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1 Introduction

• Making sequential decisions in an environment with uncertainty

• Sequential (not episodic)

• Fully (not partially) observable

• Stochastic (not deterministic)

2 Defining a Markov Decision Process

A robot is situated in a grid world with 4 columns and 3 rows.

1 2 3 4
1 Start
2 X -1
3 +1

The states

• Each square is denoted by sij where i and j are the row and column positions respectively.

• The initial state is s11.

• There is a wall in s22 and the robot cannot occupy it.

• The goal states are s24 and s34. When the robot reaches a goal state, it escapes this world.

The environment is fully observable – The agent knows where it is.

The environment is stochastic – An action does not always achieve its intended effect.

The actions: up, down, left, right. All four actions are possible in every state.

The transition model P (s′|s, a):

• An action achieves its intended effect with probability 0.8.

• An action leads to a 90-degree left turn with probability 0.1.
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• An action leads to a 90-degree right turn with probability 0.1.

• If the robot bumps into a wall, it stays in the same square.

The transitions are Markovian: The probability of reaching state s′ from state s depends only on
state s and not on the history of earlier states.

The reward function R(s) denotes the reward of entering a state s.

• The reward of entering s24 is −1.

• The reward of entering s34 is 1.

• The reward of entering any other square is −0.04.

For now, the total utility for a sequence of states is just the sum of the rewards received.

To sum up, what is a Markov decision process?

• A sequential decision problem

• The environment is fully observable - The agent knows the state it is in.

• The environment is stochastic - An action may not have its intended effect.

• A Markovian transition model: the transition only depends on the current state and does
not depend on the history of states.

• A set of states, a set of actions in each state, a transition model, and a reward function.

3 What does a solution to a MDP look like?

• If the environment is deterministic, is “down, down, right, right, and right” an optimal
policy?

• What would happen if we follow a fixed sequence of actions, say down, down, right, right,
and right?

• Can a fixed sequence of actions be the optimal solution to a MDP?



CS 486/686 Lecture 21 Markov Decision Process 3

We call a solution of this kind a policy, denoted by π. π(s) denotes the recommended action when
we are in state s.

How do we compare different policies and find the optimal policy? We can calculate the ex-
pected reward/utility of each policy. (You will see that we won’t need to calculate the expected
reward/utility directly.) The optimal policy, denoted by π∗, is the one that yields the highest
expected utility.
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4 The optimal policy of a MDP

The optimal policy of a MDP shows a careful balancing of risk and reward. It changes depending
on the rewards for the non-goal states (-0.04).

When R(s) = −0.04, the optimal policy is as follows.

When R(s) < −1.6284, what does the optimal policy look like?
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When −0.4278 < R(s) < −0.0850, what does the optimal policy look like?

When −0.0221 < R(s) ≤ 0, what does the optimal policy look like?

When R(s) > 0, what does the optimal policy look like?
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5 Modeling Utilities Over Time

5.1 Is there a finite or an infinite horizon for decision making?

• Finite horizon: There is a fixed number of time periods left. After that, game is over and
nothing matters.
If there are 3 days left, at state s13, we need to aggressively move towards s34 to have a shot
of getting there. If there are 100 days left, at state s13, we can safely take the longer route
to avoid s24.
With a finite horizon, the optimal action in a state may change over time. The optimal
policy is non-stationary.

• Infinite horizon: There is no end time/deadline.
There is always an infinite amount of time left. We should NOT behave differently in a state
at different times. The optimal action in each state stays the same. The optimal policy is
stationary.

We will model the problem as having an infinite horizon.

5.2 How should we calculate the utility of a sequence of states?

• Additive rewards:

U(s0, s1, s2, ..s) = R(s0) +R(s1) +R(s2) + ...

• Discounted rewards:

U(s0, s1, s2, ..s) = R(s0) + γR(s1) + γ2R(s2) + ...

where the discount factor 0 ≤ γ ≤ 1.
Why should we use discounted rewards instead of additive rewards?

We will use discounted rewards.


