Fact Extraction and Dead Function Elimination
Reverse Engineering Assembler
Ian J. Davis, Michael W. Godfrey and Ric C. Holt
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
{ijdavis, migod, holt}@uwaterloo.ca
Authors Name/s per 2nd Affiliation (Author)
line 1 (of Affiliation): dept. name of organization

line 2: name of organization, acronyms acceptable

line 3: City, Country

line 4: e-mail address if desired

Abstract— An important aspect of source code maintenance is the identification of logic that serves no useful purpose. This discovery can highlight incomplete areas in the code; suggest weaknesses such as the construction of objects never subsequently deleted, and permit removal of unused source code. However, in large programs developed in modern languages such as C++, it is intrinsically challenging to decide what code within a system serves no useful function. We use a previously available fact extraction tool that discovers relationships in source, by analyzing assembler. By improving the quality of this fact extraction tool, we are able to automate the modification of source code, so as to highlight and optionally remove functions that cannot be invoked.
Keywords— Reverse engineering, static analysis, maintenance, program and system comprehension
I. Introduction

Large software systems and those that develop them typically evolve over time. As consequence such systems tend to become poorly understood, and any tools that can assist in rapidly comprehending aspects of these systems are likely to prove very valuable. At the request of industry partners, we were invited to explore how one might in large C++ systems discover code that was not reachable at execution time, so that this redundant logic might be identified, and potentially removed [1][2]. Such a tool would permit improvements to be made in existing legacy code at minimal cost, and would be an important asset in evaluating the amount of genuinely useful logic in unfamiliar source code.

In this paper we concentrate on the simpler problem of how to correctly identify (when possible) functions that exist in the source code which cannot logically be invoked directly or indirectly, either from the function mainline; from static initialization of variables; from dynamic local variable construction, or though other language mechanisms, such as polymorphism and the throwing of objects. A supplementary problem is how to then automate the removal of such functions from the source code, when source code can be used in many different configurations, and potentially even across different projects.

Identification of logically unreachable functions requires a holistic approach but is at least conceptually simple. One simply visits all functions reachable through well understood language constructs, and declares those never thus reached to be unreachable dead code. Of course storage of function addresses in variables, and later indirect calls to such functions, is inherently problematic, but here we can err on the side of caution, and presume that retrieval of a function’s address by a reachable function, implies some later indirect invocation of that function may be performed. Similarly when discovering that a function associated with a class is invoked polymorphically from a reachable function, we can presume potential invocation of the corresponding virtual function in any class that inherits directly or indirectly from this class.

Armed with the actual facts the above is straight forward. The central issue is how to obtain the necessary facts from arbitrary source code. Because it is challenging to correctly parse and interpret the nuances of modern source code languages, we tailor the build process in order to discover precisely how compilers build the system from the totality of the source code, and then using this knowledge, repeat the compilation of all source, modifying the compilation parameters so that the corresponding assembler is obtained. Discovery is then performed on this collective assembler, with the results discovered then presented as if they had been discovered within the original source code.

This reverse engineering of assembler information, back into conceptual source code information is achieved through mechanisms already present in modern compilers. These mechanisms include an option to generate assembler from source; the embedding of source line and file provenance in the assembler; mangling of function and variable names that permits recovery of source code signatures; and inclusion of symbolic information in the assembler which permits operations on the stack to be understood as operations on typed variables and structures in the source code. Other relevant structures that can be recovered from the assembler include v-tables. These can be used to infer single and multiple inheritance relationships in the source, class type information, and polymorphism, as implemented through class inheritance and virtual functions. Finally, the assembler itself can be reverse engineered to discover when functions are invoked indirectly, either explicitly via function pointers, or implicitly through the C++ paradigm of virtual functions.

This approach has the disadvantage that the code base of interest must be translatable to assembler; either we must have access to existing binaries, or we must be able to create them from complete sources and appropriate build processes Our approach also has the disadvantage that some compilers (notably not Java) generate assembler languages that are platform specific, while different compilers for the same machine might produce very different assembler. Even for a given compiler on a given platform, fact extraction can be very dependent on heuristics which might be invalidated by changes in that compiler, or by the unknown behavior of a compiler when encountering unanticipated source code.

However, our approach has the advantage that the input operated upon by the fact extractor is extremely simple to parse and is known to be a genuine representation of the source code as used in the actual build process, accurately reflecting files included, macros employed, data types used, etc. This input can readily be derived from source code written in various languages without any need to develop, support and maintain different language parsers for each such language. It also cleanly permits extraction to be performed on source code that contains embedded assembler, or even on assembler for which no source code is available.

Finally some profit may be obtained from the compiler itself not including in the generated assembler logic that it can statically discover to never be invoked. Of course, if the compiler omits entire functions from the assembler, on the grounds that they are unreachable, we will not be able to discover the existence of these functions, and thus will fail to report them as dead.
The rest of the paper is structured as follows: Section 2 provides a general overview of fact extraction. Sections 3 - 6 address specific C++ issues of relevance to dead code elimination. Section 7 describes how functions are optionally removed from source code, and Section 8 presents an industry case study. Section 9 suggests further work. Finally in Section 10 we summarize our contributions.

II. FACT EXTRACTION
The task of converting C and C++ code [6] to assembler is achieved by wrapping the compilers used inside scripts that are transparently invoked as consequence of being discovered earlier on the program directory search path. These scripts capture the compiler used, the directory compilations occur within, and the parameters passed to the compiler in a log. Once captured this log is then presented as input to the fact extraction tool which repeats sequentially each of the compilation steps performed, altering parameters appropriately, and after each compilation reads as input data the assembler produced by the compiler from the corresponding source. Fact extraction recovers all of the information in the assembler which is relevant to dead code analysis [4][5], consolidating this information into a graph consisting of typed nodes, typed directed edges, and attributes name/value pairs associated with both.

Importantly, the fact extractor [7] attempts to behave in a manner synonymous with that of an object code linker, by deducing which declarations of functions and variables present in different assembler files, map to which instances of these functions and variables, in the conceptual executable. The resulting graph therefore does not include all of the duplication present in the original source files, but instead a one to one mapping between nodes in the graph, and distinct conceptual entities, such as directories, source files, functions, variables and templates. Similarly there should be a one to one mapping between relationships present in the executable, and directed edges present in the graph. The resulting graph also distinguishes between actions that use functions and variables, and actions which recover the memory address of functions and variables.
The sheer quantity of facts thus recovered can be somewhat intimidating. These facts are recovered from post-processed code, through a mechanism where all of the internals of such things as macro expansion, templates; use of standard template libraries; initialization of variables buried within such libraries; and the internal structures needed to support language concepts such as objects, classes, polymorphism, etc. are all equally and completely exposed. This however is one of the beauties of performing fact extraction on the assembler; almost all of the hidden complexity buried in the source code is exposed for all to see.

There remain of course facts present in the source not present in the assembler. For example, friend relationships might be present in the source code, but these cannot be discovered in the assembler, if trust is entirely enforced by the compiler itself. This has some unexpected ramifications for dead code removal. One might by analyzing assembler conclude that entire classes could be removed from source code, only to discover having removed these classes that the code no longer compiled because of friend references to these now no longer declared classes. But such caveats aside, it is reasonable to argue that if no explicit usage is made of something in the assembler it isn’t required in order to build the system produced from this assembler.

III. NAME MANGLING

When C++ code is compiled, function and variable names are mangled, in order to permit linkage based not only on name but more specifically on signature. Name mangling also permits the linker to distinguish between identical function and variable names that occur in different classes, and/or in different namespaces. Version 3 of the gnu g++ compiler which we use to produce assembler mangles names as specified in the Itanium ABI standard [8]. Regrettably we have observed some departures from that standard. For example, an ‘L’ prefix is added before a function name, in order to denote that the function is a static function, locally visible only within one source file Lacking explicit documentation about how a compiler will mangle names in all circumstances makes it difficult to be certain that our tools can correctly disassemble all observed mangled names, in order to recover the semantics of such mangled names, and to permit meaningful names to be presented to those employing the extracted data..
In most cases the class and/or namespace that variables and functions belong to can be recovered. However, because the mangled names encode syntactic rather than semantic information we are sometimes unable to distinguish between membership in a class and membership in a namespace. We somewhat arbitrarily presume that X::Y implies that Y occurs in class X, rather than in namespace X.

Knowledge about templates and their parameterization can also be recovered from mangled names. Templates require special consideration in the context of dead code elimination, since a template should only be deemed to be unused if no instantiations of a template are discovered to be reachable. While our code is sensitive to this issue, it would be useful to extend our work to permit detection of parameters within a template which are consistently assigned only one value within reachable code, which would permit optional removal of such redundant parameters from a template, and cases where all the parameters associated with a template had within reachable code only a single value, which would permit replacement of such templates with their single instantiation, when this was deemed desirable.
IV. POLYMORPHISM
Virtual functions may be invoked both directly and indirectly via pointers in the compiler generated v-table associated with a class. When invoked indirectly, we must be careful to detect the assembler instructions that allow us to infer that a known function is being called. This pattern typically involves loading the “this” pointer associated with a class into a register. Then move the v-table pointer located at this address in this register to a register. Then adjust this v-table pointer so that it addresses the correct virtual function in the v-table, if not the first such virtual function. Then move the virtual function pointer at the adjusted position within the v-table to a register. Finally, call the function indirectly via the address stored in this now loaded register. One possible sequence of assembler instructions might thus be:

movq -24(%rbp), %rax // move class this pointer → %rax

movq (%rax), %rax // move v-table address → %rax

addq $8, %rax // Offset within v-table (absent if $0)
movq (%rax), %rax // Move function pointer → %rax
call *%rax // Perform the indirect call
In practice compilers achieve the above operations using a variety of different registers, and may interleave other code with the above sequence of operations, provided only that the interleaved code does not alter the value in the currently relevant register. The assembler instructions vary depending on whether a 32 or 64 bit pointer architecture is being used, as does the register used to store the initial frame pointer. But these are all details that can be accommodated by a suitably constructed state machine, which essentially tracks what information each register currently contains, so as to conclude that a virtual function is being called indirectly when a register’s value is called.

This state machine needs to also appreciate the semantics of the arbitrary assembler observed so that it can determine when interleaved instructions potentially alter the values in each of the registers being tracked.

The virtual function actually invoked by the above assembler is determined as follows. Firstly, the dwarf symbolic information [9] to be compiled into an executable is recovered from the assembler, by interpreting the assembler. Then this recovered data is exploited to map an assembler frame reference such as -24(%rbp) to a corresponding named reference in the source code. This knowledge is preserved as is any later increment to a pointer within a potential v-table. If an indirect function call through a register is subsequently encountered, the symbolic information is consulted to determine the type of the saved frame reference, associated with the path to the value currently contained in this register and if this is of type pointer to a specified class, the symbolic information consulted again to determine the virtual function within this class, referenced via any adjusted offset into the v-table. In theory we might be misled if the original pointer used to discover the polymorphic function to be invoked was not itself declared to be a pointer to a class, but such code would be highly irregular.

V. INHERITANCE

When fact extraction identifies polymorphic function invocation, it merely indicates that a named virtual function in a named class is being invoked indirectly. Dead code analysis augments this information to create additional call edges between the invoking agent, and the matching polymorphic function in every subclass of the named class. This is achieved by exploiting other information provided by fact extraction.

For each virtual function, having at least one virtual call to it, the class it belongs to is recovered from the mangled function’s signature. Then for each reference to the function’s address it is determined if this reference occurs within a structure identifiable as a v-table. Such g++ compiler generated structures are assigned a mangled name that begins with the prefix “_ZTV”. This is followed by the class name that the v-table belongs which permits us to recover the unique v-table addressing this function which is associated with the function’s class present in this function’s signature.

Each v-table in addition to containing pointers to functions also contains a pointer to a type information structure associated with the class. This structure can be identified because its mangled name has the prefix “_ZTI”. The type info structures for classes that directly inherit from one or more multiply inherited classes, include within them pointers to subordinate type info structures, and this information is present in the facts extracted.

This permits enough navigation within the facts extracted to locate the v-tables that may potentially be accessed when polymorphic functions are invoked. It is then a simple matter to match the signatures of functions addressed by these v-tables, in order to deduce the set of functions potentially visited by a polymorphic call.

VI. INCLUDE FILES

Function bodies may occur not just in normal source code but also in included header files. When such functions are declared to be static, or in lined within the body of classes this may result in multiple distinct functions in the assembler, some of which are invoked, and some of which are potentially not invoked. Similar problems may arise when C++ templates are used, either within the standard template library, or in other contexts.

Without special handling one such function when discovered to be unreachable, might cause removal of this function’s declaration within a header file, which would break other code that included the same header file, with the intent of invoking this now removed function.

To avoid this problem, all functions with the same signatures that are declared in the same file, and occur at the same line number within that file, are consolidated into a single node within the fact extraction graph, by migrating all incoming and outgoing edges from all duplicate functions to this arbitrarily chosen single node, followed by removal of the duplicated functions. This ensures that if a function in a header file is used in any source code, it is not subsequently presumed to be dead in other source code.

Another serious risk is that functions declared in system header files might as consequence of not being used in one body of code be removed from such system header files, even though clearly the contents of such system header files should remain inviolate. To protect against such an action occurring, one of the parameters to dead code analysis is an identified directory under which files are permitted to be updated, with this being a mandatory parameter when update is requested. This concept might easily need to be generalized to better establish which parts of a system were to be deemed updatable.

VII. DEAD CODE REMOVAL

In addition to reporting those functions deemed to be unreachable by any language mechanism, we may wish to automate their removal from source code. This involves deciding how best to effect removal of dead code and the somewhat thorny problem of how to identify the lines of code to actually be removed [3].

Because dead code should in our opinion remain accessible to programmers, the safest mechanism for automating removing dead code in a manner which can be readily undone is to surround this dead code with an #ifdef that causes it to be ignored by the compiler, but not by the human reader.
Because the same source code can be used in many different build configurations care is taken in how such an #ifdef is inserted. As earlier noted, fact extraction is performed with respect to a specific build, and all of the build parameters associated with the compilation of source can thus be included within the facts operated on dead code analysis.
So suppose that a source file main.cpp containing unreachable functions is compiled using the arguments:

g++ -Dlinux –Uwin32 –Dversion=v2 main.cpp

We will add to the start of main.cpp the following preamble:

#if !defined(_DEAD_) &&

 defined(linux) && !defined(win32) &&

 defined(version) && (version == v2)

#define _DEAD_20110312203041

#endif /* _DEAD_ */

and brace unreachable functions such as foo() thus:

#ifndef _DEAD_20110312203041 /* Mar 12 15:30:41 2011 */

int foo() {}

#endif /* _DEAD_20110312203041 Mar 12 15:30:41 2011 */
This mechanism permits all dead code to be made again visible to the compiler by simply defining _DEAD_; ensures that source code is only hidden from the compiler when using the same configuration information that fact extraction was earlier performed on; permits dead code analysis to be performed on source code multiple times, under the same or different configuration options; and clearly documents when dead code elimination occurred.
In cases where the same source code is compiled into different projects, it is only necessary to ensure that each project is configured with at least one distinctly defined preprocessor variable in order to continue to accommodate distinct usage of source code.
The remaining challenge is to determine where to physically insert the #ifdef and #endif statement that are to bracket each discovered dead function. This is a non-trivial exercise armed only with information derived from the assembler about what file is to be changed, and what line number within that file the ‘{’ that nests the function body occurs at. There may be comments; macro’s; existing #ifdef’s; and even source code included from other files within the original source code that makes it difficult to discover start and end points of function declarations. Functions might in theory even begin in one file, and end in a different file, though this cannot be considered desirable. Note that merely commenting out the body of a function is undesirable, both because this would invite erroneous deletion of active code to go undetected when modified code was rebuilt, and because it could generate warning messages about such empty function bodies failing to return a required result.
The solution to this challenge is to again exploit the compiler. We know how the source was compiled, and are thus in a position to recompile it. If we recompile this source code by using the ‘-E’ option, gcc and g++ will emit to the standard output the post-processed source that the compiler sees. This post-processed source includes the provenance of which file and which line number in original source generated the resulting output, primarily so that error messages can refer back to the original source, and so that this same information can be inserted into the assembler. By examining the post-processed source rather than the source to be updated we avoid encountering any comments; macros; #ifdefs, or #include statements that were earlier identified as problematic for us.
Discovery of the logical end of a function in post-processed code is trivial since it only involves brace counting, but discovery of the logical start of a function remains complicated, because the C and C++ syntax that introduces a function definition is itself quite complex to parse. In C there is a historic mechanism for declaring parameters using for example the syntax int function(x, y) int x; int y; { which suggests that a semicolon might form part of a functions signature, while C++ uses the colon both as part of a function name and immediately after a function signature to permit explicit superclass construction. An opening ‘(’ cannot be presumed to follow a function name, because such symbols might be used in the return type declaration that precedes the function name. Within classes keywords such as public when followed by a ‘:’ should not be considered part of code that can be removed, while keywords such as inline, virtual, and static should for the purposes of dead code elimination be considered to form part of a function declaration. We make a best effort to correctly locate where the #ifdef should be placed in the post processed source code, and anticipate that additional testing will lead to improvements in the heuristics currently being used.
Having discovered where functions start and end in the post processed source, we can then infer the file, line and character position which we wish to insert our #ifdef statements in the original source. Character positions must be adjusted to account for comments present in the original source which are removed by the preprocessor. Expansion of tabs by the preprocessor which would also complicate character positioning mapping between pre and post processed source, is avoided by using the -ftabstop=1 option.
We may be still unable to correctly remove dead functions in all source code. Dead default class constructors and destructors may not even being declared in the source, and even if they are we may not wish to remove them, because subsequent changes to source code which invoke such removed functions will produce no warning that the function the programmer intends to invoke has been removed. This is just as much a concern when removing virtual functions that override other virtual functions.
Further problems can arise when one removes dead virtual functions. If they inherit from pure virtual functions, their removal transforms the class containing them into an abstract class that may not be constructed. And if virtual functions that inherit from such removed virtual functions fail to explicitly declare that they are also virtual then (following removal of functions they inherit from), they cease to be virtual.

In some cases it is not sufficient to remove function definitions that are not invoked. These functions may also be declared to be members of a class. While class function are permitted to be declared, but never defined, providing that they are never invoked, this is not the case with virtual class functions, since the linker wishes to place the address of such functions in one or more v-tables, even if they are never actually invoked. We currently have no mechanism for automating the discovery of where such virtual function declarations are to be found, when these declarations do not also contain an in lined definition of the functions body. Automated removal of virtual functions will produce linkage errors, which must currently be addressed manually in order to remove the corresponding virtual function declaration.
Macro expansion is also problematic. If one macro expands into the definition of two functions, one of which is dead, we will be advised that the dead function occurs not within a macro, but at the line where the macro is employed within the code. We do not wish to comment out the macro usage in the original source, since it defines a function that is still invoked, but we have no obvious mechanism to re-engineer the internals of macro definitions. Such actions will continue to require human intervention. Automated dead code removal is an end user convenience, but not a panacea.

To the extent that programming is an art, and not a science, there are also deep philosophical questions as to when it is and is not appropriate to remove unreachable functions from source code. Instances of a class not employed today, might easily be employed in the source code of tomorrow, and a polymorphic function that generates an error message should it be invoked is an integral part of a defensive programmer’s arsenal. Destructors which are never invoked should probably remain active in the code, because it is unreasonable to cause a future delete to fail, by undermining the conceptual notion that what a constructor creates, a destructor destroys. And any unreachable function not removed from the source code, requires that all of the code reachable from it, even if from nowhere else must also remain in the source. So the decision to preserve some unreachable functions, may conflict with the desire to remove others.
Because automated update of source even if optional is rather drastic, dead code removal may also be achieved by writing new files with the same file name as that to otherwise be updated with the attached suffix of “.dead”. This permits human control over when such updates should actually be applied to existing source code. It would be comparatively trivial to improve our software so that it was integrated with version control systems, which might also permit rollback of undesired updates.
VIII. PROOF OF CONCEPT
CA provided us with a large (previously unknown to us) corpus of source code, associated with one of their product lines. We identified the largest executable within this product family, and attempted to perform dead code analysis on the 27,460 lines of C++ source code contained in the 50 file compiled when building this executable. Because our fact extraction tool operates only on Linux platforms, we conducted our analysis on this platform.

We took a conservative approach to automated code removal. We excluded constructors and destructors from being considered dead code and for a variety of reasons also excluded virtual functions from consideration. As earlier noted removing virtual functions is problematic both because such functions may continue to be referenced within class v-tables and because removal of virtual functions can convert a regular class into an abstract class. In a large body of unknown software manually rectifying all such introduced compiler errors that resulted from such problems seemed undesirable. In addition, there is considerable risk when removing virtual functions that subsequent code changes will invoke the wrong virtual function, or that diagnostic software intended to generate warning when virtual functions are erroneously called might be disabled. Introducing such risks into production software seemed unjustified.
With the above caveats we discovered 27 dead functions within the code provided us. These functions consisted of 270 lines of code distributed across 13 files. A further 16 functions in 4 header files were discovered to not be invoked, but were ignored because these files lay outside the scope of the source code being studied. A total of 9 constructors and 39 destructors were never invoked. The removal of the 270 lines of code was fully automated, and the code subsequently rebuilt without any manual intervention.

IX. FURTHER AVENUES FOR RESEARCH

We have not developed software that addresses an exhaustive list of all the ways in which a function might potentially be visited. We have not considered the possibility that for external libraries to be linked with our code, functions with specific signatures invoked from these external libraries must be present within our code, even if not invoked from our code. It is possible that asynchronous events such as the reception of a signal may trigger functions declared in the assembler to be called, even though no path from our code to these functions can be discovered. Some functionality embedded within code, might exist for custom purposes not directly relating to the normal execution of that code. For example Microsoft COM permits the declaration of register/unregister functions, which instantiate and remove information from the registry, when software is dynamically invoked from regsvr32. However these functions would never normally be called from the program executable.
We currently presume that we are building an executable, and that functions are visited as consequence of a mainline being invoked. However often it is not an executable that is being built, but a library with a well-defined collection of interfaces that permit the functionality of that library to be leveraged. Our research should be extended to permit declarations of these interfaces to be provided to our tool, so that we can visit logic reachable via any of these interfaces, rather than from a single mainline.

Programs and libraries often depend on a large number of supporting libraries, for which there is potentially no source code. Our research should be extended to permit declaration of the interfaces provided by such libraries to be provided to our tool, so that it can determine which of the currently employed libraries are actually exploited by the software being built. Removal of unused libraries from the build process is desirable because it may reduce program executable sizes; because it reduces the precursors needed to build the system; because it reduces the risk of errors in compilation when libraries expected to be present are absent; and because it removes the need to periodically upgrade to newer versions of libraries that are never actually used.

In addition to having fact extraction tools that permit discovery to be performed on assembler, we also have fact extraction tools that perform essentially the same function on java p-code. It would be useful to apply the results of our current research to the problem of dead code elimination within java. In many ways java is a simpler language than C++, and it is reasonable to presume that techniques that work for C and C++ can also be applied to java. Of course java has no mechanism for having code removed by a preprocessor, so there would be differences in implementation.

Another avenue for further research is to explore what other types of dead code detection we might perform on assembler. The problem is intrinsically hard, but how much progress might we make in discovering which specific functions are capable of being called when functions are invoked indirectly via a function address? How far can we extend our reasoning about dynamic runtime behavior that alters the contents of assembler registers, while considering only the static assembler information available to us?
An implicit assumption of our research is that functions are reachable only if some explicit linkage via function signature occurs within the assembler. However some systems employ hard coded jump tables to facilitate communication. This is for example how operating system functionality is often invoked from client code. Similarly many devices are controlled via interaction with a limited range of predefined machine addresses. It would be useful to develop tools for discovering when specific memory addresses are being exploited from within assembler; the better to discover usage made of the facilities accessed through such memory addresses.

A very different avenue for research would be to explore software evolution, to determine what types of changes result in dead code within systems, and how often code discovered to be dead in one release of software, is subsequently exploited by later releases.

We are concurrently researching the issue of clone detection, and in that context are exploring the extent to which cloned code does or does not overlap with dead code. More work is also needed in this area.

X. CONCLUSIONS

We have at the request of industry partners explored the issue of dead code analysis, and developed a publically available tool [10] that permits functions that are never invoked to be discovered, and optionally removed from the body of software to be built.
This work proved to be unexpectedly challenging, because while conceptually the ideas presented here are straight forward, the difficulty of dead code detection and removal is in the details of how it is to be successfully implemented. Great uncertainty exists as to the nature of the source code our tools might be expected to operate on, and the nature of the assembler that will be produced from this unknown source. The internal implementation of modern compilers remains a black box to us, which can only be explored by executing these compilers on specific sample code. As consequence we have rather troubling unknown unknowns to contend with.
Somewhat surprisingly our research into the problem of dead code detection has encouraged significant development and improvement in our C++ fact extraction tool. It is a sad reality that the correctness of our fact extraction tool was largely taken on trust, as long as mechanisms do not exist to effectively probe the usefulness of this tool. It was with some embarrassment that we grasped that while our fact extraction tool had been in use for some years, purely by chance it had never been extensively used on anything but C code, and that much of the relevant C++ information was not being discovered. For example we were not discovering v-tables or invocation of virtual functions through these tables, but rather simply observing that the current value in a named register was being called.
Removal of source code identified by our fact extraction tools as never invoked, followed by attempts to build of the modified system, was a very good way of testing that relationships not present in the facts extracted by us, also were not present in the source. This research also motivated extension of our fact extraction tool to exploit knowledge about the symbolic information embedded according to the dwarf and C++ ABI standard.
In summary this research has proven surprisingly challenging, but also surprisingly interesting.

Acknowledgment
This research is supported by grants from CA Canada Inc., and NSERC.

References
[1] J. Knoop, O. Rüthing and B. Steffen, “Partial dead code elimination,” Proc. ACM SIGPLAN PLDI, pp.147–158, June 1994.

[2] P. Briggs, R. Shillingburg and T. Simpsonl, “Dead code elimination,” www.cs.princeton.edu/~ras/dead.ps, October 1993.

[3] R. Bodik and R. Gupta, “Partial dead code elimination using slicing transformations” Proc. ACM SIGPLAN PLDI, pp. 159–170. June 1997
[4] Y. Chen, E. R. Gansner and E. Koutsofios K. Elissa, “A C++ data model supporting reachability analysis and dead code detection,” IEEE Transactions on Software Engineering, Vol 24 No. 9, September 1998.

[5] Y. A. Liu and S. D. Stoller, “Eliminating dead code on recursive data,” Science of Computer Programming – Special Issue on static analysis. Volume 47 Issue 2-3 May 2003.

[6] GCC, the GNU Compiler Collection. http://gcc.gnu.org
[7] SWAG: Software Architecture Group. ASX C/C++ Assembler Fact Extractor. www.swag.uwaterloo.ca/asx
[8] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Draft Itanium C++ ABI. 2001. http://www.codesourcery.com/public/cxx-abi
[9] DWARF Debugging Standard.. http://dwarfstd.org.
[10] SWAG: Software Architecture Group. XCISE: ASX C/C++ Dead Function Eliminator. www.swag.uwaterloo.ca/xcise
