Introduction to Aspect Oriented Programming (AOP)

AOP

Goal

- separation of cross-cutting concerns
 - organization leading to each component doing one thing only

Cross-cutting concern

Core system concerns (functional requirements)

Cross-cutting Concerns

Error detectionValidationSecurityBusiness rulesCachingi18NLoggingPersistenceMonitoringTransactions

[1] http://en.wikipedia.org/wiki/Aspect-oriented_software_development#Examples_of_crosscutting_concerns

Motivation

Tangling

• occurs if the implementation (code) of multiple concerns is intermixed in a single module

Tangling Example

synchronized void put (SensorRecord rec) {
// Check that there is space in the buffer; wait if not

```
if ( numberOfEntries == bufsize)
wait ();

// Add record at end of buffer

// If at end of buffer, next entry is at the beginning
// indicate that buffer is available

notify ();
}
```


Motivation

Scattering

• occurs if the implementation of a single concern is spread over multiple modules

Scattering Example

```
public void service1 ( ) {
    try{
        // service1 code
    } catch (Exception e) {
        handleException(e);
    }
}
public void service2 ( ) {
    try{
        // service2 code
    } catch (Exception e) {
        handleException(e);
    }
}
```


advice

- the code implementing a concern
 - additional code that should be applied to existing core functionality
 - e.g.
 - logging
 - security

join point

• an event in an executing program where the advice associated with the aspect may be executed

join point model

- many possible types of events
 - call events calls to a method
 - execution events the execution of a method
 - initialization events class or object initialization
 - data events accessing or updating fields
 - exception events

pointcut

- defines the join point where the associated advice should be executed
 - events are associated with particular items
- examples
 - before the execution of all *update methods*
 - after a normal or exceptional return from a method
 - when the <u>name field</u> is changed

aspect

- A program abstraction that defines a cross-cutting concern. it includes
 - the definition of a pointcut
 - the advice associated with that concern

weaver

- responsible for inclusion of advice at the join points specified in the pointcuts
- three types of weaving
 - source code preprocessing
 - code to code translation first, then compilation
 - link time
 - most common
 - dynamic
 - join points are monitored and corresponding advices are integrated
 - performance penalties

Interfaces??

Conventional design

- a cross cutting concern can be modularized using interfaces
 - decouples the implementation
 - example: Log4J
- however, the client code still needs to embed interface code

Example

Aspect Oriented Design

Intent

design process that uses aspects

Identification

- start with use case diagrams
- look for common features

Design

• the outcome of AOD process is an AOD model

Example of AOD model

Example of AOD model

«aspect» Maintenance

Pointcuts

viewMain = call getItemInfo(...)
mainco = call removeItemInfo(...)
mainci = call addItem(...)

Class Extensions

ViewMaintenance History

<viewItem> {after (<viewMain>)displayHistory}

In the method viewItem, after the call to the method getItemInfo, a call to the method displayHistory should be included to display the maintenance record.

Challenges

Testing

- unit testing easy
- woven code not so easy
 - depends on the combination of aspects
 - e.g. weave order

Tight coupling

- between main code (concern) and aspect code
- correctness
 - correctly specifying pointcuts is important
- matching
- Waterloo like regex

Challenges

Evolution

- FACT: code evolves/changes with time
- aspects must also change **correspondingly**

Singleton Pattern

- crosscutting concerns:
 - object creation
 - count management

Singleton

- singleton : Singleton
- Singleton()
- + getInstance(): Singleton

Observer

- crosscutting concerns
 - observer management
 - notification

- Cross-cutting concern
 - DoAction()

How is AOP different from

- proxy design pattern
- decorator design pattern

