Constraint Satisfaction Problems: Backtracking Search and Arc Consistency

Alice Gao Lecture 5

Based on work by K. Leyton-Brown, K. Larson, and P. van Beek

Outline

Learning Goals

Examples of CSP Problems

Introduction to CSPs

Formulating Problems as CSPs

The AC-3 Arc Consistency Algorithm

Arc Consistency

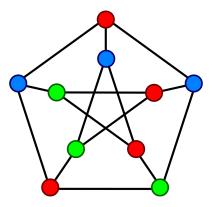
Revisiting the Learning goals

By the end of the lecture, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem.
- Verify whether a variable is arc-consistent with respect to another variable for a constraint.
- Trace the execution of and implement the AC-3 arc consistency algorithm.

Example: Crossword Puzzles

Example: Graph Coloring Problem



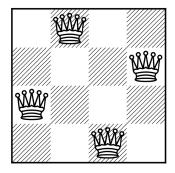
Applications:

- Designing seating plans
- Exam scheduling

Example: Sudoku

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
8 4 7			8		3			
7				2				1 6
	6					2	8	
			4	1	9			5 9
				8			7	9

Example: 4-Queens Problem



Learning Goals

Examples of CSP Problems

Introduction to CSPs

Formulating Problems as CSPs

The AC-3 Arc Consistency Algorithm

Arc Consistency

Revisiting the Learning goals

Introduction to CSPs

- So far, search algorithms are unaware of the structure of the states.
- Can we do better by taking advantage of the structure of states?

Each state contains

- A set X of variables: $\{X_1, X_2, ..., X_n\}$
- A set D of domains: D_i is the domain for variable X_i , $\forall i$.
- A set C of constraints specifying allowable combinations of values

A solution is an assignment of values to all the variables that satisfy all the constraints.

Learning Goals

Examples of CSP Problems

Introduction to CSPs

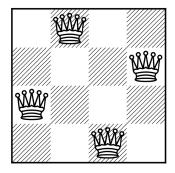
Formulating Problems as CSPs

The AC-3 Arc Consistency Algorithm

Arc Consistency

Revisiting the Learning goals

Example: 4-Queens Problem



CQ: Defining Constraints as a Formula

CQ: How should we encode the following constraint as a propositional formula?

The two queens in columns 0 and 2 are not in the same row or diagonal.

(A)
$$(x_0 \neq x_2)$$

(B) $((x_0 \neq x_2) \land ((x_0 - x_2) \neq 1))$
(C) $((x_0 \neq x_2) \land ((x_0 - x_2) \neq 2))$
(D) $((x_0 \neq x_2) \land (|x_0 - x_2| \neq 1))$
(E) $((x_0 \neq x_2) \land (|x_0 - x_2| \neq 2))$

Learning Goals

Examples of CSP Problems

Introduction to CSPs

Formulating Problems as CSPs

The AC-3 Arc Consistency Algorithm

Arc Consistency

Revisiting the Learning goals

Solving a CSP - Search and Inference

When solving a CSP, we can combine

- Backtracking search, and
- Inference using the arc-consistency algorithm.

Learning Goals

Examples of CSP Problems

Introduction to CSPs

Formulating Problems as CSPs

The AC-3 Arc Consistency Algorithm

Arc Consistency

Revisiting the Learning goals

Definition of Arc Consistency

Definition (Arc Consistency)

The variable X_i is arc-consistent with respect to another variable X_j if and only if for every value v_i in D_i , there is a value v_j in D_j such that (v_i, v_j) satisfies the constraint (X_i, X_j) .

If X_i is not arc-consistent with the variable X_j , we can make it consistent by removing values in D_i that is not consistent with any value on D_j . This removal can never rule out any solution.

CQ: Definition of Arc Consistency

CQ: Consider the constraint "*X* is divisible by *Y*" between two variables *X* and *Y*. *X* is arc-consistent with respect to *Y* in how many of the four scenarios below?

1.
$$dom(X) = \{10, 12\}, dom(Y) = \{3, 5\}$$

2. $dom(X) = \{10, 12\}, dom(Y) = \{2\}$

3.
$$dom(X) = \{10, 12\}, dom(Y) = \{2\}$$

 $3. dom(X) = \{10, 12\}, dom(Y) = \{3\}$

4.
$$dom(X) = \{10, 12\}, dom(Y) = \{3, 5, 8\}$$

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

CQ: Is Arc-Consistency Symmetric?

CQ: True or False:

If X is arc-consistent with respect to Y, then Y is arc-consistent with respect to X.

- (A) True
- (B) False
- (C) Not enough information to tell

CQ: Effect of Removing a Value on Arc Consistency

CQ: Assume that X is arc-consistent with respect to Y. Remove one value from the domain of Y. Is X still arc-consistent with respect to Y?

- (A) Yes
- (B) No
- (C) Not enough information to tell

CQ: Effect of Removing a Value on Arc Consistency

CQ: Assume that X is arc-consistent with respect to Y. Remove one value from the domain of X. Is X still arc-consistent with respect to Y?

- (A) Yes
- (B) No
- (C) Not enough information to tell

Making (X_i, C) arc-consistent

Let C be a constraint between the variables X_i and X_j .

Algorithm 1 Revise(X_i , C)1: revised \leftarrow false2: for x in $dom(X_i)$ do3: if $\neg \exists y \in dom(X_j)$ s.t. (x, y) satisfies the constraint C then4: remove x from $dom(X_i)$ 5: revised \leftarrow true6: end if7: end for8: return revised

The AC-3 Arc Consistency Algorithm

Algorithm 2 The AC-3 Algorithm

- 1: Put (v, C) in the set S for every variable v and every constraint involving v.
- 2: while *S* is not empty do
- 3: remove (X_i, C_{ij}) from $S(C_{ij}$ is a constraint between X_i and X_{j} .)
- 4: **if** Revise (X_i, C_{ij}) **then**
- 5: **if** $dom(X_i)$ is empty **then return** false
- 6: for X_k where C_{ki} is a constraint between X_k and X_i do
- 7: add (X_k, C_{ki}) to S
- 8: end for
- 9: end if
- 10: end while
- 11: return true

Trace the execution of AC-3 algorithm

Properties of the AC-3 Algorithm

Does the order in which arcs are considered matter?

Three possible outcomes of the arc consistency algorithm:

► Time complexity:

 \boldsymbol{n} variables, \boldsymbol{c} binary constraints, and the size of each domain is at most $\boldsymbol{d}.$

Revisiting the Learning Goals

By the end of the lecture, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem.
- Verify whether a variable is arc-consistent with respect to another variable for a constraint.
- Trace the execution of and implement the AC-3 arc consistency algorithm.