
WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

An Introduction to An Introduction to
Software ArchitectureSoftware Architecture

ByBy
David Garlan & Mary Shaw – 94David Garlan & Mary Shaw – 94

CS 446/646 ECE452
May 16th, 2011

IMPORTANT NOTICE TO STUDENTS

These slides are NOT to be used as a replacement for student notes.
These slides are sometimes vague and incomplete on purpose to spark a class discussion

2011-05-04CS446/646 ECE452 2WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Motivation
Software Systems
● are more complex & bigger
● are not just about “algorithms” anymore

Challenges
– structural issues
– communication (type, protocol)
– synchronization
– data access & manipulation
– deployment
– performance
– testing

Which ones of these issues
are more important than the
others?

2011-05-04CS446/646 ECE452 3WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural Style
Recognize common patterns
● build new systems as
variation on old systems

Selecting the right
architecture
● crucial to success

2011-05-04CS446/646 ECE452 4WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 5WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 6WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 7WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 8WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 9WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 10WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

2011-05-04CS446/646 ECE452 11WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural Style
Making Choices
● choices should be guided by system goals

– anything else ?

System Representation
● describes the high level properties

2011-05-04CS446/646 ECE452 12WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural Style
Architecture Anatomy
● component: represents computation (work)
● connectors: facilitates component communication

Architectural Style/Configuration
● architecture = {components, connectors, constraints}

– sounds UMLish?

Visualization
● graph representation

2011-05-04CS446/646 ECE452 13WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Architectural Styles

Pipes & filters

Data abstraction

Implicit invocation

Layered systems

Repositories

2011-05-04CS446/646 ECE452 14WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Overview
● architectural pattern for stream

processing
● a filter defines a

processing/computation step
● data flows through a

sequential chain of filters
● a filter chain represents a system

F1

F2

F3

Component

Connector

data flow

2011-05-04CS446/646 ECE452 15WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Components (Filters)
● set of inputs and outputs
● input & output streams
● local transformation

– incremental output

Connectors (Pipes)
● facilitate data flow

2011-05-04CS446/646 ECE452 16WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Invariants
● filters are independent entities

– do not share state
– have no knowledge of other filters

● data transformation
– incremental
– not dependent on order in the chain

● what does this mean?

2011-05-04CS446/646 ECE452 17WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Specialization
● Pipelines

– restricted to linear topology
● Bounded pipes

– restricts the amount of data on a pipe
● Typed pipes

– data on a pipe to be of an acceptable type

Can a filter process all of its input data as a single
entity?

2011-05-04CS446/646 ECE452 18WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Examples
● unix shell programs

– pipelines (cat file1 | sort | grep keyword)

2011-05-04CS446/646 ECE452 19WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Examples
● JEE Servlet Filter (javax.servlet.Filter)

– typed pipes

request

response

HTTPRequest

HTTPResponse

server servlet

server servletf1 f2 fn

2011-05-04CS446/646 ECE452 20WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Examples
● compilers

– more of a sequential batch architecture

lex syn sem opt code

source code machine code

2011-05-04CS446/646 ECE452 21WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Advantages
● simple composition
● reuse

– any two filters can be combined together
● as long as they speak the same data language

● prototyping
– how many scripts make use of grep, awk, sed etc?

● easy growth & evolution (how?)
● architectural evaluation for performance & bottlenecks
● naturally support concurrency & parallelism

2011-05-04CS446/646 ECE452 22WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Pipes & Filters
Disadvantages
● poor performance

– each filter has to parse data
– sharing global data is difficult

● not appropriate for interaction
● low fault tolerance threshold

– what happens if a filter crashes
● data transformation

– to LCD to accommodate filters
– increases complexity & computation

2011-05-04CS446/646 ECE452 23WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Object Oriented Organization (OOO)
● encapsulation (data & operations)
● division of responsibility

2011-05-04CS446/646 ECE452 24WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Components
● objects, modules
● discrete, independent, loosely coupled

Connectors
● represent inter-object communication

– synchronous or asynchronous
● via messaging

– method calls
● interface
● property access methods,

2011-05-04CS446/646 ECE452 25WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Key Aspects
● objects preserve their integrity
● no direct access
● object representation is a private affair
● functional composition

– objects can be assembled from other objects
● inheritance & polymorphism

2011-05-04CS446/646 ECE452 26WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Advantages
● implementation changes with minimal global impact

– is this really true?
● decomposition

– large system into a set of interacting objects
– easy to manage & evolve

● highly cohesive
– really?

● extensible
– via inheritance & polymorphism

2011-05-04CS446/646 ECE452 27WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Disadvantages
● interaction == coupling

– objects interact via public contract
– what happens when the contract changes?
– indirect coupling:

● A uses B, C uses B, then changes made by C
on B are unexpected to A

2011-05-04CS446/646 ECE452 28WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Data Abstraction
Some Thoughts
● design by contract – interfaces

– decouples inter-object dependencies
● synchronization
● fault-tolerance

– what would happen if an object were to fail during an
operation?

● evolution
– does an OO system guarantee a good evolution path?

2011-05-04CS446/646 ECE452 29WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Event-based
● components do not directly invoke other components
● similar to observer (GOF) design pattern

– implicit invocation architectural style has broader scope

2011-05-04CS446/646 ECE452 30WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Components
● modules {event, callback | procedure}

– objects, processes, distributed applications

Connectors
● traditional method call
● broadcast of events

2011-05-04CS446/646 ECE452 31WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Publish & Subscribe
● components register for events
● events are generated/published

– by different sources to a centralized system
● events are broadcast

– via callback or procedure

2011-05-04CS446/646 ECE452 32WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Invariants
● event generators do not know

– about event consumers
– functional impact on different components

● broadcast ordering
– components cannot make assumptions about ordered

delivery

2011-05-04CS446/646 ECE452 33WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Examples
● news, fire alarms etc. (hmmm...sort of)
● model view controller (MVC)
● integrated development environments (IDE)
● database systems to

– ensure consistency constraints
– execute stored procedures

● user interface
– separation of data presentation from data management

● enterprise application interaction

2011-05-04CS446/646 ECE452 34WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Advantages
● minimal dependency and loose coupling

– components do not directly interact with each other
– components can be added or removed

● highly reusable
– components can be replaced with newer components

● without changing their interfaces (TRUE/FALSE)?
● scalable

– new components can simply register themselves
– how about purging the older components?

2011-05-04CS446/646 ECE452 35WATERLOO
CHERITON SCHOOL OF
COMPUTER SCIENCE

Implicit Invocation
Disadvantages
● loss of execution control

– who, when, what
● data exchange

– information has to be encapsulated within an event
– shared repository
– impact on global system performance & resource

management
● event context

– unpredictable side effects
– how to debug such a problem?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

