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IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion
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Layered Systems
Organized hierarchy
● each layer has a unique role

– provides a service to the layer above
– acts as a client to the layer below

● separation of concerns?
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Layered Systems
Components 
● layers: composed of groups of sub tasks/systems
● API: set of classes exposing an API layer

Connectors
● communication protocols/interfaces

– define the inter-layer interaction
– should facilitate loose coupling
– aim for standardized communication mechanism
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Layered Systems

core

basic utilities

applications

Onion skin model Tree model

Different Layering Styles
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Layered Systems

persistence

business functions

app1 app2

Tiered Model
● specialization for enterprise applications
● tiers are generally physically separated (so what?)
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Layered Systems
Invariants
● limit layer interactions to adjacent layers only

– can be violated (how?)
● much richer interaction compared to pipeline

– two way communication
● layers must support the protocols of its upper and lower 

boundaries
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Layered Systems
Advantages
● increasing levels of abstraction
● sub-component encapsulation
● low coupling

– easy to maintain
– a layer only interacts with a layer above and a layer below

● high (intra-layer) cohesion
● modular reuse

– a layer can be replaced by another as long as the interface is 
not violated
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Layered Systems
Disadvantages
● not all systems can be layered

– why not?

Other Considerations
● performance

– may force the high level functions to be tightly coupled 
with low level implementation

● layer abstraction
– defining 'layer abstraction' is not always trivial
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Repositories
Main idea
● centralized source of information with 

many components

Components
● central data-store component

– represents system state/data
● collection of data-use components

– collection of independent components operate on the central 
data-store

Connectors?
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Repositories
Database
● active: incoming streams of transactions trigger processes 

to act on data-store

Blackboard
● passive: current state of the data-store triggers processes
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Repositories
Advantages
● efficient when dealing with large amounts of data

– known data schema
– leads to ease of data sharing
– centralized management

● clients are loosely coupled
– why?
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Repositories
Disadvantages
● data model 

– is static, bounded by defined schema
– resistant to change as many depend on it
– evolution is expensive
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Interpreter Style
Main idea
● bridge functionality via software virtual machine

– “suitable for applications in which the most appropriate 
language or machine for executing the solution is not 
directly available”
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Interpreter Style
Components
● interpretation engine

– to do the work
● memory

– contains the 
psuedo-code & state

● control state of 
the engine

● current state of the program
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Interpreter Style
Connectors
● procedure calls
● direct memory access
● Examples

– programming language compilers (Java, small talk)
– Scripting languages (awk, Perl)
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Interpreter Style
Advantages
● simulation of non-implemented parts
● portability

– across a variety of platforms

Disadvantages
● performance

– computational complexity – slow execution
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Further Reading
Microsoft Architectural Patterns and Styles
● http://msdn.microsoft.com/en-us/library/ee658117.aspx#ComponentBasedStyle

http://msdn.microsoft.com/en-us/library/ee658117.aspx#ComponentBasedStyle
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