1060

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

Programs, Life Cycles, and Laws of
Software Evolution

MEIR M. LEHMAN, SENIOR MEMBER, IEEE

Abstract-By classifying programs according to their relationship to
the environment in which they are executed, the paper identifies the
sources of evolutionary pressure on computer applications and pro-
grams and shows why this results in a process of never ending mainte-
nance activity. The resultant life cycle processes are then briefly dis-
cussed. The paper then introduces laws of Program Evolution that have
been formulated following quantitative studies of the evolution of a
number of different systems. Finally an example is provided of the
application of Evolution Dynamics models to program release planning.

I. BACKGROUND
A. The Nature of the Problem

HE TOTAL U.S. expenditure on programming in 1977 is
I estimated to have exceeded $50 billion, and may have
been as high as $100 billion. This figure, which repre-
sents more than 3 percent of the U.S. GNP for that year, is
already an awesome figure. It has increased ever since in real
terms and will continue to do so as the microprocessor finds
ever wider application. Programming effectiveness is clearly a
significant component of national economic health. Even
small percentage improvements in productivity can make sig-
nificant financial impact. The potential for saving is large.
Economic considerations are, however, not necessarily the
main cause of widespread concern. As computers play an ever
larger role in society and the life of the individual, it becomes
more and more critical to be able to create and maintain effec-
tive, cost-effective, and timely software. For more than two
decades, however, the programming fraternity, and through
them the computer-user community, has faced serious prob-
lems in achieving this [1]. As the application of microproces-
sors extends ever deeper into the fabric of society the problems
will be compounded unless very basic solutions are found and
developed.

B. Programming

The early 1950’s had been a pioneering period in program-
ming. The sheer ecstasy of instructing a machine step by step
to achieve automatic computation at speeds previously un-
dreamed of, completely hid the intellectually unsatisfying
aspects of programming; the lack of a guiding theory and dis-
cipline; the largely hit or miss nature of the process through
which an acceptable program was finally achieved; the ever
present uncertainty about the accuracy, even the validity, of
the final result.

More immediately, the gradual penetration of the computer
into the academic, industrial, and commercial worlds led to

Manuscript received February 27, 1980; revised May 22, 1980.
The author is with the Department of Computing, Imperial College of
Science and Technology, 180 Queen’s Gate, London SW7 2BZ, England.

serious problems in the provision and upkeep of satisfactory
programs. It also yielded new insights. Programming as then
practiced required the breakdown of the problem to be solved
into steps far more detailed than those in terms of which
people thought about it and its solution. The manual genera-
tion of programs at this low level was tedious and error prone
for those whose primary concern was the result; for whom
programming was a means to an end and not an end in itself.
This could not be the basis for widespread computer application.

Thus there was born the concept of high-level, problem-
oriented, languages created to simplify the development of
computer applications. These languages did not just raise the
level of detail to which programmers had to develop their
view of the automated problem-solving process. They also
removed at least some of the burdens of procedural organiza-
tion, resource allocation and scheduling, burdens which were
further reduced through the development of operating systems
and their associated job-control languages. Above all, however,
the high-level language trend permitted a fundamental shift in
attitude. To the discerning, at least, it became clear that it
was not the programmer’s main responsibility to instruct a
machine by defining a step-by-step computational process.
His task was to state an algorithm that correctly and unambig-
uously defines a mechanical procedure for obtaining a solution
to a given problem [2], [3]. The transformation of this into
executable and efficient code sequences could be more safely
entrusted to automatic mechanisms. The objective of language
design was to facilitate that task.

Languages had become a major tool in the hands of the
programmer. Like all tools, they sought to reduce the manual
effort of the worker and at the same time improve the quality
of his work. They permitted and encouraged concentration on
the intellectual tasks which are the real province of the human
mind and skill. Thus, ever since, the search for better lan-
guages and for improving methodologies for their use, has con-
tinued [4].

There are those who believe that the development of pro-
gramming methodology, high-level languages and associated
concepts, is by far the most important step for successful com-
puter usage. That may well be, but it is by no means sufficient.
There exists a clear need for additional methodologies and tools,
a need that arises primarily from program maintenance.

C. Program Maintenance

The sheer level of programming and programming-related
activity makes its disciplining important. But a second statis-
tic carries an equally significant message. Of the total U.S.
expenditure for 1977, some 70 percent was spent on program
maintenance and only about 30 percent on program develop-

0018-9219/80/0900-1060$00.75 © 1980 IEEE

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION

v
FORMAL SlATEFENT
PROGRAM SPECIFICATION
relating to /f’ controls the
e production of
INJVERSE
OF DISCOURSE

v o Providing a
possibly of \‘\\
interest within

SOLUTION

Fig. 1. S-programs.

ment. This ratio is generally accepted by the software com-
munity as characteristic of the state of the art.

Some clarification is, however, necessary. For software the
term maintenance is generally used to describe all changes
made to a program after its first installation. It therefore dif-
fers significantly from the more general concept that describes
the restoration of a system or system component to its former
state. Deterioration that has occurred as a result of usage or
the passage of time, is corrected by repair or replacement. But
software does not, deteriorate spontaneously or by interaction
with its operational environment. Programs do not suffer
from wear, tear, corrosion, or pollution. They do not change
unless and until people change them, and this is done when-
ever the current behavior of a program in execution is found
to be wrong, inappropriate, or too restricted. Repair actually
involves changes away from the previous implementation.
Faults being corrected during maintenance can originate in any
phase of the program life cycle (Section III).

Moreover, in hardware systems, major changes to a product
are achieved by redesign, retooling, and the construction of a
new model. With programs improvements and adaptations to
a changing environment are achieved by alterations, deletions,
and extensions to existing code. New capability, often not
recognized during the earlier life of the system, is superim-
posed on an existing structure without redesign of the system
as a whole.

Since the term software maintenance covers such a wide
range of activities, the very high ratio of maintenance to
development cost does not necessarily have to be deprecated.
We shall, in fact, argue that the need for continuing change is
intrinsic to the nature of computer usage. Thus the question
raised by the high cost of maintenance is not exclusively how
to control and reduce that cost by avoiding errors or by
detecting them earlier in the development and usage cycle.
The unit cost of change must initially be made as low as pos-
sible and its growth, as the system ages, minimized. Programs
must be made more alterable, and the alterability maintained
throughout their lifetime. The change process itself must be
planned and controlled. Assessments of the economic viability
of a program must include total lifetime costs and their life
cycle distribution, and not be based exclusively on the initial
development costs. We must be concerned with the cost and
effectiveness of the life-cycle process itself and not just that of
its product.

1061

The opening paragraph highlighted the high cost of software
and software maintenance. The economic benefit and poten-
tial of the application of computers is, however, so high that
present expenditure levels may well be acceptable, at least for
certain classes of programs. But we must be concerned with
the fact that performance, capability, quality in general, can-
not at present be designed and built into a program ab initio.
Rather they are gradually achieved by evolutionary change
and refinement. Moreover, when desirable changes are identi-
fied and authorized they can usually not be implemented on a
time scale fixed by external need. Responsiveness is poor.
And as mankind relies more and more on the software that
controls the computers that in turn guide society, it becomes
crucial that people control absolutely the programs and the
processes by which they are produced, throughout the useful
life of the program. To achieve this requires insight, theory,
models, methodologies, techniques, tools: a discipline. That is
what software engineering is all about [5]-[8].

II. PROGRAMS AS MODELS
A. Programs

Program evolution dynamics [9 and its bibliography] and
the laws [2], [3], [10], [11] discussed in the next section,
have always been associated with a concept of largeness, im-
plying a classification into large and nonlarge programs. Great
difficulty has, however, been experienced in defining these
classes. Recent discussions [12] have produced a more satis-
fying classification. This is based on a recognition of the fact
that, at the very least, any program is @ model of @ model
within a theory of a model of an abstraction of some portion
of the world or of some universe of discourse. The classifica-
tion categorizes programs into three classes, S, P, and E. Since
programs considered large by our previous definition will
generally be of class P or E, the new classification represents a
broadening and firming of the previous viewpoint.

B. S-Programs

S-programs are programs whose function is formally defined
by and derivable from a specification. It is the programming
form from which most advanced programming methodology
and related techniques derive, and to which they directly relate.
We shall suggest that as programming methodology evolves
still further, all large programs (software systems) will be con-
structed as structures of §-programs.

A specific problem is stated: lowest common multiple of
two integers; function evaluation in a specified domain; eight
queens; dining philosophers; generation of a rectangle of a
size within given limits on a specific type of visual display
unit (VDU). Each such problem relates to its universe of
discourse. It may also relate directly and primarily to the
external world, but be completely defined, e.g., the classical
travelling salesman problem.

As suggested by Fig. 1 the specification, as a formal defini-
tion of the problem, directs and controls the programmer in
his creation of the program that defines the desired solution.
Correct solution of the problem as stated, in terms of the pro-
gramming language being used, becomes the programmer’s
sole concern. At most, questions of elegance or efficiency
may also creep in.

The problem statement, the program and the solution when
obtained may relate to an external world. But it is a casual,
noncausal relationship. Even, when it exists we are free to

1062

change our interest by redefining the problem. But then it has
a new program for its solution. It may be possible and time-
saving to derive the new program from the old. But it is a dif-
ferent program that defines a solution to a different problem.

When this view can be legitimately taken the resultant pro-
gram is conceptually static. One may change it to improve its
clarity or its elegance, to decrease resource usage when the
program is executed, even to increase confidence in its correct-
ness. But any such changes must not effect the mapping be-
tween input and output that the program defines and that it
achieves in execution. Whenever program text has been
changed or transformed [13], [14] it must be shown that
either the input-output relationship remains unchanged, or
that the new program satisfies a new specification defining a
solution to a new problem. We return to the problem of cor-
rectness proving in Section II-E.

C. P-Programs

Consider a program to play chess. The program is completely
specified by the rules of chess plus procedure rules. The latter
must indicate how the program is to analyze the state of the
game and determine possible moves. It must also provide a
decision rule to select a next move. The procedure might,
for example, be to form the tree of all games that may develop
from any current state and adopt a minimax evaluation strategy
to select the next move. Such a definition, while complete,
is naive, since it is not implementable as an executing program.
The tree structure at any given stage is simply too large, by
many orders of magnitude, to be developed or to be scanned
in feasible time. Thus the chess program must introduce
approximation to achieve practicality, judged as it begins to
be used, by its performance in actual games.

A further example of a problem that can be precisely formu-
lated but whose solution must inevitably reflect an approxima-
tion of the real world is found in weather prediction. Intheory,
global weather can be modeled as accurately as desired by a set
of hydrodynamic equations. In the actual world of weather
prediction, approximate solutions of modified equations are
compared with the weather patterns that occur. The resulis
of such comparisons are interpreted and used to improve the
technology of prediction, to yield ever more usable programs,
whose outputs, however, always retain some degree of uncer-
tainty.

Finally consider the travelling salesman problem as it arises
in practice, for example from a desire to optimize continuously
in some vaguely defined fashion, the travel schedule of sales-
men picking up goods from warehouses and visiting clients.
The required solution can be based on known approaches and
solutions to the classical problem. But it must also involve
considerations of cost, time, work schedules, timetables, value
judgments, and even salesmens’ idiosyncracies.

The problem statement can now, in general, no longer be
precise. It is a model of an abstraction of a real-world situa-
tion, containing uncertainties, unknowns, arbitrary criteria,
continuous variables. To some extent it must reflect the per-
sonal viewpoint of the analyst. Both the problem statement
and its solution approximate the real-world situation.

Programs such as these are termed P-programs (real world
problem solution). The process of creating such programs is
modeled by Fig. 2 which shows the intrinsic feedback loop
that is present in the P-situation. Despite the fact that the
problem to be solved can be precisely defined, the acceptability
of a solution is determined by the environment in which it is

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

FEAL WORLD
CHANE UNIVERSE OF
DISCOURE
A PRIBLEM
,I
/
//
K ABSTRACTION
/ @A VIEW)
I,
7
/
Il
FEQUIREMENTS
COMPARISON
O SPECIFICATION
N
\\
INORRTION — PROGAM

Fig. 2. P-programs.

embedded. The solution obtained will be evaluated by com-
parison with the real environment. That is, the critical dif-
ference between S and P-programs is expressed by the com-
parison cloud in Fig. 2. In S-programs, judgments about the
correctness, and therefore the value, of the programs relate by
definition only to its specification, the problem statement that
the latter reflects. In P-programs, the concern is not centered
on the problem statement but on the value and validity of the
solution obtained in its real-world context. Differences be-
tween data derived from observation and from computation
may cause changes in the world view, the problem perception,
its formulation, the model, the program specification and/or
the program implementation. Whatever the source of the dif-
ference, ultimately it causes the program, its documentation
or both to be changed. And the effect or impact of such
change cannot be eliminated by declaring the problem a new
problem, for the real problem has always been as now per-
ceived. It is the perception of users, analysts and/or program-
mers that has changed.

There is also another fact of life that needs to be considered.
Dissatisfaction will arise not only because information received
from the program is incomplete or incorrect, or because the
original model was less than perfect. These are imperfections
that can be overcome given time and care. But the world too
changes and such changes result in additional pressure for
change. Thus P-programs are very likely to undergo never-
ending change or to become steadily less and less effective and
cost effective.

D, E-Programs

The third class, E-programs, are inherently even more change
prone. They are programs that mechanize a human or societal
activity.

Consider again the travelling salesman problem but in a situ-
ation where several persons are continuously en route, carrying
products that change rapidly in value as a function of both
time and location, and with the pattern of demand also chang-
ing continuously. One will inevitably be tempted to see this
situation as an application in which the system is to act as a
continuous dispatcher, dynamically controlling the journeys
and calls of each individual. The objective will be to maximize

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION

APPLICATION N
THE REAL WORLD
oW
PROGW
REQIRDENTS VBS
SPECIFICATION (PREDICTIV®)
MOIEL

Fig. 3. E-programs-The basic cycle.

profit, minimize loss, expedite deliveries, maintain customer
satisfaction or achieve some optimum combination of the fac-
tors that are accepted as the criteria for success. How does this
situation differ from that discussed in the previous sections?

The installation of the program together with its associated
system—radio links to the salesmen, for example—change the
very nature of the problem to be solved. The program has
become a part of the world it models, it is embedded in it.
Conceptually at least the program as a model contains elements
that model itself, the consequences of its execution.

The situation is depicted in Figs. 3 and 4. Even without con-
sidering program execution and evaluation of its output in the
operational environment, the E-situation contains an intrinsic
feedback loop asin Fig. 3. Analysis of the application to deter-
mine requirements, specification, design, implementation now
all involve extrapolation and prediction of the consequences of
system introduction and the resultant potential for application
and system evolution. This prediction must inevitably involve
opinion and judgment. In general, several views of the situation
will be combined to yield the model, the system specifica-
tion and, ultimately, ¢ program. Once the program is com-
pleted and begins to be used, questions of correctness, appro-
priateness and satisfaction arise as in Fig. 4 and inevitably lead
to additional pressure for change.

Examples of E-programs abound: computer operating sys-
tems, air-traffic control, stock control. In all cases, the behavior
of the application system, the demands on the user, and the
support required will depend on program characteristics as
experienced by the users. As they become familiar with a sys-
tem whose design and attributes depend at least in part on user
attitudes and practice before system installation, users will
modify their behavior to minimize effort or maximize effec-
tiveness. Inevitably this leads to pressure for system change.
In addition, system exogenous pressures will also cause changes
in the application environment within which the system oper-

1063

DISSATISFACTION

FEQUIFEMENTS

SPECIFICATION (PREDICTIND

Fig. 4. E-programs.

ates and the program executes. New hardware will be intro-
duced, traffic patterns and demand change, technology ad-
vance and society itself evolve. Moreover the nature and rate
of this evolution will be markedly influenced by program
characteristics, with a new release at intervals ranging from one
month to two years, say. Unlike other artificial systems [15]
where, relative to the life cycle of process participants, change
is occasional, here it appears continually. The pressure for
change is built in. It is intrinsic to the nature of computing
systems and the way they are developed and used. P and E
programs are clearly closely related. They differ from S-
programs in that they represent a computer application in the
real world. We shall refer to members of the union of the
P and E classes as A-type programs.

E. Program Correctness

The first consequence of the SPE program classification is a
clarification of the concepts of program correctness and pro-
gram proving. The meaning, reality, and significance of these
concepts have recently been examined at great length [16],
[{17]. Many of the viewpoints and differences expressed by
the participants in that discussion become reconcilable or ir-
relevant under an adequate program classification scheme.

For the SPE scheme, the concept of verification takes on
significantly different meanings for the § and the A4 classes. If
a completely specified problem is computable, its specification
may be taken as the starting point for the creation of an S-
program. In principle a logically connected sequence of state-
ments can always be found, that demonstrates the validity of
the program as a solution of the specified problem. Detailed
inspection of and reasoning about the code may itself produce
the conviction that the program satisfies the specification
completely. A true proof must satisfy the accepted standards
of mathematics. Even when the correctness argument is

1064

expressed in mathematical terms, a lengthy or complex chain
of reasoning may be difficult to understand, the proof sequence
may even contain an error. But this does not invalidate the
concept of program correctness proving, merely this instance
of its application.

We cannot discuss here the range of S-programs for which
proving is a practical or a valuable technique, the range of ap-
plicability of constructive methods for simultaneous construc-
tion of a program and its proof [18], [19] ; whether confidence
in the validity of an S-program can always be increased by a
proof. We simply note that since, by definition, the sole
criterion of correctness of an S-program is the satisfaction of
its specification, (correct) S-programs are always provably
correct.

This is not purely a philosophical observation. Many impoz-
tant components of a large program, mathematical procedures
for example, in conjunction with specified interface rules (call-
ing and output), are certainly S-type. It becomes part of the
design process to recognize such potential constituents during
the partitioning process and to specify and implement them
accordingly. In fact it will be postulated in the next section
that an A-program may always be partitioned and structured
so that all its elements are S-programs. If this is indeed true,
no individual programmer should ever be permitted to begin
programming until his task has been defined and delimited by
a complete specification against which his completed program
can be validated.

For an E-program as an entity on the other hand, validity
depends on human assessment of its effectiveness in the in-
tended application. Correctness and proof of correctness of
the program as a whole are, in general, irrelevant in that a
program may be formally correct but useless, or incorrect in
that it does not satisfy some stated specification, yet quite
usable, even satisfactory. Formal techniques of representation
and proof have a place in the universe of A-programs but their
role changes. It is the detailed behavior of the program under
operational conditions that is of concern.

Parts of the program that can be completely specified should
be demonstrably correct. But 'the environment cannot be
completely described without abstraction and, therefore,
approximation. Hence absolute correctness of the program
as a whole is not the real issue. It is the usability of the pro-
gram and the relevance of its output in a changing world that
must be the main concern.

F. Program Structures and Structural Elements

The classification created above relates to program entities.
Any such program will, in general, consist of many parts
variously referred to as subsystems, components, modules,
procedures, routines. The terms are, of course, not used
synonymously but carry imputations of functional identity,
level, size, and so on.

The literature discusses criteria [20] and techniques {21]-
[23] for partitioning systems into such elements. Related
design methodologies and techniques seek to achieve optimum
assignment, in some sense, of element content and overall
system structure. In the present context we consider only one
aspect of partitioning using the term module for convenience.
The discussion completes the presentation of the SPE classifi-
cation and provides a link to other current methodological
thinking [24].

Consider the end result of the design process for an 4-pro-
gram to be constructed of primitive elements we term modules.

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

The analysis and partitioning process will identify some func-
tional elements that can be fully specified and therefore devel-
oped as S-program modules. Any specification may of course
be less than fully satisfactory. It may even prove to be wrong
in relation to what the system purpose demands, in itself or in
relation to the remainder of the design. For example the spec-
ification may not mention input validity checks, the specified
output accuracy may be insufficient or the specified range of
an input variable may be wrong. But each of these represents
an omission from or an error in the specification. Thus it
is rectified by first correcting the specification and then creat-
ing, by one means or another, a new program that satisfies the
new specification.

The remainder of the system is required to implement func-
tions that are at least partly heuristic or behavioral in nature
and therefore define A-elements. Nevertheless, we suggest
that it is always possible to continue the system partitioning
process until all modules are implementable as S-programs.
That is, any imprecision or uncertainty emanating from model
reflections of incomplete world views will be implicit or, if
recognized when the specification is formulated, explicit in
the specification statement. The final modules will all be de-
rived from and associated with precise specifications, which
for the moment, may be treated as complete and correct.

The design may now be viewed and constructed as a data-
flow structure with the inputs of one module being the outputs
of others (unless emanating from outside the system). Each
module will be defined as an abstract data type [25]-[27]
defining, in turn, one or more input-to-output transformations.
Module specifications include those of the individual interfaces,
but for the system as a whole, the latter should, in some sense
be standardized [28]. Moreover, given appropriate system and
interface architecture and module design, each module could
be implemented as a program running on its own microproces-
sor and the system implemented as a distributed system {9],
[241], [28], [92]). The potential advantages for both execution
(parallelism) and maintainability (localization of change) can-
not be discussed here.

Many problems in connection with the design and construc-
tion of such systems need still to be solved. Adequate solutions
will represent a major advance in the development of a process
methodology (Section III-C). We observe, however, that the
concepts presented follow directly from our brief analysis
and classification of program types. Interestingly, the conclu-
sions are completely compatible with those of the programming
methodologists [24], {291, [30].

III. THE LirE CYCLE
A. The General Case

The dynamic evolutionary nature of computer applications,
of the software that implements them and of the process that
produces both, has in recent years given rise to a concept of
a program life cycle and to techniques for life-cycle manage-
ment. The need for such management has, in fact, been recog-
nized in far wider spheres, particularly by national defense
agencies and other organizations concerned with the manage-
ment of complex artificial systems. In pursuing their respon-
sibilities, these must ensure continuing effectiveness of systems
whose elements may involve many different and fast developing
technologies. 'Often they must guarantee utterly reliable opera-
tion under harsh, hostile, and unforgiving conditions. The out-
come is an ever increasing financial commitment. Only life-
time-orientated management techniques applied from project

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION 1065

SYSTEM
REQUIREMENTS

VALIDATION SOF TWARE

—\"__/' reuirerexts (€]
YALIDATION PRELIMINARY
——|:_/, DESIGN

Boetm's
Structure

.

VALIDATION DETAILED
—l—_J, DEs 61

M

VALIDATION CNDE AND
——\::_/. DCRUS

|

Letmon's "
DEVELOPMENT
Top-level st TEST AND
Description PREOPERAT] ONS < I
YALIDATION OPERATIONS
! ! TEST
MAINTENANCE
REVALIDATION
< DEFINITION >} INPLEMENTAT ION ————————D<HMINTENAMCE D>

Fig. 5. The software life cycle according to Boehm.

initiation can permit the attainment of lifetime effectiveness
and cost effectiveness.

The problems in the more general situation are essentially
those we have already explored, except that the time interval
between generations is perhaps an order of magnitude greater
than in the case of pure software systems. In briefly examin-
ing the nature of the life cycle and its management in this sec-
tion, we use the terminology of programming and software
engineering. The reader will be able to generalize and to
interpret the remarks in his own area of interest.

B. Software Life Cycles

In studying program evolution, repetitive phenomena that
define a life cycle can be observed on different time scales
representing various levels of abstraction. The highest level
concerns successive generations of system sequences. Each
generation is represented by a sequence of system releases.
This level corresponds most closely to that found in the more
general systems situation, with each generation having a life
span of from, say, five to twenty years. Because of the rela-
tively slow rate of change it is difficult for any individual to
observe this evolution phenomenon, measure its dynamics and
model it as a life-cycle process since in the relevant portion of
his professional career he will not observe more than two or
three generations. It might therefore be argued that this
level should not be treated as an instance of the life-cycle
phenomenon. The present author has, however, had at least
one opportunity to examine program evolution at this level
and to make meaningful and significant observations [31].
These indicated that much could be gained in cost effective-
ness in the software industry if more attention were paid to
the earlier creation of replacement generations, something that
can be achjeved effectively only if the appropriate predictive
models are available.

The second level is concerned with a sequence of releases.
The latter term is also appropriate when a concept of contin-
uous release is followed, that is when each change is made,
validated, and immediately installed in user instances of the
system.

Fig. S shows one view [6] of the sequence of activities or
life-cycle phases that constitute the lowest level, the develop-
ment of an individual release, if it is assumed that ‘‘mainte-
nance” in the seventh box refers to on-site fixes and repairs

implemented as the system is used. If maintenance is taken to
refer to permanent changes, effected through new releases by
the system originator, then the structure becomes recursive
with each maintenance phase comprised of all seven indicated
phases. With this interpretation the single recursive model re-
flects the composite life-cycle structure of all the above levels.

The remainder of this paper is chiefly concerned with the
intermediate level, the life cycle of a generation as represented
by a sequence of releases. It is at this level that analysis in
terms of the S and A classification is particularly relevant and
enlightening.

C. Assembly Line Processes

An assembly line manufacturing process is possible when a
system can be partitioned into subsystems that are simply
coupled and without invisible links. Moreover, the process
must be divisible into separate phases without significant feed-
back control over phases and with relatively little opportunity
for tradeoff between them.

Unfortunately, present day programming is not like that. It
is constituted of tightly coupled activities that interact in
many ways. For example, at least some aspects of the specifi-
cation and design processes are left over, usually implicitly,
to the implementation (coding) phase. Fault detection through
inspection [90] is not yet universal practice and by default is
often delayed till a system integration or system testing phase.
One of the main concerns of life-cycle process methodology
research must be to develop techniques, tools, new system
architectures (Section II-F) and programming support environ-
ments [32]-[34] that permit partitioning of the program
development and maintenance process into separated activities.

D. The Significance of the Life-Cycle Concept

For assembly line processes the life-cycle concept is not,
generally, of prime importance. For software and other highly
complex systems it becomes critical if effectiveness, cost effec-
tiveness, and long life are to be achieved. At each moment in
time, a manager’s concern concentrates on the successful com-
pletion of his current assignment. His success will be assessed
by immediately observable product attributes, quality, cost,
timeliness, and so on. It is his success in areas such as these
that determine the furtherance of his career. Managerial strat-
egy will inevitably be dominated by a desire to achieve maxi-

1066

mum local payoff with visible short-term benefit. It will not
often take into account long-term penalties, that cannot be
precisely predicted and whose cost cannot be assessed. Top-
level managerial pressure to apply life-cycle evaluation is there-
fore essential if a development and maintenance process is to
be attained that continuously achieves, say, desired overall
balance between the short- and long-term objectives of the
organization. Neglect will inevitably result in a lifetime ex-
penditure on the system that exceeds many times the assessed
development cost on the basis of which the system or project
was initially authorized. .

To overcome long time lags and the high cost of software,
one may also seek to extend the useful lifetime of a system.
The decision to replace a system is taken when maintenance
has become too expensive, reliability too low, change respon-
siveness too sluggish, performance unacceptable, functionality
too limiting; in short, when it is economically more satisfactory
to replace the system than to maintain it. But its expected
life time to that point is determined primarily in its concep-
tion, design and initial implementation stages. Hence manage-
ment planning and control during the formative period of sys-
tem life, based on lifetime projections and assessment, can be
critical in achieving long life software and lifetime cost effec-
tiveness [1].

E. Life-Cycle Phases

1) The Major Activity Classes: At its grossest level a life
cycle consists of three phases: definition, implementation and
maintenance. As indicated in Fig. 5, these three phases corre-
spond approximately to the activities described in the first
three, the second three and the seventh box respectively of
Boehm’s model. In practice, however, many of these activities
are overlapped, interwoven, and repeated iteratively.

2) System Definition: For E-class systems in particular, the
development process begins with a pragmatic analysis leading
into a systematic systems analysis to determine total system
and program requirements [35]-[38]. The analysis must first
establish the real need and objectives and may examine the
manual techniques whereby the same purpose is currently
achieved. Where appropriate, it may be based on mathematical
or other formal analysis. Whatever the approach, it has now
been recognized that the analysis must be disciplined and
structured [291, [30], the term structured analysis now being
widely used [9], [41], [42].

By their very nature initial requirements, being an expression
of the user’s view of his needs, are likely to include incom-
patibilities or even contradictions. Thus the analysis and the
negotiation process by and between analysts and potential
users that produces the final requirements specification, must
identify a balanced set that, in some sense, provides the opti-
mum compromise between conflicting desires.

The requirements set will be expressed in the concepts and
language of the application and its users. It must then be
transformed into a technical specification. The specification
process [43], [44] must aim to produce a correct technical
statement, complete in its coverage of the requirements and
consistent in its definition of the implementation. It may in-
clude additional determinations or constraints that follow
from a technical evaluation of the requirements in relation to
what is feasible, available and appropriate in the judgment of
the analyst and designer in agreement with the user.

It has long been the aim of computer scientists to provide
formal languages for the expression of specifications so as to
permit mechanical checking of completeness and consistency

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

[451-[49], [91], but a widely accepted language does not yet
exist. Given a machinable specification it is conceptually
possible to reduce it mechanically to executable [50] and even
efficient {14] code but these technologies too are not yet
ready for general exploitation.

Thus, for the time being, the specification process will be
followed by a design phase [49], [51]. The prime objective
of this activity is to identify and structure data, data transfor-
mation and data flow [23]. It must also achieve, in some
defined sense, optimal partitioning of system function [20],
select computational algorithms and procedures, and identify
system components, and the relationships between them. It
is now generally accepted that iterative top-down [52] analy-
sis and partitioning processes are required to achieve successive
refinement {21] of the system design to the point where the
identified objects, procedures, and transformations can be
directly implemented.

3) Implementation: Following the completion of the design,
system implementation may begin. In practice, however,
design and implementation overlap. Thus, as the hierarchical
partitioning process proceeds, analysis of certain aspects of the
system may be considered sufficient for implementation, while
others require further analysis. In a software project, time
always appears to be at a premium. A work force comprising
many different abilities is available and must be kept busy.
Thus, regrettably, implementation of subsystems, components,
procedures, or modules will be initiated despite the fact that
the overall, or even the local design, is not yet complete.

As the implementation proceeds code must be validated
[53], [54]. Present day procedures concentrate primarily
on testing [55], though in recent years increasing use has been
made of design walkthrough and code inspection [90]. These
latter procedures are intended to disclose both design and im-
plementation errors before their consequences become hidden
in the program code. The ratio of costs of removing a fault
discovered in usage as against the cost of removing the same
fault if discovered during the design or first implementation
phase is sometimes two or three orders of magnitude. Clearly,
it pays to find faults early in the process.

In any case, testing by means of program execution is carried
out, generally bottom up, first at the unit (module or proce-
dural) level, then functionally, component by component. As
tested components become available they are then assembled
into a system in an integration process and system test is initi-
ated. Finally, after some degree of independent certification
of system function and performance, the system is designated
ready for release.

The above very brief summary has identified some of the
activities that are typically undertaken in a system creation
process. Individual activities as described may overlap, be
iterated, merged, or not undertaken at all. Design of an ele-
ment, for example, may be followed immediately by a test
implementation and preliminary performance evaluation to
ensure feasibility of a design before its implications spread to
other parts of the system. Clearly, there should be a set of
overall controlled procedures to take a concept from the first
pragmatic evaluation of the potential of an application for
mechanization to the final program product executing in de-
fined hardware or software and hardware environment(s).

4) Maintenance: Once the system has been released, the
maintenance process begins. Faults will be observed, reported,
and corrected. If user progress is blocked because of a fault,
a temporary bypass of the faulty code may be authorized. In
other circumstances a temporary or permanent fix may be

LEHMAN: PROGRAMS, LIFE CYCLES, AND LAWS OF SOFTWARE EVOLUTION

applied in some or all user locations. The permanent repair or
change to the program can then be held over for a new release
of the system. In other cases, a permanent change will be pre-
pared for immediate installation by all those running the sys-
tem. The particular strategy adopted in any instance will
depend on the nature and severity of the fault, the size and
difficulty of the change required, the number and nature of
program installations and user organizations, and so on. The
aggregate strategy will have a profound impact on the rate of
system complexity growth, on its life-cycle costs, and on its
life expectancy. '

The faults that are fixed in the maintenance process may be
due to changes external to the system, incorrect or incomplete
specification, design or implementation errors, hardware
changes or to some combination of these. Since each user
exposes the system in different ways, all installations do not
experience all faults, nor do they automatically apply all
manufacturer-supplied fixes or changes. On the other hand,
installations having their own programming staff may very well
develop and install localized changes or system modifications
to suit their specific needs. These patches, insertions, or dele-
tions may in turn cause new difficulties when further incre-
mental changes are received from the manufacturer, or at a
later date when a new release is received. The inevitable con-
sequences of the maintenance process applied to systems
installed for more than one user, is that the system drifts apart.
Multiple versions of system elements develop to encompass the
variations and combinations [56]. System configuration
management becomes a major task. Support environments
[33]-[35] that automatically collect and maintain total activ-
ity records become an essential tool in programming process
management.

F. Life-Cycle Planning and Management

The preceding discussion, while presenting a simplified view
of the life cycle, will have made clear the difficulty associated
with cycle planning. In recent years this problem has received
much attention [57], [58]. A variety of techniques have been
developed to improve estimation of cost, time, and other re-
sources required for software development and maintenance
[59]-[64]. These techniques are based on extrapolation of
past experience and tend to produce results in the nature of
self-fulfilling prophecies. In general, it has not yet proved
possible to develop techniques that estimate project require-
ments on the basis of objective measurement of such attrib-
utes as application complexity and size and the work required
to create a satisfactory system. Techniques such as software
science [65], [66] seek to do just this but to date lack sub-
stantiation [67] and interpretation. Major research and ad-
vances are required if software engineering is to become as
manageable as are other engineering disciplines, though funda-
mentally the peculiar nature of software systems [28] will
always leave software engineering in a class of its own.

IV. LAws oF PROGRAM EVOLUTION
A. Evolution

The analysis of Section II associated with the life-cycle
description of Section III, has indicated that evolution is an
intrinsic, feedback driven, property of software. The meta-
system within which a program evolves contains many more
feedback relationships than those identified above. Primitive
instincts of survival and growth result in the evolution of stabi-
lizing mechanisms in response to needs, events and changing

1067

objectives. The resulting pseudohierarchical structure of seif-
stabilizing systems includes the products, the processes, the
environments and the organizations involved. The interactions
between and within the various constituents, and the overall
pattern of behavior must be understood if a program product
and its usage are to be effectively planned and maintained.

The organizational and environmental feedback, links,
focuses, and transmits the evolutionary pressure to yield the
continuing change process. A similar situation holds, of course,
for any human organized activity, any artificial system. But
some significant differences are operative in the case of soft-
ware. In the first instance there is no room in programming
for imprecision, no malleability to accommodate uncertainty
or error. Programming is a mathematical discipline. In rela-
tion to a specific objective, a program is either right or wrong.
Once an instruction sequence has been fixed and unless and
until it is manually changed, its behavior in execution on a
given machine is determined solely by its inputs.

Secondly, a software system is soft. Changes can be im-
plemented using a pencil, paper, and/or a keyboard. Moreover,
once a change has been designed and implemented on a devel-
opment system it can be applied mechanically to any number
of instances of the same system without further significant
physical or intellectual effort using only computing resources.
Thus the temptation is to implement changes in the existing
system, change upon change upon change, rather than to col-
lect changes into groups and implement them in a totally new
instance. As the number of superimposed changes increases,
the system and the metasystem become more complex, stiffer,
more resistant to change. The cost, the time required, and the
probability of an erroneous or unsatisfactory change all increase.

Thirdly, the rate at which a program executes, the frequency
of usage, usage interaction with the operating environment,
economic and social dependence of external process on pro-
gram execution, all cause deficiencies to be exposed. The
resultant pressure for correction and improvement leads to a
system rate of change with a time scale measured in days and
months rather than in the years and decades that separate
hardware generations.

B. Dynamics and Laws of Program Evolution

The resultant evolution of software appears to be driven and
controlled by human decision, managerial edict, and program-
mer judgment. Yet as shown by extended studies [68]1-[76],
measures of its evolution display patterns, regularity and
trends that suggest an underlying dynamics that may be
modeled and used for planning, for process control, and for
process improvement.

Once observed the reasons for this unexpected regularity is
easily understood. Individual decisions in the life cycle of a
software system generally appear localized in the system and
in time. The considerations on which they are based appear
independent. Managerial decisions are largely taken in relative
isolation, concerned to achieve local control and optimization,
concentrated on some aspect of the process, some phase of
system evolution. But their aggregation, moderated by the
many feedback relationships, produces overall systems response
which is regular and often normally distributed.

In its early stages of development a system is more or less
under the control of those involved in its analysis, design, and
implementation. As it ages, those working on or with the sys-
tem become increasingly constrained by earlier decisions, by
existing code, by established practices and habits of users and

1068

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

TABLE 1
Laws oF PrRoGRAM EvoLUTION

IIL.

. Continuing Change

A program that is used and that as an implementation of its speci-
fication reflects some other reality, undergoes continual change or
becomes progressively less useful. The change or decay process
continues until it is judged more cost effective to replace the sys-
tem with a recreated version.

. Increasing Complexity

As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done to
maintain or reduce it.

The Fundamental Law of Program Evolution

Program evolution is subject to a dynamics which makes the pro-
gramming process, and hence measures of global project and system
attributes, self-regulating with statistically determinable trends and
invariances.

. Conservation of Organizational Stability (Invariant Work Rate)

During the active life of a2 program the global activity rate in a pro-
gramming project is statistically invariant.

. Conservation of Familiarity (Perceived Complexity)

During the active life of a program the release content (changes,
additions, deletions) of the successive releases of an evolving pro-

gram is statistically invariant.

implementors alike. Local control remains with people. But
process and system-internal links, dependencies, and interac-
tions cause the global characteristics of system evolution to be
determined by organization, process and system parameters.
At the global .level the metasystem dynamics have largely
taken over.

Since the original observation [63], studies of program evo-
lution have continued, based on measurements obtained from
a variety of systems. Typical examples of the resultant models
have been reported [69]-[72], [74], [76] including also one
detailed example of their application to release planning [77].

It was repeated observation of phenomenologically similar
behavior and the common interpretation of independent
phenomena, that led to a set of five laws, that have themselves
evolved as insight and understanding have increased. The laws,
as currently formulated to include the new viewpoint emerging
from the SPE classification, are given in Table I. Their early
development can be followed in [9], [10], [72]. We note
that the laws are abstractions of observed behavior based on
statistical models. They have no meaning until a system, a
project and the organizational metasystem are well established.
More detailed discussion of their nature and of their technical
and managerial implications will be found in [11], [77],
[78] and [771, [79], [80], respectively.

The first law, continuing change, originally [3], [10], [79]
expressed the universally observed fact that large programs are
never completed. They just continue to evolve. Following our
new insight, however, reference to largeness is now replaced by
the phrase . . . “that reflect some other reality . . .”

The second law, increasing complexity, could be seen as an
instance of the second law of thermodynamics. It would seem
more reasonable to regard both as instances of some more
fundamental natural truth. But from either viewpoint its
message is clear.

The third law, the fundamental law of program evolution, is
in the nature of an existence rule. It abstracts the observed
fact that the number of decisions driving the process of evolu-
tion, the many feedback paths, the checks and balances of

organizations, human interactions in the process, reactions to
usage, the rigidity of program code, all combine to yield
statistically regular behavior such as that observed and measured
in the systems studied.

The fourth law, conservation of organizational stability, and
the fifth, conservation of familiarity, represent instances of
the observations whose generalization led to the third law.
The fourth reflects the steadiness of multiloop self-stabilizing
systems. It is believed to arise from organizational striving for
stability. The managements of well-established organizations
avoid dramatic change and particularly discontinuities in
growth rates. Moreover, the number of people and the invest-
ments involved, the unions, the time delays in implementing
decisions, all operate together to prevent sudden or drastic
change. Wide fluctuations may in fact lead to instability and
the breakup of an organization.

The reader may find it difficult to accept the implication
that the work output of a project is independent of the amount
of resources employed, though the same observation has also
been recorded by others [81]. The underlying truth is that
activities of the type considered, though initiated with mini-
mal resources, rapidly attract more and more as commitment
to the project, and therefore the consequences of success or
failure, increase. Our observations as formalized in the fourth
law imply that the resources that can be productively applied
becomes limited as a software project ages. The magnitude of
the limit depends on many factors including attributes of the
total environment. But the pressure for success leads to invest-
ment to the point where it is exceeded. The project reaches
the stage of resource saturation and further changes have no
visible effect on real overall output.

While the fourth law springs from a pattern of organizational
behavior, the fifth reflects the collective consequences of
the characteristics of the many individuals within the organiza-
tion. It is discussed at length in {11]. Suffice it to say here
that the law arises from the nonlinear relationship between the
magnitude of a system change and the intellectual effort and
time required to absorb that change.

