Learning Neural Networks

Alice Gao Lecture 11 Readings: R & N 18.7

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

Revisiting the Learning goals

By the end of the lecture, you should be able to

- Represent simple logical functions (e.g. AND, OR, and NOT) using a perceptron.
- Describe the function represented by a simple multi-layer feed-forward neural network.
- ► Trace the execution of the back-propagation algorithm.

CQ: What does this perceptron compute?

CQ: What does h_1 compute?

$$h_1 = f(x_1 + x_2 - 0.5)$$

where $f(x) = 1$ if $x > 0$ and $f(x) = 0$ if $x \le 0$.
(A) $(x_1 \lor x_2)$
(B) $(x_1 \land x_2)$
(C) $(\neg(x_1 \lor x_2))$
(D) $(\neg(x_1 \land x_2))$

CQ: What does this perceptron compute?

CQ: What does *h*₂ compute?

$$h_2 = f(-x_1 - x_2 + 1.5)$$

where $f(x) = 1$ if $x > 0$ and $f(x) = 0$ if $x \le 0$.
(A) $(x_1 \lor x_2)$
(B) $(x_1 \land x_2)$
(C) $(\neg(x_1 \lor x_2))$
(D) $(\neg(x_1 \land x_2))$

CQ: What does this perceptron compute?

CQ: What does *o*₁ compute?

$$o_1 = f(h_1 + h_2 - 1.5)$$

where $f(x) = 1$ if $x > 0$ and $f(x) = 0$ if $x \le 0$.
(A) $(h_1 \lor h_2)$
(B) $(h_1 \land h_2)$
(C) $(\neg(h_1 \lor h_2))$
(D) $(\neg(h_1 \land h_2))$

CQ: Gradient descent

CQ: Suppose that our goal is to minimize a given function f(x). After calculating the gradient (derivative) of f with respect to x at a point $x = x_0$, how should we change the value of x_0 to minimize f?

- (A) If the gradient is positive, we should decrease *x*. If the gradient is negative, we should increase *x*.
- (B) If the gradient is positive, we should increase *x*. If the gradient is negative, we should decrease *x*.
- (C) We should always increase x regardless of the sign of the gradient.
- (D) We should always decrease x regardless of the sign of the gradient.

By the end of the lecture, you should be able to

- Represent simple logical functions (e.g. AND, OR, and NOT) using a perceptron.
- Describe the function represented by a simple multi-layer feed-forward neural network.
- ► Trace the execution of the back-propagation algorithm.