
CS 486/686 Lecture 22 The Value Iteration Algorithm 1

1 Learning Goals

• Compute the optimal action for a state given the true utilities of all the states.

• Trace the execution of the value iteration algorithm. Calculate the true utilities of a state
for the current iteration given the true utilities of all the states for the previous iteration.

2 Algorithms for finding the optimal policy

2.1 Optimal policies and the utilities of states

Suppose that we enter state s and follow the optimal policy from s onward, what is our total
expected utility? This is a way to measure the “true utility” of each state s, denoted by V (s).

V (s) and R(s) are very different. What is the difference?

• R(s) is one-time reward of entering state s

• V (s) is long-term total discounted reward of starting from state s and following the optimal
policy.

Figure 1 shows V (s) for every state (with discount factor γ = 1 and R(s) = −0.04). The utilities
are higher for states closer to the +1 exit because fewer steps are required to reach the exit.

1 2 3 4
1 0.705 0.655 0.611 0.388
2 0.762 X 0.660 -1
3 0.812 0.868 0.918 +1

Figure 1: The true utilities V (s) for γ = 1 and R(s) = −0.04,∀s 6= s24, s 6= s34.

Given V (s), it’s straightforward to determine the optimal action in each state.

What is my expected utility if I’m in state s and take action a?

V (s, a) =
∑
s′

P (s′|s, a)V (s′)

Given this, I would like to choose the action that maximizes my expected utility.



CS 486/686 Lecture 22 The Value Iteration Algorithm 2

π∗(s) = arg max
a
V (s, a).

What is the optimal policy in s13?

• V (s13, down) = 0.8 ∗ 0.660 + 0.1 ∗ 0.655 + 0.1 ∗ 0.388 = 0.6323

• V (s13, left) = 0.8 ∗ 0.655 + 0.1 ∗ 0.660 + 0.1 ∗ 0.611 = 0.6511

• V (s13, right) = 0.8 ∗ 0.388 + 0.1 ∗ 0.611 + 0.1 ∗ 0.660 = 0.4375

• V (s13, up) = 0.8 ∗ 0.611 + 0.1 ∗ 0.655 + 0.1 ∗ 0.388 = 0.5931

Therefore, π∗(s13) = left.

Now the question is, how do we determine V (s)?

2.2 Value iteration

Basic idea:

• Calculate the true utility V (s) of each state s.

• Choose the optimal action in each state based on V (s).

The true utilities V (s) are the unique solutions to the Bellman equations.

V (s) = R(s) + γmax
a

∑
s′

P (s′|s, a)V (s′)

• R(s) is the one-time immediate reward for entering state s.

• γmax
a

∑
s′

P (s′|s, a)V (s′) is the discounted expected utility of the next state, assuming that

the agent chooses the optimal action.



CS 486/686 Lecture 22 The Value Iteration Algorithm 3

The Bellman equation for V (s11):

V (s11) = −0.04 + γmax[0.8 ∗ V (s12) + 0.1 ∗ V (s21) + 0.1 ∗ V (s11),

0.9 ∗ V (s11) + 0.1 ∗ V (s12),

0.9 ∗ V (s11) + 0.1 ∗ V (s21),

0.8 ∗ V (s21) + 0.1 ∗ V (s12) + 0.1 ∗ V (s11)].

For our example, there are 9 Bellman equations, one for each state. We can solve these 9 equations
to find the 9 unknowns V (s).

Can we solve this system of equations using an efficient algorithm?

• No. These equations are non-linear since “max” is non-linear.

• We can solve linear equations efficiently using linear algebra techniques.

Instead, we will solve for V (s) using an iterative approach.

1. Start with arbitrary initial values for the true utilities.

Let Vi(s) be the true utility for state s in the ith iteration.

2. At the ith iteration, compute all the Vi+1(s) using the following update rule.

Vi+1(s)← R(s) + γmax
a

∑
s′

P (s′|s, a)Vi(s
′)

3. Terminate when the maximum change from Vi(s) to Vi+1(s) for all s is small enough.

If we apply the Bellman update infinitely often, we are guaranteed to converge to the optimal
V (s).

A few notes about applying the update rule:

• We apply the update rule from right to left. Plug in the old utility values on the right. The
result from the right becomes the new utility value.

• We will update all the true utility values simultaneously. This means that, we will use
the utility values from the previous iteration to calculate the utility values for the current
iteration, and then we will update all the utility value at once.



CS 486/686 Lecture 22 The Value Iteration Algorithm 4

Let’s apply the value iteration algorithm.

Assume that the discount factor γ = 1 and R(s) = −0.04,∀s 6= s24, s 6= s34.

V0(s):

1 2 3 4
1 0 0 0 0
2 0 X 0 -1
3 0 0 0 +1

V1(s23) =

V1(s33) =

V1(s23) =− 0.04 + 1 ∗max[0.8 ∗ 0 + 0.1 ∗ (−1) + 0.1 ∗ 0,

0.8 ∗ (−1) + 0.1 ∗ 0 + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ (−1) + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0]

=− 0.04 + 0 = −0.04

V1(s33) =− 0.04 + 1 ∗max[0.8 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ 1 + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ 1 + 0.1 ∗ 0]

=− 0.04 + 0.8 = 0.76

V1(s):

1 2 3 4
1
2 X -1
3 +1

V2(s33) =

V2(s23) =

V2(s32) =



CS 486/686 Lecture 22 The Value Iteration Algorithm 5

V1(s):

1 2 3 4
1 −0.04 −0.04 −0.04 −0.04
2 −0.04 X −0.04 -1
3 −0.04 −0.04 0.76 +1

V2(s33) =− 0.04 + 1 ∗max[0.8 ∗ 1 + 0.1 ∗ (−0.04) + 0.1 ∗ 0.76,

0.8 ∗ 0.76 + 0.1 ∗ 1 + 0.1 ∗ (−0.04),

0.8 ∗ (−0.04) + 0.1 ∗ (−0.04) + 0.1 ∗ 0.76,

0.8 ∗ (−0.04) + 0.1 ∗ (−0.04) + 0.1 ∗ 1]

=0.832

V2(s23) =− 0.04 + 1 ∗max[0.8 ∗ 0.76 + 0.1(−0.04) + 0.1(−1),

0.8 ∗ (−1) + 0.1 ∗ (−0.04) + 0.1 ∗ 0.76,

0.8 ∗ 0.76 + 0.1 ∗ (−1) + 0.1 ∗ (−0.04),

0.8 ∗ (−0.04) + 0.1 ∗ (−0.04) + 0.1 ∗ 0.76]

=0.464

V2(s32) =− 0.04 + 1 ∗max[0.8 ∗ 0.76 + 0.1(−0.04) + 0.1(−0.04),

0.8 ∗ (−0.04) + 0.1 ∗ 0.76 + 0.1 ∗ (−0.04),

0.8 ∗ (−0.04) + 0.1 ∗ 0.76 + 0.1 ∗ (−0.04),

0.8 ∗ (−0.04) + 0.1 ∗ (−0.04) + 0.1 ∗ (−0.04)]

= 0.56

V2(s):

1 2 3 4
1
2 X -1
3 +1

V2(s):

1 2 3 4
1 −0.08 −0.08 −0.08 −0.08
2 −0.08 X 0.464 -1
3 −0.08 0.56 0.832 +1



CS 486/686 Lecture 22 The Value Iteration Algorithm 6

V3(s33) = −0.04 + 0.8 ∗ 1 + 0.1 ∗ 0.464 + 0.1 ∗ 0.832 = 0.890

V3(s23) = −0.04 + 0.8 ∗ 0.832 + 0.1(0.464) + 0.1(−1) = 0.572

V3(s32) = −0.04 + 0.8 ∗ 0.832 + 0.1(0.56) + 0.1(0.56) = 0.738

V3(s31) = −0.04 + 0.8 ∗ 0.56 + 0.1(−0.08) + 0.1(−0.08) = 0.392

V3(s13) = −0.04 + 0.8 ∗ 0.464 + 0.1(−0.08) + 0.1(−0.08) = 0.315

V3(s):

1 2 3 4
1
2 X -1
3 +1

V3(s):

1 2 3 4
1 −0.12 −0.12 0.315 −0.12
2 −0.12 X 0.572 -1
3 0.392 0.738 0.890 +1

V4(s):

1 2 3 4
1
2 X -1
3 +1

V4(s):

1 2 3 4
1 −0.16 0.188 0.394 0.100
2 0.250 X 0.629 -1
3 0.577 0.819 0.906 +1

V5(s):



CS 486/686 Lecture 22 The Value Iteration Algorithm 7

1 2 3 4
1
2 X -1
3 +1

V5(s):

1 2 3 4
1 0.162 0.313 0.492 0.185
2 0.472 X 0.648 -1
3 0.698 0.849 0.914 +1

The states accumulate negative rewards until a path is found to s34.



CS 486/686 Lecture 22 The Value Iteration Algorithm 8

2.3 Policy iteration

This material is for your interest only and will not appear on an exam.

One thing we learned from value-iteration: It’s possible to get an optimal policy even when the
estimates of the true utilities are inaccurate. If one action is clearly better than all others, then
the exact magnitude of the true utilities of the states need not be precise.

Policy iteration algorithm:

1. Begin with some initial policy π0.

2. Alternative between policy evaluation and policy improvement.

3. Policy evaluation: given a policy πi, calculate Vi = V πi , the utility of each state if the agent
follows policy πi.

We need to solve a system of linear equations.

Vi(s) = R(s) + γ
∑
s′

P (s′|s, πi(s))Vi(s′)

We can solve this exactly using linear algebra techniques, or we can solve this approximately
using value-iteration.

4. Policy improvement: calculate the best policy πi+1 based on Vi.

5. Terminate when the policy improvement step yields no change in the utilities.

For a finite state space, there are only finitely many policies. If each iteration yields a better policy,
then policy iteration must terminate.

Asynchronous policy iteration

We don’t have to update the utility or policy for all states at once.

Asynchronous policy iteration:

• On each iteration, we can pick any subset of states and apply either kind of updating (policy
improvement or simplified value iteration) to that subset.

• This is guaranteed to converge to an optimal policy under certain conditions.

• Can design heuristic algorithms – concentrate on updating the values of states that are likely
to be reached by a good policy.


