
CS 486/686 Lecture 11 Learning a neural network 1

1 A perceptron

A perceptron:

xn

x2

x1

x0 = 1

∑
wn

w2

w1

w0

inputs

weights



CS 486/686 Lecture 11 Learning a neural network 2

Activation functions:

• Step function: f(x) = 1 if x > 0. f(x) = 0 if x ≤ 0.
The step function is simple to use. However, it is not differentiable. Many
optimization algorithms such as gradient descent requires a function to be
differentiable.

• Sigmoid function: f(x) =
1

1 + e−x
.

The sigmoid function can approximate the step function. A general version
of the sigmoid function is f(x) = 1

1 + e−kx
where k is a constant parameter.

As k increases, the sigmoid function becomes more steep and is more close
to the step function. However, the sigmoid function is differentiable and
works well with many optimization algorithms.
Problem: Towards either end of the sigmoid function, the Y values tend to
respond very less to changes in X. The gradient at that region is going to be
small. It gives rise to a problem of “vanishing gradients”. Gradient is small
or has vanished. The network refuses to learn further or is drastically slow.

• Rectified linear unit (ReLu) f(x) = max(0, x).
Any function can be approximated with a combination of ReLus. Some
neurons are firing and other ones are not. When x < 0, the gradient is 0 and
the neuron will stop responding to changes. A fix: Leaky Relu: y = 0.01x
for x < 0.



CS 486/686 Lecture 11 Learning a neural network 3

2 Learning a multi-layer feed-forward neural net-
work

• Multi-layered:

– a layer of input units
– One or more layers of hidden units
– A layer of output units

• Feed-forward:

– information flows from input layer, to hidden layer, to output layer
– no loops: the outputs of a unit cannot influence its inputs. (Recurrent

neural networks have loops.)

• Each unit uses some activation function.

Representing the XOR function using a three-layered feed-forward net-
work

The XOR function is defined by the following truth table.

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

XOR can be modeled by using a neural network with one hidden layer.

• Two input units.

• Two hidden units

• One output unit

• The activation function is the step function.



CS 486/686 Lecture 11 Learning a neural network 4

x0 = 1

x1

x2

h0 = 1

h1

h2

o1

Input
layer

Hidden
layer

Ouput
layer

h1 =f(x1 + x2 − 0.5) (1)
h2 =f(−x1 − x2 + 1.5) (2)
o1 =f(h1 + h2 − 1.5) (3)



CS 486/686 Lecture 11 Learning a neural network 5

What do h1, h2 and o1 compute?

By writing out the truth tables for h1, h2 and o1, we can figure out the corre-
sponding logical expressions.

x1 x2 h1 h2 o1
0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

• h1 is computing (x1 ∨ x2)

h1 corresponds to the line x1 + x2 − 0.5 = 0 or x2 = −x1 + 0.5.

−0.4−0.2 0.2 0.4 0.6 0.8 1

−0.5

0.5

1

x1

x2



CS 486/686 Lecture 11 Learning a neural network 6

• h2 is computing (¬(x1 ∧ x2))

h2 corresponds to the line x1 + x2 − 1.5 = 0 or x2 = −x1 + 1.5.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

x1

x2

• o1 is computing (h1 ∧ h2) ≡ ((x1 ∨ x2) ∧ (¬(x1 ∧ x2))) ≡ x1 ⊕ x2.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

h1

h2



CS 486/686 Lecture 11 Learning a neural network 7

To describe the back-propagation algorithm, we first introduce some notation.

• A is the number of units in input layer.
B is the number of units in hidden layer.
C is the number of units in output layer.

• xi ∈ {0, 1}, i = 0, . . . , A denote the values of the input units.
hj ∈ {0, 1}, j = 0, . . . , B denote the values of the hidden units.
ok ∈ {0, 1}, k = 1, . . . , C denote the values of the output units.

• w1ij is the weight on line between input unit xi and hidden unit hj.
w2jk is the weight on line between hidden unit hj and output unit ok.

To measure the error between the desired output values and the actual output
values, we will use the squared difference function.

error = 1

2

C∑
k=1

(yk − ok)
2.

There are other possible error functions such as the absolute difference function.
The advantage of the squared difference function is that it is differentiable and
thus can be used in conjunction with optimization algorithms that require us to
compute derivatives.



CS 486/686 Lecture 11 Learning a neural network 8

Gradient descent

The back-propagation algorithm uses the idea of gradient descent.

• A function f in many variables x1, . . . , xn

• Goal is to minimize f .

• Start at a random point.

• Calculate the gradient — the derivative of f with respect to each xi

The gradient tells us: if I change xi by 1, how does the value of f change
(increase or decrease) and how much does the value of f change?

• In what direction should we change xi? (Should we increase or decrease it?)
We need to change xi in the direction, which is opposite to the sign of the
gradient.
The gradient tells us how the function changes when we increase xi.
If f increases as xi increases, the gradient is positive and we need to decrease
xi.
If f decreases as xi increases, the gradient is negative and we need to increase
xi.

• By what amount should we change xi?
The gradient tells us how fast f changes as we change xi. We should change
xi in proportion to the gradient.

• In summary, we will change xi in proportion to the negative of the gradient
of f at the current point.



CS 486/686 Lecture 11 Learning a neural network 9

The back-propagation learning algorithm:

1. Initialize weights and thresholds to small random values.
w1ij = random(−0.5, 0.5), i = 0, . . . , A; j = 1, . . . , B.

w2jk = random(−0.5, 0.5), j = 0, . . . , B; k = 1, . . . , C.

2. Choose an input/output pair (x̄, ȳ) from the training set where x̄ = (x1, . . . , xA)
and ȳ = (y1, . . . , yC).
Assign values to input units.

3. Determine the values of the hidden units.

hj = f

(
A∑
i=0

w1ij · xi

)
, j = 1, . . . , B. (4)

4. Determine the values of the output units.

ok = f

(
B∑
j=0

w2jk · hj

)
, k = 1, . . . , C. (5)

5. Determine how to adjust weights between hidden and output layer to reduce
error for this training example. (Calculate the gradients with respect to the
weights between the hidden and the output layers.)

∂

∂w2jk

1

2

C∑
k′=1

(yk′ − ok′)
2 = −(yk − ok) ok(1− ok)hj



CS 486/686 Lecture 11 Learning a neural network 10

6. Determine how to adjust weights between input and hidden layer to reduce
error for this training example.

∂

∂w1ij

1

2

C∑
k′=1

(yk′ − ok′)
2 = −hj(1− hj)xi

C∑
k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′

7. Adjust weights between hidden and output layer where α is the learning
rate.

w2jk ← w2jk − α

(
∂

∂w2jk

1

2

C∑
k′=1

(yk′ − ok′)
2

)
(6)

w2jk ← w2jk − α(−(yk − ok)ok(1− ok)hj) (7)
w2jk ← w2jk + α(yk − ok)ok(1− ok)hj (8)

8. Adjust weights between input and hidden layer.

w1ij ← w1ij − α

(
∂

∂w1ij

1

2

C∑
k′=1

(yk′ − ok′)
2

)
(9)

w1ij ← w1ij − α

(
−hj(1− hj)xi

C∑
k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′

)
(10)

w1ij ← w1ij + α

(
hj(1− hj)xi

C∑
k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′

)
(11)

9. If the stopping criteria is not met, go to step 2 and repeat.
Possible stop criteria:

• Max number of epochs
epoch = one time through the training set

• Error is acceptably small.



CS 486/686 Lecture 11 Learning a neural network 11

How should we choose the learning rate?

• If the learning rate is small: move slowly, takes a long time, won’t miss local
minimum.

• If the learning rate is large: miss local minimum, learn quickly.

• A good range (0.05 to 0.35)

• Usually start out big and reduce value gradually.



CS 486/686 Lecture 11 Learning a neural network 12

The derivative of the sigmoid function:

f(x) =
p(x)

q(x)
(12)

f ′(x) =
p′(x)q(x)− p(x)q′(x)

q(x)2
(13)

f(x) =
1

1 + e−x
(14)

f ′(x) =
0 · (1 + e−x)− (−e−x)

(1 + e−x)2
(15)

=
e−x

(1 + e−x)2
(16)

=
1

1 + e−x
e−x

1 + e−x
(17)

=
1

1 + e−x

(
1− 1

1 + e−x

)
(18)

= f(x)(1− f(x)) (19)



CS 486/686 Lecture 11 Learning a neural network 13

The gradient for w2jk:

∂

∂w2jk

1

2

C∑
k′=1

(yk′ − ok′)
2 (20)

=
∂

∂w2jk

1

2
(yk − ok)

2 (21)

= −(yk − ok)
∂

∂w2jk
ok (22)

= −(yk − ok)
∂

∂w2jk
f

 B∑
j′=0

w2j′k · hj′

 (23)

= −(yk − ok)f
′

 B∑
j′=0

w2j′k · hj′

 ∂

∂w2jk

 B∑
j′=0

w2j′k · hj′

 (24)

= −(yk − ok)ok(1− ok)hj (25)

The gradient for w201:

∂

∂w201

1

2
(y − o1)

2 (26)

= −(y − o1)
∂

∂w201
o1 (27)

= −(y − o1)
∂

∂w201
f

 B∑
j′=0

w2j1 · hj′

 (28)

= −(y − o1)f
′

 B∑
j′=0

w2j1 · hj′

 ∂

∂w201

 B∑
j′=0

w2j1 · hj′

 (29)

= −(y − o1)f
′ (o1)

∂

∂w201

 B∑
j′=0

w2j1 · hj′

 (30)

= −(y − o1) o1(1− o1) (31)



CS 486/686 Lecture 11 Learning a neural network 14

The gradient for w1ij:

∂

∂w1ij

1

2

C∑
k′=1

(yk′ − ok′)
2 (32)

=
C∑

k′=1

∂

∂w1ij

1

2
(yk′ − ok′)

2 (33)

= −
C∑

k′=1

(yk′ − ok′)
∂

∂w1ij
ok′ (34)

= −
C∑

k′=1

(yk′ − ok′)
∂

∂w1ij
f

 B∑
j′=0

w2j′k · hj′

 (35)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)
∂

∂w1ij

 B∑
j′=0

w2j′k′ · hj′

 (36)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′
∂

∂w1ij
hj (37)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′
∂

∂w1ij
f

(
A∑

i′=0

w1i′j · xi′
)

(38)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′hj(1− hj)xi (39)

= −hj(1− hj)xi

C∑
k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′ (40)



CS 486/686 Lecture 11 Learning a neural network 15

The gradient for w10j:

∂

∂w10j

1

2

C∑
k′=1

(yk′ − ok′)
2 (41)

=
C∑

k′=1

∂

∂w10j

1

2
(yk′ − ok′)

2 (42)

= −
C∑

k′=1

(yk′ − ok′)
∂

∂w10j
ok′ (43)

= −
C∑

k′=1

(yk′ − ok′)
∂

∂w10j
f

 B∑
j′=0

w2j′k · hj′

 (44)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)
∂

∂w10j

 B∑
j′=0

w2j′k′ · hj′

 (45)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′
∂

∂w10j
hj (46)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′
∂

∂w10j
f

(
A∑

i′=0

w1i′j · xi′
)

(47)

= −
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′hj(1− hj) (48)

= −hj(1− hj)
C∑

k′=1

(yk′ − ok′)ok′(1− ok′)w2jk′ (49)


	A perceptron
	Learning a multi-layer feed-forward neural network

