
WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

An Introduction to An Introduction to 
Software ArchitectureSoftware Architecture

ByBy
David Garlan & Mary Shaw – 94David Garlan & Mary Shaw – 94

CS 446/646 ECE452
May 18th, 2011

IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion



2011-05-04CS446/646 ECE452 2WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems
Organized hierarchy
● each layer has a unique role

– provides a service to the layer above
– acts as a client to the layer below

● separation of concerns?



2011-05-04CS446/646 ECE452 3WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems
Components 
● layers: composed of groups of sub tasks/systems
● API: set of classes exposing an API layer

Connectors
● communication protocols/interfaces

– define the inter-layer interaction
– should facilitate loose coupling
– aim for standardized communication mechanism



2011-05-04CS446/646 ECE452 4WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems

core

basic utilities

applications

Onion skin model Tree model

Different Layering Styles



2011-05-04CS446/646 ECE452 5WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems

persistence

business functions

app1 app2

Tiered Model
● specialization for enterprise applications
● tiers are generally physically separated (so what?)



2011-05-04CS446/646 ECE452 6WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems
Invariants
● limit layer interactions to adjacent layers only

– can be violated (how?)
● much richer interaction compared to pipeline

– two way communication
● layers must support the protocols of its upper and lower 

boundaries



2011-05-04CS446/646 ECE452 7WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems
Advantages
● increasing levels of abstraction
● sub-component encapsulation
● low coupling

– easy to maintain
– a layer only interacts with a layer above and a layer below

● high (intra-layer) cohesion
● modular reuse

– a layer can be replaced by another as long as the interface is 
not violated



2011-05-04CS446/646 ECE452 8WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Layered Systems
Disadvantages
● not all systems can be layered

– why not?

Other Considerations
● performance

– may force the high level functions to be tightly coupled 
with low level implementation

● layer abstraction
– defining 'layer abstraction' is not always trivial



2011-05-04CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Repositories
Main idea
● centralized source of information with 

many components

Components
● central data-store component

– represents system state/data
● collection of data-use components

– collection of independent components operate on the central 
data-store

Connectors?



2011-05-04CS446/646 ECE452 10WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Repositories
Database
● active: incoming streams of transactions trigger processes 

to act on data-store

Blackboard
● passive: current state of the data-store triggers processes



2011-05-04CS446/646 ECE452 11WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Repositories
Advantages
● efficient when dealing with large amounts of data

– known data schema
– leads to ease of data sharing
– centralized management

● clients are loosely coupled
– why?



2011-05-04CS446/646 ECE452 12WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Repositories
Disadvantages
● data model 

– is static, bounded by defined schema
– resistant to change as many depend on it
– evolution is expensive



2011-05-04CS446/646 ECE452 13WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Interpreter Style
Main idea
● bridge functionality via software virtual machine

– “suitable for applications in which the most appropriate 
language or machine for executing the solution is not 
directly available”



2011-05-04CS446/646 ECE452 14WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Interpreter Style
Components
● interpretation engine

– to do the work
● memory

– contains the 
psuedo-code & state

● control state of 
the engine

● current state of the program



2011-05-04CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Interpreter Style
Connectors
● procedure calls
● direct memory access
● Examples

– programming language compilers (Java, small talk)
– Scripting languages (awk, Perl)



2011-05-04CS446/646 ECE452 16WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Interpreter Style
Advantages
● simulation of non-implemented parts
● portability

– across a variety of platforms

Disadvantages
● performance

– computational complexity – slow execution



2011-05-04CS446/646 ECE452 17WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Further Reading
Microsoft Architectural Patterns and Styles
● http://msdn.microsoft.com/en-us/library/ee658117.aspx#ComponentBasedStyle

http://msdn.microsoft.com/en-us/library/ee658117.aspx#ComponentBasedStyle

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

