
Architectural Blueprint –
“The 4+1 View Model

of Software Architecture”

Philippe Kruchten

2

Model

What is a model?
● simplified abstract representation
● information exchange
● standardization
● principals (involved)
● communication

– channel
– flow

3

I am a Model

Software/
System

Developers

Designers

Managers
Owners

End-Users

Owners

Build
engineers

Test
engineers

Sale reps

Deployment
engineers

Software/System stakeholders Model

4

Software Architectural Model

Definition
● “a model to represent the architecture of a software

system”
– which architecture (reference | conceptual | concrete)?

5

Desired Attributes

Addresses & captures
● concerns of various stakeholders

– stakeholders
● end-users, developers, system engineers, project management
● testers, support teams

● requirements
– functional
– non-functional

● performance, availability, concurrency, distribution, fault tolerance
● security, testing, usability, configuration management, evolution,

monitoring

6

Desired Attributes

An abstraction
● represents the high level view

Is robust
● adaptable
● scalable
● iterative

Meaningful & maintainable
● has to be a live document

– changes with the system

7

Types

Box & Line model

Architectural definition languages

View based models
● Zachman Framework (1987)
● Three schema approach (1977)
● 4+1 view model (1995)
● RM-ODP
● DoDAF

8

4+1 View Model

Model
● composed of 5 views

– a single view is not enough

View
● is catered for a set of corresponding stakeholders

– addresses the concerns of its stakeholders
● view elements

– components, connectors, notation
● generic representation

9

4+1 View Model

Logical
View

Development
View

Process
View

Physical
View

Scenario
View

10

Logical View

Intent
● is the object model of the design
● is generally the starting point
● addresses functional requirements

– decomposition into “architectural entities”

Style
● abstract entities

Stakeholders
● end-users, architects, designers

11

Logical View

View representation
● OOA (object oriented analysis)

– entities are analysis classes
– application of OOA principles

● abstraction, encapsulation. inheritance
● association (aggregation, composition)

– class diagrams, state diagrams
● data centric analysis

– entity relationship (ER) diagrams

12

Logical View

13

Logical View

Design guidelines
● a single object model across the system
● avoid premature specialization

– entities
– mechanisms (per site or per processor)

14

Process View

Intent
● handles the non-functional requirements
● provides an abstraction of architectural processes

– process
● process: grouping into executable units
● hierarchy: major & minor tasks
● types: atomic & distributed

– process communication
● messaging (synchronous, asynchronous, RPC, broadcast)
● shared memory

15

Process View

Style
● several styles are applicable

– pipes & filters
– layered

● client / server

Stakeholders
● integrators, architects

16

Process View

17

Development View

Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements
● management, requirement allocation, cost evaluation,

progress monitoring
● reuse, commonality, programming language and

development environment

18

Development View

Style
● layered style

– each layer with well defined interface
– subsystem dependencies on other subsystems

● in the same layer or lower

– each layer provides a development abstraction (responsibility)

Stakeholders
● managers, architects, designers, developers, testers

19

Development View

20

Physical View

Intent
● physical manifestation of process view

– processes are mapped to processing nodes

Concerns
● installation, configuration, deployment & delivery,

networking, messaging protocols

Stakeholders
● system engineers, installers, architects, operators

21

Physical View

Processor

Other device

Communication line

Communication
(non permanent)

Uni-directional
communication

High bandwidth
communication, Bus

22

Physical View

Design guidelines
● mapping to be flexible
● minimal impact on source code

23

Scenario View

Intent
● one rule to rule them all
● capture system functionality in scenarios

– interaction of objects & processes
– driven by important scenarios

● provides architecture validation

Stakeholders
● all stakeholders from the other views

24

Scenario View

Components from the logical view

Connectors from the process view

25

View Mappings

Logical
View

Development
View

Process
View

Physical
View

Scenario
View

26

Logical to Process View

Objects are mapped to processes
● considerations

– autonomy
– persistence
– subordination
– distribution

Strategy
● inside-out: identify processes for objects
● outside-in: identify processes (based on system requests)

and then allocate objects to these processes

27

Logical to Development View

Architectural component decomposition
● architectural entities are broken down into design

components
– packages, modules
– classes

● mapping is governed by development concerns
● distance between logical and design view

– an indication of the size of the system

28

Process to Physical View

Processes assignment to hardware
● major and minor tasks are assigned to physical machines
● various configurations

– development
– testing
– deployment

29

Iterative Process

Start with a model

In each iteration the architecture is
● prototyped
● tested: under load if possible
● measured & analyzed
● refined

– add more scenarios
– detect abstractions and optimizations

● each iteration should takes us a step closer to a stable
architecture

30

Discussion

Lacks some fundamental views
● security, user interface, testing
● upgrade, disaster recovery

Are the views ever complete

Change in architectural style
● data centric to OO architecture

31

Meet Kruchten

Phillipe Kruchten
● professor of software engineering at the University of

British Columbia
● professional software engineer with 30+ years of

experience

Major Work
● RUP
● Canadian automated air traffic control system – lead

designer

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

