Inferences in Bayesian Networks Variable Elimination Algorithm

Alice Gao Lecture 15

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Learning Goals

A Query for the Holmes Scenario

The Variable Elimination Algorithm

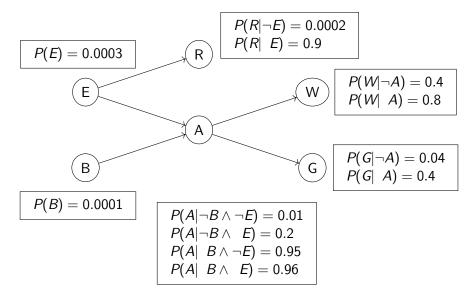
Revisiting the Learning goals

Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.

A Bayesian Network for the Holmes Scenario



Answering a Question

What is the probability that a burglary is happening given that Dr. Watson and Mrs. Gibbon both call?

$$P(B = b | W = t \land G = t), b \in \{t, f\}$$

- Query variables: B
- Evidence variables: W and G
- Hidden variables: A, E, and R.

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B = t \land W = t \land G = t)$$

= $\sum_{a \in \{t, f\}} \sum_{e \in \{t, f\}} \sum_{r \in \{t, f\}} P(B = t) P(E = e) P(A = a | B = t \land E = e)$
 $P(R = r | E = e) P(G = t | A = a) P(W = t | A = a)$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

Number of operations

How many addition and multiplication operations do we need to perform to evaluate the following expression?

$$P(B = t \land W = t \land G = t)$$

= $P(B = t) \sum_{a \in \{t, f\}} P(G = t | A = a) P(W = t | A = a)$
$$\sum_{e \in \{t, f\}} P(E = e) P(A = a | B = t \land E = e)$$

- (A) Less than 10
- (B) 10-25
- (C) 26-40
- (D) 41-55
- (E) More than 55

Factors

- A factor is a representation of a function from a tuple of random variables into a number.
- We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$.
- A factor denotes a distribution over the given tuple of variables in some (unspecified) context
 - e.g., $P(X_1, X_2)$ is a factor $f(X_1, X_2)$
 - ▶ e.g., P(X₁, X₂, X₃ = v₃) is a factor f(X₁, X₂)
 - e.g., $P(X_1, X_3 = v_3 | X_2)$ is a factor $f(X_1, X_2)$

Restrict a factor by assigning a value to the variable in the factor.

- $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
- f(X₁ = v₁, X₂ = v₂,..., X_j = v_j) is a number that is the value
 of f when each X_i has value v_i.

Restrict a factor

	X	Y	Ζ	val
$f_1(X, Y, Z)$:	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

- What is $f_2(Y, Z) = f_1(X = t, Y, Z)$?
- What is $f_3(Y) = f_2(Y, Z = f)$?
- What is $f_4() = f_3((Y = f)?$

Sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, ..., X_j) = f(X_1 = v_1, ..., X_j) + \dots + f(X_1 = v_k, ..., X_j)$$

Sum out a variable

What is $f_2(X, Z) = \sum_B f_1(X, Y, Z)$?

Multiply two factors together.

► The product of factor f₁(X, Y) and f₂(Y, Z), where Y are the variables in common, is the factor (f₁ × f₂)(X, Y, Z) defined by:

$$(f_1 \times f_2)(X, Y, Z) = f_1(X, Y)f_2(Y, Z).$$

Multiplying factors

$$f_1(A,B): \begin{array}{|c|c|c|}\hline A & B & val \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \end{array}$$

What is $f_1(A, B) \times f_2(B, C)$?

$$f_2(B,C): \begin{array}{c|c} B & C & \text{val} \\ t & t & 0.3 \\ t & f & 0.7 \\ f & t & 0.6 \\ f & f & 0.4 \end{array}$$

Variable elimination algorithm

To compute $P(X_q|X_{o_1} = v_1 \land \ldots \land X_{o_j} = v_j)$:

- Construct a factor for each conditional probability distribution.
- Restrict the observed variables to their observed values.
- Eliminate each hidden variable X_{hi}.
 - Multiply all the factors that contain X_{h_i} to get new factor g_i .
 - Sum out the variable X_{hi} from the factor g_j.
- Multiply the remaining factors.
- Normalize the resulting factor.

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Define factors. Manipulate factors using operations restrict, sum out, multiply and normalize.
- Compute a prior or a posterior probability given a Bayesian network.
- Describe/trace/implement the variable elimination algorithm for calculating a prior or a posterior probability given a Bayesian network.