Contents

1	Lea	rning Goals	1
2	The	4-Queens Problem	2
	2.1	The CSP formulation	2
	2.2	The AC-3 Arc Consistency Algorithm	3
	2.3	Backtracking Search with Arc Consistency	3
3	3 Practice Questions		4
	3.1	Arc Consistency with an Initial Assignment	4
	3.2	Backtracking Search with Forward Checking	6

1 Learning Goals

By the end of the exercise, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem by defining variables, domains, and constraints.
- Trace the execution of the backtracking search algorithm with the full AC-3 arc consistency algorithm on the 4-queens problem.
- Trace the execution of the backtracking search algorithm with forward checking on the 4queens problem.

1

2 The 4-Queens Problem

The 4-queens problem consists of a 4x4 chessboard with 4 queens. The goal is to place the 4 queens on the chessboard such that no two queens can attack each other. Each queen attacks anything in the same row, in the same column, or in the same diagonal.

2.1 The CSP formulation

Formulate the state of the 4-queens problem below.

- Assume that exactly one queen is in each column. Given this, we only need to keep track of the row position of each queen.
- Variables: x_0, x_1, x_2, x_3 where x_i is the row position of the queen in column i, where $i \in \{0, 1, 2, 3\}$.
- Domains: $dom(x_i) = \{0, 1, 2, 3\}$ for all x_i .
- Constraints: No pair of queens are in the same row or diagonal.

 $(\forall i (\forall j ((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| \neq |i - j|))))))$

All the constraints are explicitly given below.

 $((x_0 \neq x_1) \land (|x_0 - x_1| \neq 1) \land (x_0 \neq x_2) \land (|x_0 - x_2| \neq 2) \land (x_0 \neq x_3) \land (|x_0 - x_3| \neq 3) \land (x_1 \neq x_2) \land (|x_1 - x_2| \neq 1) \land (x_1 \neq x_3) \land (|x_1 - x_3| \neq 2) \land (x_2 \neq x_3) \land (|x_2 - x_3| \neq 1))$

Formulate the 4-queens problem as a CSP below.

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
- Initial state: no queens on the board.
- Goal state: 4 queens on the board. No pair of queens are attacking each other.
- Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen.

2.2 The AC-3 Arc Consistency Algorithm

Algorithm 1 Revise (X_i, C)

1: revised \leftarrow false 2: for x in $dom(X_i)$ do 3: if $\neg \exists y \in dom(X_j)$ s.t. (x, y) satisfies the constraint C then 4: remove x from $dom(X_i)$ 5: revised \leftarrow true 6: end if

- 7: end for
- 8: return revised

Algorithm 2 The AC-3 Algorithm

1: Put (v, C) in the set S for every variable v and every constraint involving v.

- 2: while S is not empty do
- 3: remove (X_i, C_{ij}) from $S(C_{ij}$ is a constraint between X_i and X_j .)
- 4: **if** Revise (X_i, C_{ij}) **then**
- 5: **if** $dom(X_i)$ is empty **then return** false
- 6: for X_k where C_{ki} is a constraint between X_k and X_i do
- 7: add (X_k, C_{ki}) to S
- 8: end for
- 9: **end if**
- 10: end while
- 11: return true

2.3 Backtracking Search with Arc Consistency

Algorithm 3 BACKTRACK-INFERENCES(assignment, csp)

```
1: if assignment is complete then return true
```

```
2: var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp)
```

```
3: for all value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
```

4: **if** adding {var = value} satisfies every constraint **then**

- 5: add $\{var = value\}$ to assignment
- 6: inf-result \leftarrow INFERENCES(assignment, csp)
- 7: **if** inf-result is true **then**
- 8: add the inference results to assignment
- 9: result \leftarrow BACKTRACK(assignment, csp)
- 10: **if** result is true **then return** result
- 11: end if
- 12: **end if**
- 13: remove $\{var = value\}$ and the inference results from assignment
- 14: **end for**
- 15: **return** false

3 Practice Questions

3.1 Arc Consistency with an Initial Assignment

Start with an initial assignment of $x_0 = 0$ for the 4-queens problem. Let's execute the AC-3 algorithm.

The starting domains and assignment:

 $x_0 = 0, dom(x_1) \in \{0, 1, 2, 3\}, dom(x_2) \in \{0, 1, 2, 3\}, and dom(x_3) \in \{0, 1, 2, 3\}$

The set of variable-constraint pairs:

 $\begin{array}{l} (x_0, x_0 \neq x_1), \ (x_1, x_0 \neq x_1), \ (x_0, x_0 \neq x_2), \ (x_2, x_0 \neq x_2), \ (x_0, x_0 \neq x_3), \ (x_3, x_0 \neq x_3), \ (x_1, x_1 \neq x_2), \ (x_2, x_1 \neq x_2), \ (x_1, x_1 \neq x_3), \ (x_3, x_1 \neq x_3), \ (x_2, x_2 \neq x_3), \ (x_3, x_2 \neq x_3), \ (x_0, |x_0 - x_1| \neq 1), \ (x_1, |x_0 - x_1| \neq 1), \ (x_0, |x_0 - x_2| \neq 2), \ (x_2, |x_0 - x_2| \neq 2), \ (x_0, |x_0 - x_3| \neq 3), \ (x_3, |x_0 - x_3| \neq 3), \ (x_1, |x_1 - x_2| \neq 1), \ (x_2, |x_1 - x_2| \neq 1), \ (x_1, |x_1 - x_3| \neq 2), \ (x_3, |x_1 - x_3| \neq 2), \ (x_2, |x_2 - x_3| \neq 1), \ (x_3, |x_2 - x_3| \neq 1). \end{array}$

Note that every constraint appears in exactly two pairs, one for each variable in the constraint.

Below, we will write out the details of a few steps. Executing the AC-3 algorithm from start to finish will take roughly 24 steps. I encourage you to trace through all the execution steps on your own.

Answer the three questions below.

Question 1:

Let the starting domains and assignment be

$$x_0 = 0, dom(x_1) \in \{0, 1, 2, 3\}, dom(x_2) \in \{0, 1, 2, 3\}, and dom(x_3) \in \{0, 1, 2, 3\}$$

Suppose that we remove the pair $(x_0, x_0 \neq x_1)$ from the set.

Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

Question 2:

Let the starting domains and assignment be

 $x_0 = 0, dom(x_1) \in \{0, 1, 2, 3\}, dom(x_2) \in \{0, 1, 2, 3\}, and dom(x_3) \in \{0, 1, 2, 3\}$

Suppose that we remove the pair $(x_1, x_0 \neq x_1)$ from the set.

Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

Question 3:

Let the starting domains and assignment be

 $x_0 = 0, dom(x_1) \in \{2, 3\}, dom(x_2) \in \{1, 3\}, and dom(x_3) \in \{1, 2\}$

Suppose that we remove the pair $(x_3, |x_2 - x_3| \neq 1)$ from the set.

Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

3.2 Backtracking Search with Forward Checking

Start with an initial assignment of $x_0 = 0$ for the 4-queens problem. Execute the backtracking search algorithm with forward checking until a solution is reached.

The starting domains and assignment:

 $x_0 = 0, dom(x_1) = \{0, 1, 2, 3\}, dom(x_2) = \{0, 1, 2, 3\}, and dom(x_3) = \{0, 1, 2, 3\}$

Choose variables and values using the following conventions.

- When choosing which variable to assign value to, always choose the left most unassigned variable.
- When choosing which value to assign to a variable, always choose the top unassigned value.

Show the steps of backtracking search with forward checking below.

1. Assign $x_0 = 0$.

Starting domains and assignment: $x_0 = 0$, $dom(x_1) = \{0, 1, 2, 3\}$, $dom(x_2) = \{0, 1, 2, 3\}$, and $dom(x_3) = \{0, 1, 2, 3\}$

Forward checking:

Updated domains and assignment: