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Model

What is a model?
● simplified abstract representation
● information exchange
● standardization
● principals (involved)
● communication

– channel
– flow
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Software Architectural Model

Definition
● “a model to represent the architecture of a software 

system”
– which architecture (reference | conceptual | concrete)?
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Desired Attributes

Addresses & captures
● concerns of various stakeholders

– stakeholders
● end-users, developers, system engineers, project management
● testers, support teams

● requirements
– functional
– non-functional

● performance, availability, concurrency, distribution, fault tolerance
● security, testing, usability, configuration management, evolution, 

monitoring



6

Desired Attributes

An abstraction
● represents the high level view

Is robust
● adaptable
● scalable
● iterative

Meaningful & maintainable
● has to be a live document

– changes with the system
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Types

Box & Line model

Architectural definition languages

View based models
● Zachman Framework (1987)
● Three schema approach (1977)
● 4+1 view model (1995)
● RM-ODP
● DoDAF
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4+1 View Model

Model
● composed of 5 views

– a single view is not enough

View 
● is catered for a set of corresponding stakeholders

– addresses the concerns of its stakeholders
● view elements

– components, connectors, notation 
● generic representation
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4+1 View Model
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Logical View

Intent
● is the object model of the design
● is generally the starting point
● addresses functional requirements

– decomposition into “architectural entities”

Style
● abstract entities

Stakeholders
● end-users, architects, designers
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Logical View

View representation
● OOA (object oriented analysis)

– entities are analysis classes
– application of OOA principles

● abstraction, encapsulation. inheritance
● association (aggregation, composition)

– class diagrams, state diagrams
● data centric analysis

– entity relationship (ER) diagrams
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Logical View
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Logical View

Design guidelines
● a single object model across the system
● avoid premature specialization

– entities
– mechanisms (per site or per processor)
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Process View

Intent
● handles the non-functional requirements
● provides an abstraction of architectural processes

– process
● process: grouping into executable units
● hierarchy: major & minor tasks
● types: atomic & distributed

– process communication
● messaging (synchronous, asynchronous, RPC, broadcast)
● shared memory



15

Process View

Style
● several styles are applicable

– pipes & filters
– layered

● client / server

Stakeholders
● integrators, architects
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Process View
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Development View

Intent
● software/system decomposition into software modules
● software modules

– name space, packages, libraries, subsystems
– modules are scoped for small (development) teams

Driven by internal requirements
● management, requirement allocation, cost evaluation, 

progress monitoring
● reuse, commonality, programming language and 

development environment
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Development View 

Style
● layered style

– each layer with well defined interface
– subsystem dependencies on other subsystems

● in the same layer or lower 

– each layer provides a development abstraction (responsibility)

Stakeholders
● managers, architects, designers, developers, testers
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Development View 
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Physical View

Intent
● physical manifestation of process view

– processes are mapped to processing nodes

Concerns
● installation, configuration, deployment & delivery, 

networking, messaging protocols

Stakeholders
● system engineers, installers, architects, operators
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Physical View

Processor

Other device

Communication line

Communication 
(non permanent)

Uni-directional 
communication

High bandwidth 
communication, Bus
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Physical View

Design guidelines
● mapping to be flexible
● minimal impact on source code
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Scenario View

Intent
● one rule to rule them all
● capture system functionality in scenarios

– interaction of objects & processes
– driven by important scenarios

● provides architecture validation

Stakeholders
● all stakeholders from the other views
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Scenario View

Components from the logical view

Connectors from the process view
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View Mappings

Logical
View

Development
View

Process
View

Physical
View

Scenario
View



26

Logical to Process View

Objects are mapped to processes
● considerations

– autonomy
– persistence
– subordination
– distribution

Strategy
● inside-out: identify processes for objects
● outside-in: identify processes (based on system requests) 

and then allocate objects to these processes
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Logical to Development View

Architectural component decomposition
● architectural entities are broken down into design 

components
– packages, modules
– classes

● mapping is governed by development concerns
● distance between logical and design view

– an indication of the size of the system
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Process to Physical View

Processes assignment to hardware
● major and minor tasks are assigned to physical machines
● various configurations

– development
– testing
– deployment
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Iterative Process

Start with a model

In each iteration the architecture is 
● prototyped
● tested: under load if possible
● measured & analyzed
● refined

– add more scenarios
– detect abstractions and optimizations

● each iteration should takes us a step closer to a stable 
architecture
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Discussion

Lacks some fundamental views
● security, user interface, testing
● upgrade, disaster recovery

Are the views ever complete

Change in architectural style
● data centric to OO architecture
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Meet Kruchten

Phillipe Kruchten
● professor of software engineering at the University of 

British Columbia
● professional software engineer with 30+ years of 

experience

Major Work
● RUP
● Canadian automated air traffic control system – lead 

designer
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