Contents

1 Learning Goals 1
2 The 4-Queens Problem 2
2.1 The CSP formulation 2
2.2 The AC-3 Arc Consistency Algorithm 3
2.3 Backtracking Search with Arc Consistency 3
3 Practice Questions 4
3.1 Arc Consistency with an Initial Assignment 4
3.2 Backtracking Search with Forward Checking 6

1 Learning Goals

By the end of the exercise, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem by defining variables, domains, and constraints.
- Trace the execution of the backtracking search algorithm with the full AC-3 arc consistency algorithm on the 4 -queens problem.
- Trace the execution of the backtracking search algorithm with forward checking on the 4queens problem.

2 The 4-Queens Problem

The 4 -queens problem consists of a 4×4 chessboard with 4 queens. The goal is to place the 4 queens on the chessboard such that no two queens can attack each other. Each queen attacks anything in the same row, in the same column, or in the same diagonal.

2.1 The CSP formulation

Formulate the state of the 4-queens problem below.

- Assume that exactly one queen is in each column. Given this, we only need to keep track of the row position of each queen.
- Variables: $x_{0}, x_{1}, x_{2}, x_{3}$ where x_{i} is the row position of the queen in column i, where $i \in$ $\{0,1,2,3\}$.
- Domains: $\operatorname{dom}\left(x_{i}\right)=\{0,1,2,3\}$ for all x_{i}.
- Constraints: No pair of queens are in the same row or diagonal.
$\left(\forall i\left(\forall j\left((i \neq j) \rightarrow\left(\left(x_{i} \neq x_{j}\right) \wedge\left(\left|x_{i}-x_{j}\right| \neq|i-j|\right)\right)\right)\right)\right)$
All the constraints are explicitly given below.

$$
\begin{aligned}
& \left((x _ { 0 } \neq x _ { 1 }) \wedge (| x _ { 0 } - x _ { 1 } | \neq 1) \wedge (x _ { 0 } \neq x _ { 2 }) \wedge (| x _ { 0 } - x _ { 2 } | \neq 2) \wedge (x _ { 0 } \neq x _ { 3 }) \wedge (| x _ { 0 } - x _ { 3 } | \neq 3) \wedge \left(x_{1} \neq\right.\right. \\
& \left.\left.x_{2}\right) \wedge\left(\left|x_{1}-x_{2}\right| \neq 1\right) \wedge\left(x_{1} \neq x_{3}\right) \wedge\left(\left|x_{1}-x_{3}\right| \neq 2\right) \wedge\left(x_{2} \neq x_{3}\right) \wedge\left(\left|x_{2}-x_{3}\right| \neq 1\right)\right)
\end{aligned}
$$

Formulate the 4-queens problem as a CSP below.

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
- Initial state: no queens on the board.
- Goal state: 4 queens on the board. No pair of queens are attacking each other.
- Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen.

2.2 The AC-3 Arc Consistency Algorithm

```
Algorithm 1 Revise \(\left(X_{i}, C\right)\)
    revised \(\leftarrow\) false
    for \(x\) in \(\operatorname{dom}\left(X_{i}\right)\) do
        if \(\neg \exists y \in \operatorname{dom}\left(X_{j}\right)\) s.t. \((x, y)\) satisfies the constraint \(C\) then
            remove \(x\) from \(\operatorname{dom}\left(X_{i}\right)\)
            revised \(\leftarrow\) true
        end if
    end for
    return revised
```

```
Algorithm 2 The AC-3 Algorithm
    Put \((v, C)\) in the set \(S\) for every variable \(v\) and every constraint involving \(v\).
    while \(S\) is not empty do
        remove ( \(X_{i}, C_{i j}\) ) from \(S\left(C_{i j}\right.\) is a constraint between \(X_{i}\) and \(X_{j}\).)
        if Revise \(\left(X_{i}, C_{i j}\right)\) then
            if \(\operatorname{dom}\left(X_{i}\right)\) is empty then return false
            for \(X_{k}\) where \(C_{k i}\) is a constraint between \(X_{k}\) and \(X_{i}\) do
                add \(\left(X_{k}, C_{k i}\right)\) to \(S\)
            end for
        end if
    end while
    return true
```


2.3 Backtracking Search with Arc Consistency

```
Algorithm 3 BACKTRACK-INFERENCES(assignment, csp)
    if assignment is complete then return true
    var \(\leftarrow\) SELECT-UNASSIGNED-VARIABLE (csp)
    for all value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
        if adding \(\{v a r=\) value \(\}\) satisfies every constraint then
            add \(\{\) var \(=\) value \(\}\) to assignment
            inf-result \(\leftarrow\) INFERENCES(assignment, csp)
            if inf-result is true then
                add the inference results to assignment
            result \(\leftarrow\) BACKTRACK (assignment, csp)
            if result is true then return result
            end if
        end if
        remove \(\{\) var \(=\) value \(\}\) and the inference results from assignment
    end for
    return false
```


3 Practice Questions

3.1 Arc Consistency with an Initial Assignment

Start with an initial assignment of $x_{0}=0$ for the 4 -queens problem. Let's execute the AC-3 algorithm.

The starting domains and assignment:
$x_{0}=0, \operatorname{dom}\left(x_{1}\right) \in\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right) \in\{0,1,2,3\}$, and $\operatorname{dom}\left(x_{3}\right) \in\{0,1,2,3\}$
The set of variable-constraint pairs:
$\left(x_{0}, x_{0} \neq x_{1}\right),\left(x_{1}, x_{0} \neq x_{1}\right),\left(x_{0}, x_{0} \neq x_{2}\right),\left(x_{2}, x_{0} \neq x_{2}\right),\left(x_{0}, x_{0} \neq x_{3}\right),\left(x_{3}, x_{0} \neq x_{3}\right),\left(x_{1}, x_{1} \neq x_{2}\right)$, $\left(x_{2}, x_{1} \neq x_{2}\right),\left(x_{1}, x_{1} \neq x_{3}\right),\left(x_{3}, x_{1} \neq x_{3}\right),\left(x_{2}, x_{2} \neq x_{3}\right),\left(x_{3}, x_{2} \neq x_{3}\right),\left(x_{0},\left|x_{0}-x_{1}\right| \neq 1\right)$, $\left(x_{1},\left|x_{0}-x_{1}\right| \neq 1\right),\left(x_{0},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{2},\left|x_{0}-x_{2}\right| \neq 2\right),\left(x_{0},\left|x_{0}-x_{3}\right| \neq 3\right),\left(x_{3},\left|x_{0}-x_{3}\right| \neq 3\right)$, $\left(x_{1},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{2},\left|x_{1}-x_{2}\right| \neq 1\right),\left(x_{1},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{3},\left|x_{1}-x_{3}\right| \neq 2\right),\left(x_{2},\left|x_{2}-x_{3}\right| \neq 1\right)$, $\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right)$.

Note that every constraint appears in exactly two pairs, one for each variable in the constraint.
Below, we will write out the details of a few steps. Executing the AC-3 algorithm from start to finish will take roughly 24 steps. I encourage you to trace through all the execution steps on your own.

Answer the three questions below.

Question 1:

Let the starting domains and assignment be
$x_{0}=0, \operatorname{dom}\left(x_{1}\right) \in\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right) \in\{0,1,2,3\}$, and $\operatorname{dom}\left(x_{3}\right) \in\{0,1,2,3\}$
Suppose that we remove the pair $\left(x_{0}, x_{0} \neq x_{1}\right)$ from the set.
Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

Question 2:

Let the starting domains and assignment be
$x_{0}=0, \operatorname{dom}\left(x_{1}\right) \in\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right) \in\{0,1,2,3\}$, and $\operatorname{dom}\left(x_{3}\right) \in\{0,1,2,3\}$
Suppose that we remove the pair $\left(x_{1}, x_{0} \neq x_{1}\right)$ from the set.
Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

Question 3:

Let the starting domains and assignment be
$x_{0}=0, \operatorname{dom}\left(x_{1}\right) \in\{2,3\}, \operatorname{dom}\left(x_{2}\right) \in\{1,3\}$, and $\operatorname{dom}\left(x_{3}\right) \in\{1,2\}$
Suppose that we remove the pair $\left(x_{3},\left|x_{2}-x_{3}\right| \neq 1\right)$ from the set.
Describe any change to the domain of the variable.

Describe any variable-constraint pairs that we need to add back to the set.

3.2 Backtracking Search with Forward Checking

Start with an initial assignment of $x_{0}=0$ for the 4 -queens problem. Execute the backtracking search algorithm with forward checking until a solution is reached.

The starting domains and assignment:
$x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}$, and $\operatorname{dom}\left(x_{3}\right)=\{0,1,2,3\}$
Choose variables and values using the following conventions.

- When choosing which variable to assign value to, always choose the left most unassigned variable.
- When choosing which value to assign to a variable, always choose the top unassigned value.

Show the steps of backtracking search with forward checking below.

1. Assign $x_{0}=0$.

Starting domains and assignment: $x_{0}=0, \operatorname{dom}\left(x_{1}\right)=\{0,1,2,3\}, \operatorname{dom}\left(x_{2}\right)=\{0,1,2,3\}$, and $\operatorname{dom}\left(x_{3}\right)=\{0,1,2,3\}$
Forward checking:

Updated domains and assignment:

