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Local Search

Alice Gao
Lecture 6

Readings: R & N 4.1

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek
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Learning Goals

By the end of the lecture, you should be able to
▶ Describe the advantages of local search over other search

algorithms.
▶ Formulate a real world problem as a local search problem.
▶ Given a local search problem, verify whether a state is a

local/global optimum.
▶ Describe strategies for escaping local optima.
▶ Trace the execution of hill climbing, hill climbing with random

restarts, simulated annealing, and genetic algorithms.
▶ Compare and contrast the properties of local search

algorithms.
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Why Use Local Search?

▶ Many search spaces are too big for systematic search.
▶ For CSPs, we only need to find a goal node. The path to a

goal is irrelevant.
▶ Solution: local search
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What is local search?

▶ Keep track of a single state, which is a complete assignment
of values to variables.

▶ Move to a neighbour of the state based on how good the
neighbour is.
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When should we use local search?

▶ The state space is large or infinite.
▶ Memory is limited.
▶ To solve pure optimization problems.
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Local Search

A local search problem consists of a:
▶ A state in the search space is

a complete assignment to all of the variables.
▶ A neighbour relation: which states do I explore next?
▶ A cost function: how good is each state?
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4-Queens Problem as a Local Search Problem
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Questions to think about
The problem formulation:

▶ What is the neighbour relation?
▶ What is the cost function?

Executing the algorithm:
▶ Where do we start?
▶ Which neighbour do we move to?
▶ When do we stop?

Properties and performance of the algorithm:
▶ Given enough time, will the algorithm find

the global optimum solution?
▶ How much memory does it require?
▶ How does the algorithm perform in practice?
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Hill climbing

▶ Where do we start?
Start with a random solution.

▶ Which neighbour do we move to?
Move to a neighbour with the lowest cost. Break ties
randomly.

▶ When do we stop?
Stop when no neighbour has a lower cost.

▶ How much memory does it require?
Only need to remember the current node.
No memory of where we’ve been.
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Hill climbing in one sentence

Climbing Mount Everest in a thick fog with amnesia
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CQ: Will hill climbing find the global optimum?

CQ: Given any problem and any initial state for the problem,
will hill climbing always find the global optimum?

(A) Yes.
(B) No.
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Trace the execution of hill climbing

See the notes on the course website.

https://cs.uwaterloo.ca/~a23gao/cs486686_s19/slides/act04_local_search_4_queens_nosol.pdf
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The State Space Landscape



16/40

Where can hill climbing get stuck?

▶ Local optima: A state s∗ is locally optimal
if c(s∗) ≤ c(s) for every state s in the neighbourhood of s∗.

▶ Global optimum: A state s∗ is globally optimal if c(s∗) ≤ c(s)
for every state s.

▶ Plateau: a flat area in the state space
▶ A shoulder: possible to improve when we escape.
▶ A flat local optimum: cannot improve even if we escape.
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CQ: Local and global optimum (1)

CQ: Consider the following state of the 4-queens problem.
Consider neighbour relation B: swap the row positions of two
queens. Which of the following is correct?

Q
Q

Q
Q

(A) This state is a local optimum and is a global optimum.
(B) This state is a local optimum and is NOT a global optimum.
(C) This state is NOT a local optimum and is a global optimum.
(D) This state is NOT a local optimum and NOT a global

optimum.
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CQ: Local and global optimum (2)

CQ: Consider the following state of the 4-queens problem.
Consider neighbour relation A: move a single queen to another
square in the same column. Which of the following is correct?

Q
Q

Q
Q

(A) This state is a local optimum and is a global optimum.
(B) This state is a local optimum and is NOT a global optimum.
(C) This state is NOT a local optimum and is a global optimum.
(D) This state is NOT a local optimum and NOT a global

optimum.
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Escaping a shoulder

▶ Sideway moves: allow the algorithm to move to a neighbour
that has the same cost.

▶ Tabu list: keep a small list of recently visited states and forbid
the algorithm to return to those states
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Performance of hill climbing

▶ Perform quite well in practice.
▶ Makes rapid progress towards a solution.

Easy to improve a bad state.
8-queens problem: ≈ 17 million states.

▶ Basic hill climbing

% of instances solved: 14%
# of steps until success/failure: 3-4 steps on average until
success or failure.

▶ Basic hill climbing + ≤ 100 consecutive sideway moves:

% of instances solved: 94%
# of steps until success/failure: 21 steps until success and 64
steps until failure.
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Choosing the Neighbour Relation

How do we choose the neighbour relation?
▶ Small incremental change to the variable assignment

There’s a trade-off:
▶ bigger neighbourhoods:
▶ smaller neighbourhoods:
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Dealing with local optima

Hill climbing can get stuck at a local optimum.
What can we do?

▶ Restart search in a different part of the state space.
Hill climbing with random restarts

▶ Move to a state with a higher cost occasionally.
Simulated annealing
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Hill climbing with random restarts

If at first you don’t succeed, try, try again.

Restart the search with a randomly generated initial state when
▶ we found a local optimum, or
▶ we’ve found a plateau and

made too many consecutive sideway moves, or
▶ we’ve made too many moves.

Choose the best solution out of all the local optima found.
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Will hill climbing + random restarts find the global
optimum?

Will hill climbing with random restarts find the global optimum
given enough time?
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Simulated Annealing

▶ Where do we start?
Start with a random solution and a large T.

▶ Which neighbour do we move to?
Choose a random neighbour.
If the neighbour is better than current, move to the neighbour.
If the neighbour is not better than the current state,
move to the neighbour with probability p = e∆E/T.

▶ When do we stop?
Stop when T = 0.
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Simulated Annealing

Algorithm 1 Simulated Annealing
1: current ← initial-state
2: T ← a large positive value
3: while T > 0 do
4: next ← a random neighbour of current
5: ∆E← current.cost - next.cost
6: if ∆E > 0 then
7: current ← next
8: else
9: current ← next with probablity p = e∆E/T

10: end if
11: decrease T
12: end while
13: return current
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CQ: How does T affect p = e∆E/T?

CQ: Consider a neighbour with a higher cost than the current
node (∆E < 0).

As T decreases, how does p = e∆E/T change?
(p = e∆E/T is the probability of moving to this neighbour.)

(A) As T decreases, p = e∆E/T increases.
(B) As T decreases, p = e∆E/T decreases.
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CQ: How does ∆E affect p = e∆E/T?

CQ: Assume that T is fixed. Consider a neighbour where ∆E < 0

As ∆E decreases (becomes more negative),
how does p = e∆E/T change?
(p = e∆E/T is the probability of moving to this neighbour.)

(A) As ∆E decreases, p = e∆E/T increases.
(B) As ∆E decreases, p = e∆E/T decreases.
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Annealing Schedule

How should we decrease T?
▶ Linear
▶ Logarithmic
▶ Exponential

If the temperature decreases slowly enough,
simulated annealing is guaranteed to find the global optimum with
probability approaching 1.
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Examples of Simulated Annealing

▶ Example: getting a tennis ball into the deepest hole.
▶ Exploration versus exploitation
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Parallel Search

▶ Idea: maintain k nodes instead of one.
▶ At every stage, update each node.
▶ Whenever one node is a solution, report it.
▶ Like k restarts, but uses k times the minimum number of

steps.
There’s not really any reason to use this method. Why not?
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Beam Search

▶ Maintain k nodes instead of one.
▶ Choose the k best nodes out of all of the neighbors.
▶ When k = 1, it is hill climbing.
▶ The value of k lets us limit space and parallelism.

Do you see any potential problem with beam search?
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Stochastic Beam Search

▶ Choose the k nodes probabilistically.
▶ The probability that a neighbor is chosen is proportional to

the fitness of the neighbour.
▶ Maintains diversity amongst the nodes.
▶ Asexual reproduction: each node mutates and the fittest

offsprings survive.
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Genetic algorithm

▶ Like stochastic beam search, but with sexual reproduction�
Pairs of nodes are combined to create an offspring.

▶ Keep track of a set of states. Each state has a fitness.
▶ Randomly choose two states to reproduce.

The fitter a state, the most likely it’s chosen to reproduce.
▶ Two parent states crossover to produce a child state.
▶ The child state mutates with a small independent probability.
▶ Add the child state to the new population. Repeat the steps

above until we produce a new population. Replace the old
population with the new one.

▶ Repeat until one state in the population has high enough
fitness.
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Genetic Algorithm
Algorithm 2 Genetic Algorithm
1: i = 0
2: create initial population pop(i) = {X1, ...,Xn}
3: while true do
4: if ∃x ∈ pop(i) with high enough f(x) then
5: break
6: end if
7: for each Xi ∈ pop(i) calculate pr(Xi) = f(Xi)/

∑
i f(Xi)

8: for j from 1 to n do
9: choose a randomly based on pr(Xi)

10: choose b randomly based on pr(Xi)
11: child ← crossover(a, b)
12: child mutates with small probability
13: add child to pop(i + 1)
14: end for
15: i = i + 1
16: end while
17: return x ∈ pop(i) with highest fitness
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Comparing hill climbing and genetic algorithm

▶ How does each algorithm explore the state space?
Hill climbing generates neighbours of the state based on the
neighbour relation.
Genetic algorithm ...

▶ How does each algorithm optimize the quality of the
state/population?
Hill climbing moves to the best neighbour.
Genetic algorithm ...
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Revisiting the Learning Goals

By the end of the lecture, you should be able to
▶ Describe the advantages of local search over other search

algorithms.
▶ Formulate a real world problem as a local search problem.
▶ Given a local search problem, verify whether a state is a

local/global optimum.
▶ Describe strategies for escaping local optima.
▶ Trace the execution of hill climbing, hill climbing with random

restarts, simulated annealing, and genetic algorithms.
▶ Compare and contrast the properties of local search

algorithms.
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