
An Introduction to
Software Architecture

David Garlan & Mary Shaw – 94

2

Motivation

Motivation
● An increase in (system) size and complexity

– structural issues
– communication (type, protocol)
– synchronization
– data access / manipulation
– deployment
– performance

3

Potential Solution

Architectural Principles
● Recognize common patterns

– build new systems as variation on old systems
● Selecting the right architecture

– crucial to success
● Making choices
● Representation

– describes the high level properties

4

Architectural Style

Architecture
● component: represents computation
● connectors: facilitates component communication

Architectural Style/Configuration
● architecture = ‹components, connectors, constraints›

Visualization
● graph representation

5

Architectural Styles

Pipes and filters

Data abstraction

Implicit invocation

Layered systems

Repositories

6

Pipes & Filters

Overview
● Architectural pattern for stream

processing
● A filter defines a

processing/computation step
● Data flows through a

sequential chain of filters
● A filter chain represents a system

C1

C2

C3

Component

Connector

data flow

7

F1

F2

Fn

filters

pipes

data flow

Components (Filters)
● Set of inputs and outputs
● Input & output streams
● Local transformation

– incremental output
● Known as filters

Connectors (Pipes)
● Facilitate data flow
● Known as pipes

Pipes & Filters

8

Pipes & Filters

Invariants
● Independent entities

– do not share state
– have no knowledge of other filters

● Transformation
– incremental
– not dependent on order in the chain

9

Pipes & Filters

Specialization
● Pipelines: restricted to linear topology
● Bounded pipes: restricts the amount of data on a pipe
● Typed pipes: data on a pipe to be of an acceptable type

Question
● Can a filter process all of its input data as a single entity?

10

Pipes & Filters

Examples
● Unix shell programs

– pipelines
– cat file1 | sort | grep keyword

● JEE Servlet Filter (javax.servlet.Filter)
– typed pipes

request
response

HTTPRequest
HTTPResponse

server servlet

server servletf1 f2 fn

11

Pipes & Filters

Examples
● Compilers

– More of a sequential batch architecture

lex syn sem opt code

source code machine code

12

Pipes & Filters

Advantages
● Simple composition
● Reuse

– any two filters can be combined together
● as long as they speak the same data language

● Prototyping
– how many scripts make use of grep, awk, sed etc.

● Easy growth & evolution
– Architectural evaluation for performance & bottlenecks

● Concurrency & parallelism

13

Pipes & Filters

Disadvantages
● Poor performance

– each filter has to parse data
– sharing global data is difficult

● Not appropriate for interaction
● Low fault tolerance threshold

– What happens if a filter crashes
● Data transformation

– to LCD to accommodate filters
● Increases complexity & computation

14

Data Abstraction

Object Oriented Organization (OOO)
● Encapsulation (data & operations)

Components
● Objects, modules

Connectors
● represent inter-object communication

– synchronous or asynchronous

15

Data Abstraction

Key aspects
● Objects preserve their integrity
● no direct access
● Object representation is a private affair

Advantages
● Implementation changes with minimal global impact
● Decomposition

– large system into a set of interacting objects
– easy to manage & evolve

16

Data Abstraction

Disadvantages
● Interaction injects coupling

– objects interact via public contract
– what happens when the contract changes?
– indirect coupling: A uses B, C uses B, then changes made by C

on B are unexpected to A

17

Data Abstraction

Some thoughts
● Design by contract – interfaces

– decouples inter-object dependencies
● Synchronization

What would happen if an object were to fail during
an operation?

18

Implicit invocation

Event-based
● Components do not directly invoke other components
● Similar to observer (GOF) design pattern

– implicit invocation architectural style has broader scope

Components
● Modules {event, callback | procedure}

– objects, processes, distributed applications

Connectors
● Traditional method call
● Broadcast of events

19

Implicit invocation

Publish & Subscribe
● Components register for events
● Events are generated published

– by different sources
– to a centralized system

● Events are broadcast
– via callback or procedure

20

Implicit invocation

Invariants
● Event generators do not know

– about event consumers
– functional impact on different components

● Broadcast ordering
– components cannot make assumptions about ordered delivery

21

Implicit invocation

Examples
● News, fire alarms etc.
● MVC
● IDEs
● Database systems to

– ensure consistency constraints
– execute stored procedures

● User interface
– Separation of data presentation from data management

● Enterprise application interaction

22

Implicit invocation

Advantages
● Minimal dependency and loose coupling

– Components do not directly interact with each other
– Components can be added or removed

● Highly reusable
– Components can be replaced with newer components

● without changing their interfaces

● Scalable
– New components can simply register themselves

23

Implicit invocation

Disadvantages
● Loss of execution control

– Who, when, what
● Data exchange

– information has to be encapsulated within an event
– shared repository
– impact on

● global system performance & resource management

● Event context
– unpredictable side effects
– how to debug such a problem?

24

Layered Systems

Organized hierarchy
● Each layer

– provides a service to the layer above
– acts as a client to the layer below

Components
● Layers: composed of groups of subtasks
● API: Set of classes exposing an API layer

Connectors
● Communication protocols/interfaces

– define the inter-layer interaction

25

Layered Systems

core

basic utilities

applications

Onion skin model

26

Layered Systems

Tree model

27

Layered Systems

Tiered model

persistence

business functions

app1 app2

28

Layered Systems

Invariants
● Limit layer interactions to adjacent layers only

– Can be violated as follows:
● A layer may use any layer below for service

● Much richer interaction when compared to pipeline
– two way communication

● Layers must support the protocols of its upper and lower
boundaries

29

Advantages
● Increasing levels of abstraction
● Low coupling

– easy to maintain
– a layer only interacts with a layer above and a layer below

● Modular reuse
– a layer can be replaced by another as long as the interface is

not violated

Layered Systems

30

Layered Systems

Disadvantages
● Not all systems can be layered
● Performance

– May force the high level functions to be tightly coupled with
low level implementation

Tiered Architecture
● Specialization for enterprise applications

– tiers are generally physically separated

31

Repositories

Main idea
● Centralized source of information with many

components

Components
● Type 1: central data-store component

– represents system state/data
● Type 2: collection of data-use components

– collection of independent components operate on the central
data-store

32

Repositories

Connections
● Vary considerably

– Active: Incoming streams of transactions trigger processes to
act on data-store – database

– Passive: current state of the data-store triggers processes –
blackboard

33

Repositories

Advantages
● Efficient when dealing with large amounts of data

– Known data schema
– leads to ease of data sharing
– centralized management

● Clients are loosely coupled

34

Repositories

Disadvantages
● Data model

– is static, bounded by defined schema
– resistant to change as many depend on it
– evolution is expensive

● Difficult to distribute

35

Interpreter Style

Main idea
● Bridge functionality

– Suitable for applications in which the most appropriate
language or machine for executing the solution is not directly
available

36

Interpreter Style

Components
● interpretation engine

– to do the work
● memory

– contains the
psuedo-code & state

● state
– control state of the engine
– current state of the program

37

Interpreter Style

Connectors
● procedure calls
● direct memory access

Examples
● Programming language compilers

– Java, small talk
● Scripting languages

– awk, Perl

38

Interpreter Style

Advantages
● Simulation of non-implemented parts
● Portability

– across a variety of platforms

Disadvantages
● Performance

– Computational complexity – slow execution

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

