
Introduction to
Aspect Oriented Programming (AOP)

AOP

Goal
● separation of cross-cutting concerns

– organization leading to each component doing one thing only

Cross-cutting concern

Core system concerns (functional requirements)

security

logging

fault-tolerance

user
mgmt

account
mgmt

HR

Crosscutting Concerns

[1] http://en.wikipedia.org/wiki/Aspect-oriented_software_development#Examples_of_crosscutting_concerns

Error detection

Security

Caching

Logging

Monitoring

Validation

Business rules

i18N

Persistence

Transactions

Motivation

Tangling
● occurs if the implementation (code) of multiple concerns

is intermixed in a single module

Tangling Example
synchronized void put (SensorRecord rec) {
// Check that there is space in the buffer; wait if not

if (numberOfEntries == bufsize)
wait () ;

// Add record at end of buffer

// If at end of buffer, next entry is at the beginning

// indicate that buffer is available

notify () ;

}

Motivation

Scattering
● occurs if the implementation of a single concern is spread

over multiple modules

Scattering Example

public void service1 () {

try{

// service1 code

} catch (Exception e) {
handleException(e);

}

}

public void service2 () {

try{

// service2 code

} catch (Exception e) {
handleException(e);

}

}

Core Concepts

Callee.someMethod()

public void someMethod(){
 ...
}

Join Point Advice

bind to
(expressed in pointcut)

Caller

Callee

Core Concepts
advice
● the code implementing a concern

– additional code that should be applied to existing core
functionality

– e.g.
● logging
● security

Core Concepts
join point
● an event in an executing program where the advice

associated with the aspect may be executed

join point model
● many possible types of events

– call events – calls to a method
– execution events – the execution of a method
– initialization events – class or object initialization
– data events – accessing or updating fields
– exception events

Core Concepts
pointcut
● defines the join point where the associated advice should

be executed
– events are associated with particular items

● examples
– before the execution of all update methods
– after a normal or exceptional return from a method
– when the name field is changed

Core Concepts
aspect
● A program abstraction that defines a cross-cutting

concern. it includes
– the definition of a pointcut
– the advice associated with that concern

Logging Aspect

...
updateDetails(...)
...

Patient

Security Aspect

Aspect
Weaver

...
authentication
updateDetails(...)
logging code
...

Patient

Core Concepts
weaver
● responsible for inclusion of advice at the join points

specified in the pointcuts
● three types of weaving

– source code preprocessing
● code to code translation first, then compilation

– link time
● most common

– dynamic
● join points are monitored and corresponding advices are integrated
● performance penalties

Interfaces??
Conventional design
● a cross cutting concern can be modularized using

interfaces
– decouples the implementation
– example: Log4J

● however, the client code still needs to embed interface
code

Example

Aspect Oriented Design
Intent
● design process that uses aspects

Identification
● start with use case diagrams
● look for common features

Design
● the outcome of AOD process is an AOD model

Example of AOD model

Inventory

Equipment

Store

Location

Log

Platform

DB

«aspect»
Monitor

«aspect»
Ordering

«aspect»
Availability

«aspect»
Maintenance

«joinpoint»
Platform «joinpoint»

Equipment
Location

Example of AOD model

Pointcuts
viewMain = call getItemInfo(...)
mainco = call removeItemInfo(...)
mainci = call addItem(...)

«aspect»
Maintenance

Class Extensions

<viewItem> {after (<viewMain>)displayHistory}

ViewMaintenance History

In the method viewItem, after the call to the method
getItemInfo, a call to the method displayHistory should be
included to display the maintenance record.

Challenges
Testing
● unit testing – easy
● woven code – not so easy

– depends on the combination of aspects
● e.g. weave order

Tight coupling
● between main code (concern) and aspect code
● correctness

– correctly specifying pointcuts is important
● matching

– like regex

Challenges
Evolution
● FACT: code evolves/changes with time
● aspects must also change correspondingly

Design Patterns & AOP
Singleton Pattern
● crosscutting concerns:

– object creation
– count management

Design Patterns & AOP

Observer
● crosscutting concerns

– observer management
– notification

Design Patterns & AOP

Proxy
● Cross-cutting concern

– DoAction()

Design Patterns & AOP
How is AOP different from
● proxy design pattern
● decorator design pattern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

