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1 Introduction

• Making sequential decisions in an environment with uncertainty

• Sequential (not episodic)

• Fully (not partially) observable

• Stochastic (not deterministic)

2 Defining a Markov Decision Process

A robot is situated in a grid world with 4 columns and 3 rows.

1 2 3 4
1 Start
2 X -1
3 +1

The states

• Each square is denoted by sij where i and j are the row and column positions respectively.

• The initial state is s11.

• There is a wall in s22 and the robot cannot occupy it.

• The goal states are s24 and s34. When the robot reaches a goal state, it escapes this world.

The environment is fully observable – The agent knows where it is.

The environment is stochastic – An action does not always achieve its intended effect.

The actions: up, down, left, right. All four actions are possible in every state.

The transition model P (s′|s, a):

• Describes the outcome of each action in each state

• Stochastic: prob of reaching state s′ if action a is done in state s.
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• Draw picture.

• An action achieves its intended effect with probability 0.8.

• An action leads to a 90-degree left turn with probability 0.1.

• An action leads to a 90-degree right turn with probability 0.1.

• If the robot bumps into a wall, it stays in the same square.

2 examples:

• The robot is in s13 and tries to go down. It successfully moves to s23 with probability 0.8,
moves into s12 with probability 0.1 and moves into s14 with probability 0.1.

• (CQ) The robot is in s14 and tries to move right. It stays in s14 with probability 0.9 and
moves to s24 with probability 0.1.

The transitions are Markovian: The probability of reaching state s′ from state s depends only on
state s and not on the history of earlier states.

The reward function R(s) denotes the reward of entering a state s.

• The reward of entering s24 is −1.

• The reward of entering s34 is 1.

• The reward of entering any other square is −0.04.
(The negative reward encourages the agent to reach s34 as quickly as possible. In other words,
the agent does not enjoy living in this world and wants to escape this world as quickly as
possible. )

For now, the total utility for a sequence of states is just the sum of the rewards received.

To sum up, what is a Markov decision process?

• A sequential decision problem

• The environment is fully observable - The agent knows the state it is in.

• The environment is stochastic - An action may not have its intended effect.

• A Markovian transition model: the transition only depends on the current state and does
not depend on the history of states.

• A set of states, a set of actions in each state, a transition model, and a reward function.
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3 What does a solution to a MDP look like?

• If the environment is deterministic, is “down, down, right, right, and right” an optimal
policy?
True. This sequence of actions takes us to s34 with a minimum number of steps.

• What would happen if we follow a fixed sequence of actions, say down, down, right, right,
and right?
It could take us to multiple states with positive probability.
For example, with probability 0.1 ∗ 0.8 ∗ 0.1 ∗ 0.1 ∗ 0.1, the sequence takes us to s12.

• Can a fixed sequence of actions be the optimal solution to a MDP?
No. Since the environment is stochastic, after every action, we may not end up where we
intended to. After carrying out the fixed sequence of actions, we won’t know what to do.
Thus, it is not enough to have a fixed plan. We need to have a plan for every square that
we may end up in. A solution must specify what to do in every possible state.

We call a solution of this kind a policy, denoted by π. π(s) denotes the recommended action when
we are in state s.

How do we compare different policies and find the optimal policy? We can calculate the ex-
pected reward/utility of each policy. (You will see that we won’t need to calculate the expected
reward/utility directly.) The optimal policy, denoted by π∗, is the one that yields the highest
expected utility.
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4 The optimal policy of a MDP

The optimal policy of a MDP shows a careful balancing of risk and reward. It changes depending
on the rewards for the non-goal states (-0.04).

When R(s) = −0.04, the optimal policy is as follows.

1 2 3 4
1 ↓ ← ← ←
2 ↓ X ↓ -1
3 → → → +1

The cost of taking each step is −0.04 whereas the penalty of reaching s24 is −1. The optimal policy
for s13 is conservative. We prefer to take the long way around to avoid reaching the −1 state by
accident.

When R(s) < −1.6284, what does the optimal policy look like?

Life is so painful that the agent heads straight for the nearest exit, even if the exit is worth −1.

1 2 3 4
1 → → → ↓
2 ↓ X ↓ -1
3 → → → +1
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When −0.4278 < R(s) < −0.0850, what does the optimal policy look like?

Life is quite unpleasant. The agent takes the shortest route to the +1 state and is willing to risk
falling into the −1 state by accident. The agent takes the shortcut from s13.

1 2 3 4
1 ↓ → ↓ ←
2 ↓ X ↓ -1
3 → → → +1

When −0.0221 < R(s) ≤ 0, what does the optimal policy look like?

Life is only slightly dreary. The optimal policy takes no risk.

In s14 and s23, the agent heads directly away from the −1 state to avoid falling into the −1 state
by accident even though this means banging its head against the wall quite a few times.

1 2 3 4
1 ↓ ← ← ↑
2 ↓ X ← -1
3 → → → +1

When R(s) > 0, what does the optimal policy look like?

Life is so pleasant and the agent avoids both goal states.

1 2 3 4
1 ↑ ↓ ← → ↑ ↓ ← → ↑ ↓ ← → ↑
2 ↑ ↓ ← → X ← -1
3 ↑ ↓ ← → ↑ ↓ ← → ← +1
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5 Modeling Utilities Over Time

5.1 Is there a finite or an infinite horizon for decision making?

• Finite horizon: There is a fixed number of time periods left. After that, game is over and
nothing matters.
If there are 3 days left, at state s13, we need to aggressively move towards s34 to have a shot
of getting there. If there are 100 days left, at state s13, we can safely take the longer route
to avoid s24.
With a finite horizon, the optimal action in a state may change over time. The optimal
policy is non-stationary.

• Infinite horizon: There is no end time/deadline.
There is always an infinite amount of time left. We should NOT behave differently in a state
at different times. The optimal action in each state stays the same. The optimal policy is
stationary.

We will model the problem as having an infinite horizon.

5.2 How should we calculate the utility of a sequence of states?

• Additive rewards:

U(s0, s1, s2, ..s) = R(s0) +R(s1) +R(s2) + ...

• Discounted rewards:

U(s0, s1, s2, ..s) = R(s0) + γR(s1) + γ2R(s2) + ...

where the discount factor 0 ≤ γ ≤ 1.
Why should we use discounted rewards instead of additive rewards?

– We prefer getting a dollar today than getting a dollar tomorrow.
– Everyday, there is a chance that tomorrow will not come.
– With an infinite sequence of states, the total additive rewards is infinite whereas the

total discounted rewards is finite.

We will use discounted rewards.


