
Service Layer Design
“Facade Vs. Command”
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Facade Pattern

Intent
● “provide a unified interface to a set of interfaces in a 

subsystem”

Facade



Facade Example

Facade pattern: http://en.wikipedia.org/wiki/Facade_pattern



Facade Example



Facade Pattern

Advantages
● looser coupling
● lower network communication

– in enterprise application each method call incurs 
communication latency

● provides an extension point
– add security, logging

● promotes reusability
– unit of (business) work

● simple to understand & implement



Facade Pattern

Disadvantages
● Evolution

– facade methods are written in stone
● Scalability

– addition of new methods
– deprecation of old methods
– facade becomes complicated itself

● error reporting/handling
● does not grow organically



Facade Pattern

Disadvantages
● Re-usability

– change in execution environment
– aggregation of facade methods



Command Pattern

Intent
● “encapsulate the request as an object...”

So what
● how does the execution change?

– can we serialize objects?
– can we aggregate requests (commands)?

● separation of concerns
– caller object from the execution object

● dynamic in nature
– commands can be replaced at runtime



Command Example



Command Example
A switch can be associated with 
any other component by simply 
injecting the appropriate 
commands for flip up and flip 
down



Command as Service Layer



Command as Service Layer

Observation
● if commands represent business functionality then how 

come they are exposed to the client?
● in tiered applications, how do we deal with the 

marshalling and demarshalling of commands objects?
– expensive to move heavy duty objects



Command as Service Layer



Command as Service Layer

Evolution
● defining new commands is trivial
● deprecating commands is easy

– only need to retain the command identifier

Unit of work
● each unit of work is a command



Command as Service Layer

Scalability
● as the system grows we only add new concrete 

implementations
● more control over execution environment
● can I merge two or more commands into a single 

execution unit – composite command?



Command as Service Layer

Re-usability
● commands are simple and hence can be used in many 

different ways
– single command
– command chains (aggregation)
– composite command

Testing
● easy to test

– due to the separation of concerns
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