I) Imagine that you are implementing a file system. The main abstractions in your design would be files and directories. Directories can contain zero or more files or directories. You want to treat directories and files in a uniform way, e.g., both will have name and will provide operations to stream content in and out, and to list children.	Comment by tom: “provide operations”- implies interpreter?
No - interpreter defines how future operations are added
        a) What design pattern could be used to achieve this design? [1 mark]
        Composite, Bridge.
        b) Please explain your design by giving a class diagram. [5 marks]
        Hint: Consider introducing an additional abstraction.	Comment by tom: common superclass of files and directories.

II) Imagine that you would like to implement utility programs such as ls and chmod that need to iterate over file/directory structures from the previous question and perform operations on the visited nodes. In your design, you would like to avoid the need to extend the interface of the classes representing the file/directory structure whenever you add a new utility program.
         a) What design pattern could be used to achieve this design? [1 mark]	Comment by tom: Command? No - sequence or ordering of execution changes, not useful here
Strategy? No - inputs / outputs / interface don’t change in strategy, but ls and chmod the outputs change
Facade? No - facade is structural, this is a behavioural question. It simplifies interface, keeps functionality the same, but we want to add functionality
Iterator? Student reasoning, 50/50 shot
Works well for bulk operations, not for single operations, e.g. ls or chmod on a single file, or copy / cat / etc..
Visitor? Algorithm separate from data structure – perfect!
         Visitor.
         b)   Please explain your design by giving a class diagram. [5 marks]
