Inferences in Bayesian Networks Variable Elimination Algorithm

Alice Gao
Lecture 15

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

A Query for the Holmes Scenario

The Variable Elimination Algorithm

Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

A Bayesian Network for the Holmes Scenario

Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$
P(B=b \mid W=t \wedge G=t), b \in\{t, f\}
$$

- Query variables: B
- Evidence variables: W and G
- Hidden variables: A, E, and R.

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$
\begin{aligned}
& P(B=t \wedge W=t \wedge G=t) \\
& =\sum_{a \in\{t, f\}} \sum_{e \in\{t, f\}} \sum_{r \in\{t, f\}} P(B=t) P(E=e) P(A=a \mid B=t \wedge E=e) \\
& \quad P(R=r \mid E=e) P(G=t \mid A=a) P(W=t \mid A=a)
\end{aligned}
$$

(A) Less than 10
(B) 10-25
(C) $26-40$
(D) 41-55
(E) More than 55

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$
\begin{aligned}
& P(B=t \wedge W=t \wedge G=t) \\
& =P(B=t) \sum_{a \in\{t, f\}} P(G=t \mid A=a) P(W=t \mid A=a) \\
& \\
& \sum_{e \in\{t, f\}} P(E=e) P(A=a \mid B=t \wedge E=e)
\end{aligned}
$$

(A) Less than 10
(B) 10-25
(C) $26-40$
(D) 41-55
(E) More than 55

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_{1}, \ldots, X_{j} as $f\left(X_{1}, \ldots, X_{j}\right)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
- e.g., $P\left(X_{1}, X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{2}, X_{3}=v_{3}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$
- e.g., $P\left(X_{1}, X_{3}=v_{3} \mid X_{2}\right)$ is a factor $f\left(X_{1}, X_{2}\right)$

Restrict a factor

Restrict a factor by assigning a value to the variable in the factor.

- $f\left(X_{1}=v_{1}, X_{2}, \ldots, X_{j}\right)$, where $v_{1} \in \operatorname{dom}\left(X_{1}\right)$, is a factor on X_{2}, \ldots, X_{j}.
- $f\left(X_{1}=v_{1}, X_{2}=v_{2}, \ldots, X_{j}=v_{j}\right)$ is a number that is the value of f when each X_{i} has value v_{i}.

Restrict a factor

$$
f_{1}(X, Y, Z): \begin{array}{|ccc|c|}
\hline X & Y & Z & \text { val } \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.1 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.9 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.2 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.8 \\
\mathrm{f} & \mathrm{t} & \mathrm{t} & 0.4 \\
\mathrm{f} & \mathrm{t} & \mathrm{f} & 0.6 \\
\mathrm{f} & \mathrm{f} & \mathrm{t} & 0.3 \\
\mathrm{f} & \mathrm{f} & \mathrm{f} & 0.7 \\
\hline
\end{array}
$$

- What is $f_{2}(Y, Z)=f_{1}(X=t, Y, Z)$?
- What is $f_{3}(Y)=f_{2}(Y, Z=f)$?
- What is $f_{4}()=f_{3}((Y=f)$?

Sum out a variable

Sum out a variable, say X_{1} with domain $\left\{v_{1}, \ldots, v_{k}\right\}$, from factor $f\left(X_{1}, \ldots, X_{j}\right)$, resulting in a factor on X_{2}, \ldots, X_{j} defined by:

$$
\begin{aligned}
& \left(\sum_{X_{1}} f\right)\left(X_{2}, \ldots, X_{j}\right) \\
& \quad=f\left(X_{1}=v_{1}, \ldots, X_{j}\right)+\cdots+f\left(X_{1}=v_{k}, \ldots, X_{j}\right)
\end{aligned}
$$

Sum out a variable

$$
f_{1}(X, Y, Z): \begin{array}{|ccc|c|}
\hline X & Y & Z & \text { val } \\
\hline \mathrm{t} & \mathrm{t} & \mathrm{t} & 0.03 \\
\mathrm{t} & \mathrm{t} & \mathrm{f} & 0.07 \\
\mathrm{t} & \mathrm{f} & \mathrm{t} & 0.54 \\
\mathrm{t} & \mathrm{f} & \mathrm{f} & 0.36 \\
\mathrm{f} & \mathrm{t} & \mathrm{t} & 0.06 \\
\mathrm{f} & \mathrm{t} & \mathrm{f} & 0.14 \\
\mathrm{f} & \mathrm{f} & \mathrm{t} & 0.48 \\
\mathrm{f} & \mathrm{f} & \mathrm{f} & 0.32 \\
\hline
\end{array}
$$

What is $f_{2}(X, Z)=\sum_{B} f_{1}(X, Y, Z)$?

Multiplying factors

Multiply two factors together.

- The product of factor $f_{1}(X, Y)$ and $f_{2}(Y, Z)$, where Y are the variables in common, is the factor $\left(f_{1} \times f_{2}\right)(X, Y, Z)$ defined by:

$$
\left(f_{1} \times f_{2}\right)(X, Y, Z)=f_{1}(X, Y) f_{2}(Y, Z)
$$

Multiplying factors

$f_{1}(A, B):$| A | B | val |
| :---: | :---: | :---: |
| t | t | 0.1 |
| t | f | 0.9 |
| f | t | 0.2 |
| f | f | 0.8 |

What is $f_{1}(A, B) \times f_{2}(B, C)$?

$f_{2}(B, C):$| B | C | val |
| :---: | :---: | :---: |
| t | t | 0.3 |
| t | f | 0.7 |
| f | t | 0.6 |
| f | f | 0.4 |

Variable elimination algorithm

To compute $P\left(X_{q} \mid X_{o_{1}}=v_{1} \wedge \ldots \wedge X_{o_{j}}=v_{j}\right)$:

- Construct a factor for each conditional probability distribution.
- Restrict the observed variables to their observed values.
- Eliminate each hidden variable $X_{h_{j}}$.
- Multiply all the factors that contain $X_{h_{j}}$ to get new factor g_{j}.
- Sum out the variable $X_{h_{j}}$ from the factor g_{j}.
- Multiply the remaining factors.
- Normalize the resulting factor.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

