
Independence and Bayesian Networks

Alice Gao
Lecture 11
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Learning Goals

By the end of the lecture, you should be able to
▶ Given a probabilistic model,

determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

▶ Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

▶ Describe components of a Bayesian network.
▶ Compute a joint probability given a Bayesian network.
▶ Explain the independence relationships in the three key

structures.
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(Unconditional) Independence

Definition ((unconditional) independence)
X and Y are (unconditionally) independent iff

P (X|Y ) = P (X)

P (Y |X) = P (Y )

P (X ∧ Y ) = P (X)P (Y )

Learning Y does NOT influence your belief about X.
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Conditional Independence

Definition (conditional independence)
X and Y are conditionally independent given Z if

P (X|Y ∧ Z) = P (X|Z).

P (Y |X ∧ Z) = P (Y |Z).

P (Y ∧X|Z) = P (Y |Z)P (X|Z).

Learning Y does NOT influence your belief about X
if you already know Z.
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CQ: Deriving a compact representation

CQ: Consider a model with three random variables, A,B,C.
1. What is the minimum number of probabilities required

to specify the joint distribution?

2. Assume that A, B, and C are independent.
What is the minimum number of probabilities required
to specify the joint distribution?
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CQ: Deriving a compact representation

CQ: Consider a model with three random variables, A,B,C.
1. What is the minimum number of probabilities required

to specify the joint distribution?

2. Assume that A and B are conditionally independent given C.
What is the minimum number of probabilities required
to specify the joint distribution?
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Inheritance of Handedness

GMother GFather

HMother HFather
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HChild
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Car Diagnostic Network
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Example: Nuclear power plant operations

Situations 
& root causes

Events

Sensor outputs 
& reports

Loss of coolant 
accident

Steam generator 
tube rupture OtherLoss of secondary 

coolant

Emergency

Pressurizer 
pressure

Steam line 
radiation

Steam generator
level

Pressurizer 
indicator

Steam line 
radiation alarm

Steam generator
indicator
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Example: Fire alarms

Situations 
& root causes

Events

Sensor outputs 
& reports

Fire Tampering

AlarmSmoke

Leaving Building

Report

Report: “report of people leaving building because a fire alarm went off”
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Example: Medical diagnosis of diabetes

Dspnea

Patient information 
& root causes

Medical 
difficulties & 

diseases

Diagnostic tests 
& symptoms

PregnanciesHeridity OverweightAge

ExerciseGender

Diabetes

Glucose conc. Serum test Diastolic BPFatigue
BMI
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Why Bayesian Networks?

A probabilistic model of the Holmes scenario:
▶ The random variables:

Earthquake, Radio, Burglary, Alarm, Watson, and Gibbon.
▶ # of probabilities in the joint distribution: 26 = 64.
▶ For example,

P (E ∧R ∧B ∧A ∧W ∧G) =?
P (E ∧R ∧B ∧A ∧W ∧ ¬G) =?
... etc ...

We can compute any probability using the joint distribution, but
▶ Quickly become intractable as the number of variables grows.
▶ Unnatural and tedious to specify all the probabilities.

CS 486/686: Intro to Artificial Intelligence Alice Gao 16 / 35



Why Bayesian Networks?

A Bayesian Network
▶ is a compact version of the joint distribution, and
▶ takes advantage of the unconditional and conditional

independence among the variables.
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A Bayesian Network for the Holmes Scenario

P (R|¬E) = 0.0002
P (R| E) = 0.9

P (B) = 0.0001

P (E) = 0.0003

P (A|¬B ∧ ¬E) = 0.01
P (A|¬B ∧ E) = 0.2
P (A| B ∧ ¬E) = 0.95
P (A| B ∧ E) = 0.96

P (W |¬A) = 0.4
P (W | A) = 0.8

P (G|¬A) = 0.04
P (G| A) = 0.4

E

B

R

A

G

W
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Bayesian Network

A Bayesian Network is a directed acyclic graph.
▶ Each node corresponds to a random variable.
▶ X is a parent of Y if there is an arrow from node X to node

Y .
▶ Each node Xi has a conditional probability distribution

P (Xi|Parents(Xi)) that quantifies the effect of the parents
on the node.
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The Semantics of Bayesian Networks

Two ways to understand Bayesian Networks:
▶ A representation of the joint probability distribution
▶ An encoding of the conditional independence assumptions
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Representing the joint distribution

We can compute each joint probability using the following formula.

P (Xn ∧ · · · ∧X1) =

n∏
i=1

P (Xi|Parents(Xi))
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Representing the joint distribution

Example: What is the probability that
▶ The alarm has sounded,
▶ Neither a burglary nor an earthquake has occurred,
▶ Both Watson and Gibbon call and say they hear the alarm,

and
▶ There is no radio report of an earthquake?
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CQ: Calculating the joint probability

CQ: What is the probability that
▶ NEITHER a burglary NOR an earthquake has occurred,
▶ The alarm has NOT sounded,
▶ NEITHER of Watson and Gibbon is calling, and
▶ There is NO radio report of an earthquake?

(A) 0.5699
(B) 0.6699
(C) 0.7699
(D) 0.8699
(E) 0.9699
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Burglary, Alarm and Watson

Burglary Alarm Watson
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CQ Unconditional Independence

CQ: Are Burglary and Watson independent?

Burglary Alarm Watson

(A) Yes
(B) No
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CQ: Conditional Independence

CQ: Are Burglary and Watson conditionally independent
given Alarm?

Burglary Alarm Watson

(A) Yes
(B) No
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Alarm, Watson and Gibbon

Alarm
Watson

Gibbon
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CQ Unconditional Independence

CQ: Are Watson and Gibbon independent?

Alarm
Watson

Gibbon

(A) Yes
(B) No

CS 486/686: Intro to Artificial Intelligence Alice Gao 30 / 35



CQ Conditional Independence

CQ: Are Watson and Gibbon conditionally independent
given Alarm?

Alarm
Watson

Gibbon

(A) Yes
(B) No
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Earthquake, Burglary, and Alarm

Alarm
Earthquake

Burglary

CS 486/686: Intro to Artificial Intelligence Alice Gao 32 / 35



CQ Unconditional Independence

CQ: Are Earthquake and Burglary independent?

Alarm
Earthquake

Burglary

(A) Yes
(B) No
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CQ: Conditional Independence

CQ: Are Earthquake and Burglary conditionally independent
given Alarm?

Alarm
Earthquake

Burglary

(A) Yes
(B) No
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Revisiting the Learning Goals

By the end of the lecture, you should be able to
▶ Given a probabilistic model,

determine if two variables are unconditionally independent, or
conditionally independent given a third variable.

▶ Give examples of deriving a compact representation of a joint
distribution by using independence assumptions.

▶ Describe components of a Bayesian network.
▶ Compute a joint probability given a Bayesian network.
▶ Explain the independence relationships in the three key

structures.
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