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IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion
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Motivation
Software Systems
● are more complex & bigger
● are not just about “algorithms” anymore

Challenges
– structural issues
– communication (type, protocol)
– synchronization
– data access & manipulation
– deployment
– performance
– testing

Which ones of these issues 
are more important than the 
others?
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Architectural Style
Recognize common patterns
● build new systems as 
variation on old systems

Selecting the right 
architecture
● crucial to success
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Architectural Style
Making Choices
● choices should be guided by system goals

– anything else ?

System Representation
● describes the high level properties 
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Architectural Style
Architecture Anatomy
● component: represents computation (work)
● connectors: facilitates component communication

Architectural Style/Configuration
● architecture = {components, connectors, constraints}

– sounds UMLish?

Visualization 
● graph representation
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Architectural Styles

Pipes & filters

Data abstraction

Implicit invocation

Layered systems

Repositories
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Pipes & Filters
Overview
● architectural pattern for stream 

processing
● a filter defines a 

processing/computation step
● data flows through a 

sequential chain of filters
● a filter chain represents a system

F1

F2

F3

Component

Connector

data flow



2011-05-04CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Components (Filters)
● set of inputs and outputs
● input & output streams
● local transformation

– incremental output

Connectors (Pipes)
● facilitate data flow
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Pipes & Filters
Invariants
● filters are independent entities

– do not share state
– have no knowledge of other filters

● data transformation
– incremental 
– not dependent on order in the chain

● what does this mean?
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Pipes & Filters
Specialization
● Pipelines

– restricted to linear topology
● Bounded pipes

– restricts the amount of data on a pipe
● Typed pipes

– data on a pipe to be of an acceptable type

Can a filter process all of its input data as a single 
entity?
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Pipes & Filters
Examples
● unix shell programs 

– pipelines (cat file1 | sort | grep keyword)



2011-05-04CS446/646 ECE452 19WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Examples
● JEE Servlet Filter (javax.servlet.Filter)

– typed pipes

request

response

HTTPRequest

HTTPResponse

server servlet

server servletf1 f2 fn
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Pipes & Filters
Examples
● compilers

– more of a sequential batch architecture

lex syn sem opt code

source code machine code
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Pipes & Filters
Advantages
● simple composition
● reuse

– any two filters can be combined together
● as long as they speak the same data language

● prototyping
– how many scripts make use of grep, awk, sed etc?

● easy growth & evolution (how?)
● architectural evaluation for performance & bottlenecks
● naturally support concurrency & parallelism
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Pipes & Filters
Disadvantages
● poor performance

– each filter has to parse data
– sharing global data is difficult

● not appropriate for interaction
● low fault tolerance threshold

– what happens if a filter crashes
● data transformation 

– to LCD to accommodate filters 
– increases complexity & computation
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Data Abstraction
Object Oriented Organization (OOO)
● encapsulation (data & operations)
● division of responsibility
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Data Abstraction
Components
● objects, modules
● discrete, independent, loosely coupled

Connectors
● represent inter-object communication

– synchronous or asynchronous 
● via messaging

– method calls 
● interface
● property access methods, 
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Data Abstraction
Key Aspects
● objects preserve their integrity 
● no direct access
● object representation is a private affair
● functional composition

– objects can be assembled from other objects
● inheritance & polymorphism
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Data Abstraction
Advantages
● implementation changes with minimal global impact

– is this really true?
● decomposition

– large system into a set of interacting objects
– easy to manage & evolve

● highly cohesive
– really?

● extensible
– via inheritance & polymorphism



2011-05-04CS446/646 ECE452 27WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Disadvantages
● interaction == coupling

– objects interact via public contract
– what happens when the contract changes?
– indirect coupling: 

● A uses B, C uses B, then changes made by C 
on B are unexpected to A



2011-05-04CS446/646 ECE452 28WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Some Thoughts
● design by contract – interfaces

– decouples inter-object dependencies
● synchronization
● fault-tolerance

– what would happen if an object were to fail during an 
operation?

● evolution
– does an OO system guarantee a good evolution path?
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Implicit Invocation
Event-based
● components do not directly invoke other components
● similar to observer (GOF) design pattern

– implicit invocation architectural style has broader scope
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Implicit Invocation
Components
● modules {event, callback | procedure} 

– objects, processes, distributed applications

Connectors
● traditional method call
● broadcast of events
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Implicit Invocation
Publish & Subscribe
● components register for events
● events are generated/published 

– by different sources to a centralized system
● events are broadcast

– via callback or procedure
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Implicit Invocation
Invariants
● event generators do not know 

– about event consumers
– functional impact on different components

● broadcast ordering
– components cannot make assumptions about ordered 

delivery
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Implicit Invocation
Examples
● news, fire alarms etc. (hmmm...sort of)
● model view controller (MVC)
● integrated development environments (IDE)
● database systems to

– ensure consistency constraints
– execute stored procedures

● user interface
– separation of data presentation from data management

● enterprise application interaction
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Implicit Invocation
Advantages
● minimal dependency and loose coupling

– components do not directly interact with each other
– components can be added or removed

● highly reusable
– components can be replaced with newer components

● without changing their interfaces (TRUE/FALSE)?
● scalable

– new components can simply register themselves
– how about purging the older components?
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Implicit Invocation
Disadvantages
● loss of execution control

– who, when, what
● data exchange

– information has to be encapsulated within an event
– shared repository
– impact on global system performance & resource 

management
● event context

– unpredictable side effects
– how to debug such a problem?
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