembling a certain number of 
architectural elements in some well-chosen forms to 
satisfy the major functionality and .... nonfunctional 
requirements”

[1] D. E. Perry & A. L. Wolf, “Foundations for the Study of Software Architecture,” ACM Software 
Engineering Notes, 17, 4, October 1992, 40-52

[2] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.
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Is this an Architectural Model?

Software/
System

Developers

Designers

Managers

End-Users

Owners

Build
engineers

Test
engineers

Sale reps

Deployment
engineers

Software/System stakeholders Model

What is going on here?
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Desired Attributes
Addresses & captures
● concerns of various stakeholders

– stakeholders:
● end-users, developers, system engineers, project management
● testers, support teams

● requirements
– functional
– non-functional

● performance, availability, concurrency, distribution, fault 
tolerance, security, testing, usability, configuration management, 
evolution, monitoring
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Desired Attributes
An abstraction
● represents the high level view

Is robust
● adaptable
● scalable
● iterative

Meaningful & maintainable
● has to be a live document

– changes with the system
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Types of Architectural Styles
Box & line model

Architectural definition language (ADL)

View based models
● 4+1 view model (1995)
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4+1 View Model
Model
● a model is composed of 5 views

– a single view is not enough

View 
● is catered for a set of corresponding stakeholders

– addresses the concerns of its stakeholders
● contains view elements

– components, connectors, notation 
● generic representation
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4+1 View Model

Logical
View

Development
View

Process
View

Physical
View

Scenario
View

Perhaps it should have been called 1+4 View Model
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Logical View
Intent
● 'object model' of the design
● is generally the starting point
● addresses primarily functional requirements
● decomposition into 'architectural entities'

Style
● abstract data types / OO

Stakeholders
● end-users, architects, designers
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Logical View
View representations
● 1. OOA (object oriented analysis)

– entities are analysis classes
– application of OOA principles

● abstraction, encapsulation. inheritance
● association (aggregation, composition)

– class diagrams, state diagrams
● 2. data centric analysis

– entity relationship (ER) diagrams

which is the correct view representation?
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Example Logical View
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Logical View
Design guidelines
● a single (object) model across the system (why?)
● avoid premature specialization (of what?)
● UML diagrams

– class, communication, sequence diagrams
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Process View
Intent
● handles the non-functional requirements
● abstraction of architectural processes
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Process View
Architectural Process
● grouping of tasks into executable units

– task: thread of control
● task hierarchy: major & minor tasks

– reflects task scope
● types: atomic & distributed
● can be replicated 

– to improve performance, availability etc.
● execute on 'process nodes' (what is a process node?)
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Process View
Communication
● messaging (synchronous, asynchronous, RPC, broadcast)

– usually for major tasks
● shared memory

– for minor tasks
● can we estimate the system load form the inter-process 

communication?
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Process View
Style
● several styles are applicable

– pipes & filters
– layered

● client / server

Stakeholders
● integrators, architects
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Example Process View
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Development View
Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements
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Development View
Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements

management

requirement 
allocation

cost 
evaluation

progress 
monitoring

reuse

technologymanagement resources

<from class>
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Development View
Style
● layered style

– each layer with well defined interface
– subsystem dependencies on other subsystems

● in the same layer or lower 

– each layer provides a development abstraction 
(responsibility)

Stakeholders
● managers, architects, designers, developers, testers
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Development View
Observations
● “complete development architecture can only be 

described when all the elements of the software have been 
identified.” [1]

● So what things can we define here?

[1] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.
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Development View
Observations
● “complete development architecture can only be 

described when all the elements of the software have been 
identified.” [1]

● So what things can we define here?

[1] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software, 12(6), Nov. 1995, pp. 42–50.

code 
partitioning

inter-partition
dependencies

module 
visibility

development 
methodology

work 
allocation



CS446/646 ECE452 24WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Physical View
Intent
● physical manifestation of process view

– processes are mapped to processing nodes

Concerns
● installation, configuration, deployment & delivery, 

networking, messaging protocols

Stakeholders
● system engineers, installers, architects, operators
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Physical View
Design guidelines
● mapping to be flexible
● minimal impact on source code
● same concerns as process view
● UML deployment diagram
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Scenario View
Intent
● “one view to rule them all”
● capture system functionality in scenarios

– interaction of objects & processes
– driven by important scenarios

● provides architecture validation

Stakeholders
● all stakeholders from the other views
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Example Scenario View

Components
from the logical view

Connectors
from the process view

looks like a collaboration diagrams.
what happened to use case diagram?
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Example Scenario View

Components
from the logical view

Connectors
from the process view

looks like a collaboration diagrams.
what happened to use case diagram?

use cases & use case realization
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View Mappings

Logical
View

Development
View

Process
View

Physical
View

Scenario
View
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Logical to Process View
Objects are mapped to processes
● considerations

– autonomy
– persistence
– subordination
– distribution

Strategy
● inside-out: identify processes for objects
● outside-in: identify processes (based on system requests) 

and then allocate objects to these processes
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Logical to Development View
Architectural component decomposition
● architectural entities are broken down into design 

components
– packages, modules
– classes

● mapping is governed by development concerns
● 'distance' between logical and design view

– an indication of the size of the system
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Process to Physical View
Processes assignment to hardware
● major and minor tasks are assigned to physical machines
● various configurations

– development
– testing
– deployment
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Model an Iterative Process
Start with a model

In each iteration the architecture is 
● prototyped
● tested: under load if possible
● measured & analyzed
● refined

– add more scenarios
– detect abstractions and optimizations

● goal:
– each iteration should takes us a step closer to a stable 

architecture
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Comments
Lacks some fundamental views
● security, user interface, testing
● upgrade, disaster recovery

Are the views ever complete?

Change in architectural style?
● data centric to OO architecture
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