
An Introduction to 
Software Architecture

Case Studies

David Garlan & Mary Shaw – 94



2

KWIC

Key Word In Context (KWIC)
● Search index

– searching for keywords 
with context sensitive
display

– provides the user with
 more information



3

Example

Input: Titles
● Clouds are white
● Ottawa is beautiful

Output: Index
● are white Clouds
● beautiful Ottawa is
● Clouds are white
● is beautiful Ottawa
● Ottawa is beautiful
● white Clouds are



4

Solution 1

Main Program/Subroutine with Shared Data
● Functional decomposition
● Components are subroutines

Master Control

Input Circular Shift OutputAlphabetizer

Characters Index Alphabetized Index

Input
Medium

Output
Medium

Direct Memory Access

Subprogram Call

System I/O



5

Solution 1

Strengths
● Centralized data

– efficient representation of data
● Modular decomposition

Weaknesses
● Resistant to change

– consider the impact of data storage 
format

– difficult to enhance the overall functionality
– reuse of component is difficult



6

Solution 2

Abstract Data Types
● Similar to one with data encapsulation

– data access via component interface invocation
– no direct data access

● Components similar to solution 1



7

Solution 2

Abstract Data Types

Master Control
Input

Characters

Output

Alphabetic Shifts

Input
Medium

Output
Medium

Subprogram CallSystem I/O

Circular Shift

se
tc

ha
r

ch
ar

w
or

d

se
tc

ha
r

ch
ar

w
or

d

se
tu

p al
ph i-t
h



8

Solution 2

Advantages
● Handles change well

– algorithm and data are encapsulated in individual modules
● Reuse

– modules interact via defined interfaces

Disadvantages
● Evolution still a problem

– to add new features may require changes to existing or addition 
of new components



9

Solution 3

Implicit Invocation
● Similar to solution 1

– shared data
● Two main differences

– data is more abstract
● underlying storage is not exposed to components

– components are invoked implicitly
● e.g. when a line is added



10

Solution 3

Master Control

Input

Circular Shift

Output

Alphabetizer
Input

Medium
Output

Medium

Implicit invocation

Subprogram call

System I/O

Lines

in
se

rt

de
le

te

i -
th

Lines

in
se

rt

de
le

te

i -
th

Calls to circular shift and alphabetizer are 
implicit, and are the result of inserting lines



11

Solution 3

Advantages
● Strong evolution path

– functional enhancements are easy
– new components can be attached and removed
– components are shielded from data storage representation

● REALLY WHY?

● Minimal component coupling/dependency
– data events are the source of all interactions



12

Solution 3

Disadvantages
● Difficult to control the ordering of processing
● Requires more storage capacity

– IS THIS REALLY A DISADVANTAGE?



13

Solution 4

Pipes & Filters
● Four filters

– input, shift, alphabetize, output
– each filter can compute when data is available at the input
– data sharing is restricted by pipes

Input Circular Shift OutputAlphabetizer

Input
Medium

Output
Medium

pipe System I/O



14

Solution 4

Advantages
● Intuitive flow of processing
● Reuse
● Evolution

– new filters can be easily added



15

Solution 4

Disadvantage
● Virtually impossible to support an interactive system
● Is this a true pipes & filters?

– consider the data flow
● What is the LCD data unit?



16

Comparison

Shared
Memory

ADT Implicit
Invocation

Pipe & Filter

change in algorithm    

change in data 
representation

   

change in functionality    

performance    

reuse    



17

Reading

Will be on exam
● Case Study 2: Instrumentation Software
● Case Study 3: A Fresh View of Compilers

Will not be on exam
● Case Study 4: A Layered Design with Different Styles for 

the Layers
● Case Study 5: An Interpreter Using Different Idioms for 

the Components


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

