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Aspect Oriented Programming (AOP)
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Goal

e separation of cross-cutting concerns

— organization leading to each component doing one thing only

Cross-cutting concern

user account HR
mﬂmt mimt
B B security
logging

fault-tolerance

Core system concerns (functional requirements)
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Error detection Validation

Security Business rules

Caching i18N

Logging Persistence

Transactions

Monitoring

[1] http://en.wikipedia.org/wiki/Aspect-oriented_software development#Examples_of crosscutting_concerns
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Tangling

e occurs if the implementation (code) of multiple concerns
is intermixed 1n a single module
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Tangling Example

synchronized void put (SensorRecord rec ) {
/l Check that there is space in the buffer; wait if not

if ( numberOfEntries == bufsize)
walit () ;

// Add record at end of buffer
/I If at end of buffer, next entry is at the beginning

// indicate that buffer is available

notify () ;

}



Scattering

» occurs 1f the implementation of a single concern 1s spread
over multiple modules
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Scattering Example

public void service1 ( ) { public void service2 ( ) {
try{ try{
/Il service1 code /I service2 code
} catch (Exception e) { } catch (Exception e) {

handleException(e); handleException(e);

} }

} }
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Caller
Callee.someMethod()
Join Point
(expressed in pointcut)
public void someMethod(){
}
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advice

* the code implementing a concern

— additional code that should be applied to existing core
functionality

- e.g.

e logging
e security
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Core Concepts

join point

e an event 1n an executing program where the advice
associated with the aspect may be executed

join point model

* many possible types of events

Waterloo

call events — calls to a method

execution events — the execution of a method
initialization events — class or object initialization
data events — accessing or updating fields

exception events



Core Concepts

pointcut

e defines the join point where the associated advice should
be executed
— events are associated with particular items

e cxamples

— before the execution of all update methods

— after a normal or exceptional return from a method

— when the name field 1s changed

Waterloo



aspect

e A program abstraction that defines a cross-cutting
concern. 1t includes

— the definition of a pointcut

— the advice associated with that concern

Security Aspect

Aspect ;ci-uthentication
_ updateDetails(...)
updateDetails(...) Weaver logging code

Logging Aspect
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Core Concepts

weaver

e responsible for inclusion of advice at the join points
specified in the pointcuts

e three types of weaving

— source code preprocessing
e code to code translation first, then compilation
— link time
* most common
— dynamic
* join points are monitored and corresponding advices are integrated
e performance penalties

Waterloo



Interfaces??

Conventional design
e across cutting concern can be modularized using
interfaces
— decouples the implementation
- example: Log4J

e however, the client code still needs to embed interface
code
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Example

Employee model

1. (a) Conventional Model 2. (b) AOP Model
Waterloo
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Aspect Oriented Design

Intent
e design process that uses aspects
Identification

e start with use case diagrams

e look for common features
Design
e the outcome of AOD process 1s an AOD model
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Example of AOD model

«aspect»
Monitor

«aspect»
Maintenance

«joinpoint» Inventory
Platiom) - ~ «joinpoint»
- Equipment

Equipment B Log

Location

Store Platform

Location DB

«aspect» «aspect»

Avalilability

Ordering
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«aspect»
Maintenance

Pointcuts

viewMain = call getlteminfo(...)
mainco = call removeltemInfo(...)
mainci = call addltem(...)

Class Extensions

ViewMaintenance History

<viewltem> {after (<viewMain>)displayHistory}

»
AN

N\

In the metho\d viewltem, after the call to the method
getltemlinfo, a call to the method displayHistory should be
included to display the maintenance record.
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Challenges

Testing
e unit testing — easy

e woven code — not so easy

— depends on the combination of aspects

e ¢.g. weave order
Tight coupling
e between main code (concern) and aspect code
e correctness
— correctly specifying pointcuts 1s important
e matching
Whaterioo ~ l1ke regex



Evolution

 FACT: code evolves/changes with time

e aspects must also change correspondingly
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Design Patterns & AOP

Singleton Pattern

* crosscutting concerns: Singleton

- singleton : Singleton

— object creation

- count management - Singleton()
+ getlnstance() : Singleton
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Design Patterns & AOP

<>+observerCollection

Subject

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

notifyObservers()
for observer in observerCollectio
call observer.notify()

"T

Observer

+notify()
ConcreteObserverA ConcreteObserverB
+notify() +notify()

Observer

e crosscutting concerns

URIVEESITY OF
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— observer management

— notification



Design Patterns & AOP

Client <<interface>>
---------- :3‘ Subject
—*4 DoAction() r::]_
Proxy delegate RealSubject
PrOXy DoAction() DoAction()

e Cross-cutting concern
— DoAction()

IIIIIIIIIIII

Waterloo



Design Patterns & AOP
How 1s AOP difterent from

e proxy design pattern

e decorator design pattern
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