Introduction to
Aspect Oriented Programming (AOP)

Waterloo

&

Goal

e separation of cross-cutting concerns

— organization leading to each component doing one thing only

Cross-cutting concern

user account HR
mﬂmt mimt
B B security
logging

fault-tolerance

Core system concerns (functional requirements)

Waterloo

&

Error detection Validation

Security Business rules

Caching i18N

Logging Persistence

Transactions

Monitoring

[1] http://en.wikipedia.org/wiki/Aspect-oriented_software development#Examples_of crosscutting_concerns

UNINERSITY OF

Waterloo

&

Tangling

e occurs if the implementation (code) of multiple concerns
is intermixed 1n a single module

Waterloo

Waterloo

Tangling Example

synchronized void put (SensorRecord rec) {
/l Check that there is space in the buffer; wait if not

if (numberOfEntries == bufsize)
walit () ;

// Add record at end of buffer
/I If at end of buffer, next entry is at the beginning

// indicate that buffer is available

notify () ;

}

Scattering

» occurs 1f the implementation of a single concern 1s spread
over multiple modules

Waterloo

Scattering Example

public void service1 () { public void service2 () {
try{ try{
/Il service1 code /I service2 code
} catch (Exception e) { } catch (Exception e) {

handleException(e); handleException(e);

} }

} }

Waterloo

Caller
Callee.someMethod()
Join Point
(expressed in pointcut)
public void someMethod(){
}
Waterloo

&

advice

* the code implementing a concern

— additional code that should be applied to existing core
functionality

- e.g.

e logging
e security

Waterloo

Core Concepts

join point

e an event 1n an executing program where the advice
associated with the aspect may be executed

join point model

* many possible types of events

Waterloo

call events — calls to a method

execution events — the execution of a method
initialization events — class or object initialization
data events — accessing or updating fields

exception events

Core Concepts

pointcut

e defines the join point where the associated advice should
be executed
— events are associated with particular items

e cxamples

— before the execution of all update methods

— after a normal or exceptional return from a method

— when the name field 1s changed

Waterloo

aspect

e A program abstraction that defines a cross-cutting
concern. 1t includes

— the definition of a pointcut

— the advice associated with that concern

Security Aspect

Aspect ;ci-uthentication
_ updateDetails(...)
updateDetails(...) Weaver logging code

Logging Aspect

IIIIIIIIIIII

Waterloo

&

Core Concepts

weaver

e responsible for inclusion of advice at the join points
specified in the pointcuts

e three types of weaving

— source code preprocessing
e code to code translation first, then compilation
— link time
* most common
— dynamic
* join points are monitored and corresponding advices are integrated
e performance penalties

Waterloo

Interfaces??

Conventional design
e across cutting concern can be modularized using
interfaces
— decouples the implementation
- example: Log4J

e however, the client code still needs to embed interface
code

Waterloo

Example

Employee model

1. (a) Conventional Model 2. (b) AOP Model
Waterloo

API Invocation As .e.c.t.v:fééxred in
Y | P
' ‘e, | Access
Manager mode | Manager model “*| Control
| Aspect
5 Access || PUSPPEL
G :> Control || ’
— Model | —— R
Visitor model Visitor model K
I R
| R Access
| ¢ Control
e | - Model
Employee model '
I
I

Aspect Oriented Design

Intent
e design process that uses aspects
Identification

e start with use case diagrams

e look for common features
Design
e the outcome of AOD process 1s an AOD model

Waterloo

&

Example of AOD model

«aspect»
Monitor

«aspect»
Maintenance

«joinpoint» Inventory
Platiom) - ~ «joinpoint»
- Equipment

Equipment B Log

Location

Store Platform

Location DB

«aspect» «aspect»

Avalilability

Ordering

UNINERSITY OF

Waterloo

3

«aspect»
Maintenance

Pointcuts

viewMain = call getlteminfo(...)
mainco = call removeltemInfo(...)
mainci = call addltem(...)

Class Extensions

ViewMaintenance History

<viewltem> {after (<viewMain>)displayHistory}

»
AN

N\

In the metho\d viewltem, after the call to the method
getltemlinfo, a call to the method displayHistory should be
included to display the maintenance record.

UNINERSITY OF

Waterloo

&

Challenges

Testing
e unit testing — easy

e woven code — not so easy

— depends on the combination of aspects

e ¢.g. weave order
Tight coupling
e between main code (concern) and aspect code
e correctness
— correctly specifying pointcuts 1s important
e matching
Whaterioo ~ l1ke regex

Evolution

 FACT: code evolves/changes with time

e aspects must also change correspondingly

Waterloo

Design Patterns & AOP

Singleton Pattern

* crosscutting concerns: Singleton

- singleton : Singleton

— object creation

- count management - Singleton()
+ getlnstance() : Singleton

Waterloo

@

Design Patterns & AOP

<>+observerCollection

Subject

+registerObserver(observer)
+unregisterObserver(observer)
+notifyObservers()

notifyObservers()
for observer in observerCollectio
call observer.notify()

"T

Observer

+notify()
ConcreteObserverA ConcreteObserverB
+notify() +notify()

Observer

e crosscutting concerns

URIVEESITY OF

Waterloo

— observer management

— notification

Design Patterns & AOP

Client <<interface>>
---------- :3‘ Subject
—*4 DoAction() r::]_
Proxy delegate RealSubject
PrOXy DoAction() DoAction()

e Cross-cutting concern
— DoAction()

IIIIIIIIIIII

Waterloo

Design Patterns & AOP
How 1s AOP difterent from

e proxy design pattern

e decorator design pattern

Waterloo

&

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

