
Service Layer Design
“Facade Vs. Command”



Client Tier thick thin

Presentation Tier controller

service

Business tier

service service service

controller controller

Service layer

DAO DAO DAO
Data access
 layer

Persistence Tier

Introduction



Client Tier

Presentation Tier HTTP Servlet

Business tier

loginService layer

User DAO
Data access
 layer

Persistence Tier

web service

time of day

Introduction



Facade Pattern

Intent
● “provide a unified interface to a set of interfaces in a 

subsystem”

Facade



Facade Example

Facade pattern: http://en.wikipedia.org/wiki/Facade_pattern



Facade Example



Facade Pattern

Advantages
● looser coupling
● lower network communication

– in enterprise application each method call incurs 
communication latency

● provides an extension point
– add security, logging

● promotes reusability
– unit of (business) work

● simple to understand & implement



Facade Pattern

Disadvantages
● Evolution

– facade methods are written in stone
● Scalability

– addition of new methods
– deprecation of old methods
– facade becomes complicated itself

● error reporting/handling
● does not grow organically



Facade Pattern

Disadvantages
● Re-usability

– change in execution environment
– aggregation of facade methods



Command Pattern

Intent
● “encapsulate the request as an object...”

So what
● how does the execution change?

– can we serialize objects?
– can we aggregate requests (commands)?

● separation of concerns
– caller object from the execution object

● dynamic in nature
– commands can be replaced at runtime



Command Example



Command Example
A switch can be associated with 
any other component by simply 
injecting the appropriate 
commands for flip up and flip 
down



Command as Service Layer



Command as Service Layer

Observation
● if commands represent business functionality then how 

come they are exposed to the client?
● in tiered applications, how do we deal with the 

marshalling and demarshalling of commands objects?
– expensive to move heavy duty objects



Command as Service Layer



Command as Service Layer

Evolution
● defining new commands is trivial
● deprecating commands is easy

– only need to retain the command identifier

Unit of work
● each unit of work is a command



Command as Service Layer

Scalability
● as the system grows we only add new concrete 

implementations
● more control over execution environment
● can I merge two or more commands into a single 

execution unit – composite command?



Command as Service Layer

Re-usability
● commands are simple and hence can be used in many 

different ways
– single command
– command chains (aggregation)
– composite command

Testing
● easy to test

– due to the separation of concerns


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

