
Gang of Four
Object Oriented Design Patterns

Motivation

Object Oriented Analysis (OOA)
● domain problem designed as (domain) objects

– addresses the functional challenges
– what a system does
– provides guidance for implementation

Object Oriented Design (OOD)
● domain problem solved as (implementation) objects

– addresses the implementation challenges
– how a system realizes OOA

Motivation

How can we improve OOD
● identify common characteristics

– creation, structure, behaviour, interactions
● design patterns

– generic blueprints (micro architecture)
– language and implementation independent
– two main catalogues

● GoF
– Gang of Four (Gamma, Helm, Johnson, Vlissides, 1995)

● POSA
– Pattern Oriented Software Architecture (Buschmann, et al.; Wiley,

1996)

Design Patterns
GoF Design Patterns

Creational Structural Behavioral

Factory Method

Abstract Factory

Builder

Prototype

Singleton

Adaptor - class

Bridge

Composite

Decorator

Facade

Adaptor-object

Flyweight

Proxy

Interpreter

Chain of responsibility

Command

Iterator

Mediator

Template Method

Memento

Observer

State

Strategy

Visitor

cl
as

s
ob

je
ct

Singleton

Intent
● “ensure a class only has one instance, and provide a

global point of access to it.”

Construction
 public class Singleton {
 private static final Singleton INSTANCE = new Singleton();

 // Private constructor prevents
 // instantiation from other classes
 private Singleton() {}

 public static Singleton getInstance() {
 return INSTANCE;
 }
 }

Singleton

Advantages
● controlled access
● refinement of functionality

– via inheritance/subclass
● variable number of instances

– only the getInstance method needs modification

Singleton

A closer look
● reuse
● separation of concerns
● global presence
● stateful vs. stateless
● multiple instances
● life cycle

Singleton – A Closer Look

Reuse
● coupling

– results in tighter coupling
● couples with the exact type of the singleton object

– pass by reference to reduce coupling
● inheritance

– easy to extend functionality in subclasses
– not easy to override the object instance in subclasses

Singleton – A Closer Look

Separation of concerns
● singleton class responsible for creation

– acts as a builder/factory
● what if we were to separate the two concerns

– example
● Database connection as a singleton
● System 1 uses a singleton to ensure only a single database connection
● System 2 needs to connection pool of 10 databases connections

Singleton – A Closer Look

Global presence
● provides a global access point to a service

– aren't global variables bad?
– can be accessed from anywhere
– violation of layered access

● not part of method signature
– dependency is not obvious
– requires code inspection

● a large system may require many singletons
– use a registry/repository

Singleton – A Closer Look

Stateful singleton
● same as a global variable in principle

– aren't global variables bad?
● access concerns

– synchronization
– concurrency – multiple threaded using a singleton

● mutable vs. immutable state

Stateless singleton
● better then stateful
● can we have a stateless singleton?

Singleton – A Closer Look

Multiple instances
● distributed systems

– is it possible to have a true singleton in a distributed system?
– global registries/repositories

● language (Java) specific concerns
– initialization – has to be thread safe
– serialization
– class loaders

Singleton – A Closer Look

Life-cycle & life span
● creation

– lazy initialization
● singletons are long lived

– as long as an application's life span
– registries can outlive applications
– unit testing requires short lived state

● language (Java) specific concern
– reloading singleton class (servlets)
– loss of state

Singleton

When can I use a singleton
● considerations[1]

– will every user use this class exactly the same way?
– will every applications ever need only one instance?
– should the clients be unaware of the application

● examples
– Java Math class (stateless – static class)
– top level GUI (window/frame)
– logging

[1] http://www.ibm.com/developerworks/library/co-single.html

Adapter

Intent
● “convert the interface of a class into another interface...

Adapter lets classes work together that couldn't
otherwise because of incompatible interface”

● also known as wrapper
● example

– boolean values can be represented by
● {1,0}, {true, false}, {yes, no}

Adapter – Class

Requirement
● requires multiple inheritance
● what about implementations

that do not support multiple
inheritance (Java)?

Adapter – Object

Requirement
● via object composition

Adapter – Class vs. Object

Class
● commitment to a

concrete adaptee class
– can not use a class

hierarchy
● allows for specialization
● static in nature

Object
● can use many adaptees
● harder to override the

adaptee behavior

Adapter & Dependency Inversion

Policy
layer

Mechanism
 layer

Utility
 layer

Policy
layer

Mechanism
 layer

Utility
 Interface

Mechanism
 Interface

Utility
 layer

Simple Layers Abstract Layers

Dependency Inversion (DI)
● decouple high level layer from lower level layer(s)

Adapter & Dependency Inversion

Button
<<abstract>>

ButtonClient
<<interface>>

ButtonImpl Lamp

Button
<<abstract>>

ButtonClient
<<interface>>

ButtonImpl Lamp
Adapter

Lamp

DI DI with Adapter

Lamp is no longer
dependent on
ButtonClient

Adapter

How much adaptation is reasonable?

Bridge

Intent
● “decouples an abstraction from its implementation so the

two can vary independently”

● does this not sounds like an adapter?
– will take a closer look later

Bridge

Bridge

Bridge Example

Window
<<abstract>>

XWindow PMWindow

IconWindow

Window
<<abstract>>

XWindow PMWindow

IconWindow

XIcon
Window

PMIcon
Window

Solution via inheritance

problem1: what if we have to
support another platform?

problem2: client code is tied to
an implementation. For portable
code, the client should not refer to
an implementation

Problem

Bridge Example
Solution: Use bridge pattern to place abstraction and
implementation in two different hierarchies

Bridge

Bridge

Features
● flexible binding between abstraction & implementation
● two class hierarchies
● clients are decoupled

Adapter & Bridge

Common elements
● flexibility via indirection
● request forwarding

Adapter & Bridge

Difference in intent
● adapter

– resolves incompatibilities between two existing interfaces
– two interfaces are independent and can evolve separately
– coupling is unforeseen
– adapts components after they have been designed

● bridge
– connects an abstraction and its many implementations
– evolution is in accordance with the base abstraction
– coupling between the abstraction and the implementations are

known

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

