Decisions with Multiple Agents: Game Theory

Alice Gao Lecture 23

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- ▶ Determine dominant-strategy equilibria of a 2-player normal form game.
- ▶ Determine pure-strategy Nash equilibria of a 2-player normal form game.
- Determine whether one outcome Pareto dominates another outcome of a game. Determine Pareto optimal outcomes of a 2-player normal form game.
- Calculate a mixed strategy Nash equilibrium of a 2-player normal form game.

CQ: Prior knowledge w/ GT and MD

CQ: Have you learned Game Theory and/or Mechanism Design in another course?

- (A) Yes
- (B) No

Decision making with multiple agents

- Decision making in a multi-agent environment.
- ▶ When making a decision, each agent needs to take into account of the other agents' behaviour.

What is a game?

Game Theory

A game is a mathematical model of a strategic scenario.

Dutch flower auction

Matching problems

Examples: medical residency matching, school choice, and organ transplant, etc.

Crowdsourcing

Examples: 99 Designs, Topcoder, Duolingo, uwflow.com

Game Theory vs Mechanism Design

▶ Game theory: Given a game, how would agents play it?

Mechanism design: How should we design the rules of the game so that the agents will behave the way we want them to?

The multi-agent framework

- Each agent decides what to do based on
 - their information about the world
 - their information about other agents
 - their utility function
- ▶ The outcome depends on the actions of all agents.

Relationship between utility functions

A game can be

- cooperative where agents have a common goal.
- competitive where agents have conflicting goals.
- or somewhere in between.

CQ: Home or dancing?

		Bob	
		home	dancing
Alice	home	(0,0)	(0,1)
	dancing	(1,0)	(2, 2)

CQ: Home or dancing? What do you think the players will do?

		Bob	
		home	dancing
Alice	home	(0,0)	(0, 1)
	dancing	(1,0)	(2,2)

- (A) (home, home)
- (B) (home, dancing)
- (C) (dancing, home)
- (D) (dancing, dancing)

CQ: Home or dancing - DSE

CQ: Which of the following statements is correct?

Alice $\begin{array}{c|c} & & Bob \\ \hline home & dancing \\ \hline dancing & (0,0) & (0,1) \\ \hline (1,0) & (2,2) \\ \hline \end{array}$

- (A) (home, home) is the only dominant strategy equilibrium.
- (B) (dancing, dancing) is the only dominant strategy equilibrium.
- (C) (dancing, home) or (home, dancing) is the only dominant strategy equilibrium.
- (D) This game has more than one dominant strategy equilibrium.
- (E) This game has no dominant strategy equilibrium.

CQ: Dancing or running - DSE

Alice $\begin{array}{c|c} & & & \text{Bob} \\ \hline \textit{dancing} & \textit{running} \\ \textit{running} & (2,2) & (0,0) \\ \hline \textit{running} & (0,0) & (1,1) \\ \end{array}$

CQ: Dancing or running What do you think the players will do?

		Bob	
		dancing	running
Alice	dancing	(2,2)	(0,0)
	running	(0,0)	(1,1)

- (A) (dancing, dancing)
- (B) (dancing, running)
- (C) (running, dancing)
- (D) (running, running)

CQ: Dancing or running - DSE

CQ: Which of the following statements is correct?

Alice $\begin{array}{c|c} & & & \text{Bob} \\ & \textit{dancing} & \textit{running} \\ \hline & (2,2) & (0,0) \\ \textit{running} & (0,0) & (1,1) \\ \end{array}$

- (A) (dancing, dancing) is the only dominant strategy equilibrium.
- (B) (running, running) is the only dominant strategy equilibrium.
- (C) (dancing, running) or (running, dancing) is the only dominant strategy equilibrium.
- (D) This game has more than one dominant strategy equilibrium.
- (E) This game has no dominant strategy equilibrium.

Nash equilibrium

- Won Nobel prize in Economics.
- One-page paper on Nash equilibrium and 26-page PhD thesis.
- Every finite game has at least one Nash equilibrium. (It may not be a pure strategy equilibrium though.)

CQ: Dancing or running - NE

CQ: Which of the following is correct about the game below? Consider only pure-strategy Nash equilibria.

		Bob	
		dancing	running
Alice	dancing	(2,2)	(0,0)
	running	(0,0)	(1, 1)

- (A) (dancing, dancing) is the only Nash equilibrium.
- (B) (running, running) is the only Nash equilibrium.
- (C) (dancing, dancing) and (running, running) are both Nash equilibria.
- (D) This game has more than two Nash equilibria.

CQ: Dancing or running - Pareto optimality

CQ: How many of the four outcomes are **Pareto optimal**?

Alice
$$\begin{array}{c|c} & & & & & \\ & dancing & running \\\hline dancing & (2,2) & (0,0) \\\hline running & (0,0) & (1,1) \\\hline \end{array}$$

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- ▶ Determine dominant-strategy equilibria of a 2-player normal form game.
- ▶ Determine pure-strategy Nash equilibria of a 2-player normal form game.
- Determine whether one outcome Pareto dominates another outcome of a game. Determine Pareto optimal outcomes of a 2-player normal form game.
- Calculate a mixed strategy Nash equilibrium of a 2-player normal form game.