
Lecture 9
Artificial Neural Networks, Part 2

Alice Gao

November 2, 2021

Contents

1 Learning Goals 2

2 Gradient Descent 2
2.1 A motivating example . 2
2.2 Introduction . 2
2.3 Steps of the algorithm . 3
2.4 Deriving some intuition for gradient descent 3
2.5 Alternative ways to update the weights . 4

3 The Back-propagation Algorithm 5
3.1 Introducing the Back-Propagation Algorithm 6
3.2 An Intuitive Description of the Back-Propagation Algorithm 6
3.3 The Forward Pass . 7
3.4 The Backward Pass . 7
3.5 The recursive relationship in the delta values 8
3.6 Deriving the gradients for W2 . 9
3.7 Deriving the gradients for W1 . 12
3.8 Defining the delta values . 13

4 Neural Networks vs. Decision Trees 15
4.1 When should we use a neural network? . 15
4.2 Disadvantages of neural networks . 15
4.3 Choosing a decision tree or a neural network 15

1

CS 486/686 Lecture 9

1 Learning Goals

By the end of the lecture, you should be able to

• Explain the steps of the gradient descent algorithm.

• Explain how we can modify gradient descent to speed up learning and ensure conver-
gence.

• Describe the backpropagation algorithm including the forward and backward passes.

• Compute the gradient for a weight in a multi-layer feed-forward neural network.

• Describe situations in which it is appropriate to use a neural network or a decision
tree.

2 Gradient Descent

2.1 A motivating example

Throughout this lecture, we will work with this simple two-layer feed-forward neural network.
The input layer has three nodes, one of which is a dummy. The hidden layer also has three
nodes, one of which is a dummy. The output layer has two nodes.

Our goal is to learn the weights Wkij such that the actual outputs z21 and z22 are close to
the expected values given by the training data.

2.2 Introduction

Gradient descent is a well-known optimization algorithm; you may have learned about it in
another math class.

c©Alice Gao 2021 v1.0 Page 2 of 16

CS 486/686 Lecture 9

One way to think about gradient descent is as a local search algorithm to find the minimum
of a function. Consider a search space whose dimension is given by the number of weights
in the neural network. We want to find a combination of weights which minimizes the total
error made on the training examples.

Gradient descent is very similar to greedy descent, but differs in that we are now dealing
with continuous rather than discrete values. Accordingly, we will use the gradient, or partial
derivative, to determine the direction and size of each step we want to take. The function
in this case will be the error function: the difference between the expected outputs based on
the training data and the actual outputs based on the training data and the network.

This quotation might give you an intuitive way to understand the algorithm:

“Walking downhill and always taking a step in the direction that goes down the most.”

We descend to the minimum by following the steepest direction at each step.

2.3 Steps of the algorithm

• Initialize the weights randomly.

• For each training example, change each weight in proportion to the negative of the
partial derivative of the error with respect to that weight. Overall, we will update a
weight w by

w := w −
∑

examples

η
∂error

∂w
.

• Here, η is a constant called the learning rate.

• Terminate after some number of steps when the error is small enough or when the
changes made get small enough.

2.4 Deriving some intuition for gradient descent

You may find gradient descent to be unintuitive at first, but here are some of the intuition
that may help.

Consider a simple function: y = x2. We want to minimize this function given some starting
point x0; the minimum is at x = 0. To do so, we need to consider direction and magnitude.

First suppose we start with x0 to the right of the minimum. Then dy
dx
> 0, but to decrease

our value, we should move in the direction of the negative of the gradient.

Instead, suppose we start with x0 to the left of the minimum. Then dy
dx
< 0, but to increase

our value, we should move in the direction in the negative of the gradient.

As for direction, first note that the gradient is flat (zero) at the minimum. Then consider a
region where the gradient is large in magnitude. In such a region, it is certain that we must
be far from the minimum (since the function is continuous), so we can afford to take a larger
step. On the other hand, in a region where the gradient is small in magnitude, we are likely

c©Alice Gao 2021 v1.0 Page 3 of 16

CS 486/686 Lecture 9

to be close to the minimum. Thus, we should take a smaller step to avoid overshooting the
minimum.

This discussion is not rigorous by any means, but should provide some intuition behind the
ideas and derivation of gradient descent.

2.5 Alternative ways to update the weights

In the steps given in a previous section, we said that gradient descent updates the weights
after sweeping through all the training examples. But when the training data set is large,
wouldn’t the weight updates be very infrequent?

To speed up learning, we can instead update weights after each example. This variant is
called incremental gradient descent. A related variant is stochastic gradient descent,
where we randomly choose an example at each step instead of proceeding sequentially.

The advantage of incremental gradient descent is increased learning speed, since we update
the weights much more frequently. The disadvantage is that we may not converge to the
local minimum—a single example may take us away from rather than towards it.

To move the trade-off in our favour, we have another variant called batched gradient
descent. As the name suggests, we will update the weights after a batch of examples.

We can choose the batch size. On one extreme, a batch size of one is identical to incremental
gradient descent. On the other extreme, putting all examples into the batch is identical to
the original gradient descent. By moving between the extremes, we can work in our favour.
Often, people will start with small batches to learn quickly, then gradually increase the batch
size until the weights eventually converge.

c©Alice Gao 2021 v1.0 Page 4 of 16

CS 486/686 Lecture 9

3 The Back-propagation Algorithm

There’s a huge hype around neural networks right now. If you haven’t learned the back-
propagation algorithm already, you are probably pretty excited about this video.

What is the back-propagation algorithm? It is essentially an algorithm to learn the weights
in a neural network by using the gradient descent optimization algorithm.

Figure 1: 2-layer feed-forward neural network

I will use a 2-layer feed-forward neural network as an example. Let me explain some notation.
Let’s start from the inputs xi. W1ij denotes the weights between the input layer and the
hidden layer. a1j denotes the j-th weighted sum of the input units. z1j denotes the j-th
hidden unit, and it’s a result of applying the activation function g to a1j.

The notation for the next layer is very similar. z1j is the value of the hidden unit. W2jk

denotes the weights between the hidden layer and the output layer. a2k denotes the k-th
weighted sum of the hidden units. Finally, z2k denotes the k-th output unit, and it’s a result
of applying the activation function g to a2j.

You can also think of the network structure as a chain as shown below.

Figure 2: Chain to represent a neural network

c©Alice Gao 2021 v1.0 Page 5 of 16

CS 486/686 Lecture 9

3.1 Introducing the Back-Propagation Algorithm

Let’s discuss the back-propagation algorithm. The most challenging step in the gradient de-
scent algorithm is to calculate the gradient for each weight. We can write down an expression
for the gradient for each weight and calculate it using the expression. Unfortunately, this
approach is quite in-efficient. Nowadays, neural networks tend to be quite large, and there
could be thousands or more weights that we need to learn. The back-propagation algorithm
is an efficient way of calculating the gradients for the weights.

Consider a setting where we have n training examples. For each training example, x consists
of the input feature values, and y is the label. In other words, x is the input to our neural
network and y is the expected output.

To evaluate how close the actual output values z2 are to the expected output values y, we
will use an error/loss function E. When we execute gradient descent, our goal is to minimize
the error/loss E by adjusting the weights in the neural network.

Given the training examples, we will calculate the gradients by performing 2 passes in the
network: a forward pass and a backward pass.

The forward pass takes the input values x, the current weights W1 and W2, and calculates
E(z2, y) the error/loss E between the actual output values z2 and the expected output values
y.

The backward pass computes the gradients ∂E
∂W2jk

and ∂E
∂W1ij

, which are the partial deriva-

tives of the error function with respect to W2 and W1. For our network, the forward pass
flows from left to right, and the backward pass flows from right to left.

For each training example, we will calculate one gradient for each weight. Then, to update
each weight, we need to add the gradients for this weight for all the training examples. We
will update the weight proportional to this sum of the gradients.

3.2 An Intuitive Description of the Back-Propagation Algorithm

Let me give you an intuitive description of the algorithm. Our goal is to set the weights in
the network to minimize the error/loss. How do we do that?

Using each training example, we will compute the gradient for each weight. The gradient
tells us how much the error/loss changes if I change the weight by a tiny bit. If the gradient
is positive, we should decrease the weight and vice versa. The gradient guides us about how
we should change the weight locally to minimize the error/loss.

Why do we need to add up the gradients for all the training examples? The reason is that,
different training examples may want to change each weight differently. One example may
suggest that we should increase the weight, whereas another example may suggest that we
decrease the weight. We do not want to only predict one example well. We would like to
achieve a high prediction accuracy for all the examples. Therefore, we need to sum up the
gradients for all the examples and use the sum to adjust each weight.

c©Alice Gao 2021 v1.0 Page 6 of 16

CS 486/686 Lecture 9

3.3 The Forward Pass

The forward pass starts from the input values on the left.

First, calculate a1 as the weighted sum of the input values using the weights W1. The hidden
unit values z1 is the activation function g applied to the weighted sum a1.

a1j =
∑
i

xiW1ij z1j = g(a1j) (1)

We will calculate the output values in the same way. a2 is the weighted sum of the hidden
unit values using the weights W2. The output value z2 is the result of applying g to the
weighted sum a2.

a2k =
∑
j

z1jW2jk z2k = g(a2k) (2)

Finally, the error/loss E(z2, y) is a function of the actual output values z2 and the expected
output values y.

3.4 The Backward Pass

The backward pass is the core of the back-propagation algorithm.

Our goal is to calculate the gradients for the weights — the partial derivative of E with
respect to W1 and W2. We will calculate the gradients by going backwards in the network,
from the outputs on the right to the inputs on the left.

Starting with the outputs on the right, we will first calculate the gradients for the weights
W2. I’ve written the expression as the product of two terms: the partial derivative of E
w.r.t. to a2 and z1. Let me define the first term to be δ2. The second term z1 is the input
going into the edge for the weight W2.

∂E

∂W2jk

=
∂E

∂a2k

z1j = δ2kz1j, δ2k =
∂E

∂z2k

g′(a2k) (3)

At this point, it seems unnecessary to define δ2. However, the deltas will be extremely useful
for us to understand the back-propagation process. I will define one set of δ values for each
layer. You will see shortly that the δ values for different layers form a recursive relationship,
which will allow us to calculate the gradients efficiently.

Next, let’s calculate the gradients for the weights W1. This expression is similar to that of
W2. The gradient is the product of two terms: the partial derivative of E w.r.t. to a1 and

c©Alice Gao 2021 v1.0 Page 7 of 16

CS 486/686 Lecture 9

x. Similarly, I’ll define the first term to be δ1. The second term x1 is the input going into
the edge for the weight W1.

∂E

∂W1ij

=
∂E

∂a1j

xi = δ1jxi, δ1j =

(∑
k

δ2kW2jk

)
g′(a1j) (4)

Note that the gradient for the weights in each layer has a similar expression. Each expression
is a product of two terms: the delta value and the input going into the weight.

The remaining question is, how do we calculate the delta values? I am showing you the
expressions for δ2 for the output layer and δ1 for the hidden layer. Note that we need the
δ2 values to calculate δ1. This gives you a hint of what the recursive relationship looks like.

3.5 The recursive relationship in the delta values

Let’s take a closer look at the recursive relationship of the delta values. The recursive
relationship allows us to propagate the error backward through the network and calculate the
gradients efficiently. This recursive relationship is also how the back-propagation algorithm
got its name.

Consider a unit j. This unit may be in the output layer or any hidden layer.

In general, δj is the partial derivative of E w.r.t. to aj, where aj is the weighted sum of the
values from the previous layer.

δj =
∂E

∂aj
.

To calculate δj, we need to consider two cases.

• When j is an output unit, we have the base case and we will calculate δj directly.

• When j is a hidden unit, we have the recursive case. In this case, calculating δj requires
δk, which is the delta value for the next layer — the layer to the right, on the side
closer to the output layer.

c©Alice Gao 2021 v1.0 Page 8 of 16

CS 486/686 Lecture 9

δj =


∂E

∂zj
× g′(aj), base case, j is an output unit(∑

k

δkWjk

)
× g′(aj), recursive case, j is a hidden unit

(5)

Let’s think about the recursive case intuitively. The hidden unit j is connected to multiple
units k in the next layer. Therefore, unit j is responsible for some fraction of the error δk in
each unit k that j connects to. For each unit k, we will weigh each error δk by the strength
of the connection between j and k — this is the weight Wjk. This weighted sum allows us
to take the errors δk from the next layer and propagate them back to calculate the error δj
in the current layer.

Also note that, the expressions for the two cases are quite similar. In particular, the second
terms are identical — they are both the derivative of the activation function g.

Since our network only has one hidden layer, we only need to use the recursive case once.
If a network has multiple hidden layers, we would need to apply the recursive case multiple
times.

Here is a practice question for you. Construct a 3-layer neural network and write down the
delta values for all three layers.

So far, I’ve shown you all the formulas you need to execute the back-propagation algorithm.
If your goal is to implement the algorithm and run it, this is all you need. However, I hope
that you are also interested in how the expressions were derived. In the next video, I will
derive the partial derivatives by using the chain rule many many times. Once you understand
the derivations, you will realize that the recursion with the delta values is nothing mysterious.
The back-propagation process emerges directly from the derivation of the gradients.

3.6 Deriving the gradients for W2

First, let’s derive the partial derivatives for the gradients for W2.

To remember what the network looks like, you can look at the picture or the chain. The
chain is a simpler illustration of how the values flow through the network from inputs to
outputs. In the picture, I have highlighted one path — the one for the weight W212.

c©Alice Gao 2021 v1.0 Page 9 of 16

CS 486/686 Lecture 9

Before I start the derivations, let’s do a super quick review of the chain rule. Deriving
the gradient boils down to repeatedly applying the chain rule. Suppose that we have an
expression in which we have applied several functions in sequence. In this case, we applied f
first, and then g second. Taking derivative of the expression is equivalent to taking derivatives
of the functions in reverse order, from the last one applied to the first one applied. I often
think of this process as peeling off the functions one by one. For this example, the derivative
is equal to the derivative of g w.r.t. to f multiplied by the derivative of f w.r.t to x.

We are ready to derive our first gradient expression — the partial derivative of E w.r.t W2jk.
Our expression is basically tracing through the highlighted path from right to left. First, E

is a function of z2 and y, so we have
∂E

∂z2k

. Next, z2 is g of a2, so we have
∂z2k

∂a2k

. Next,

a2 is a function of the weights W2 and the hidden unit values z1. Since we want to take

derivative w.r.t. to the weights, we have
∂a2k

∂W2jk

.

Example:

∂E

w2jk

=
∂E

z2k

∂z2k

a2k

∂a2k

w2jk

(6)

If you have got here and understood how the expression was derived, great job! You got

c©Alice Gao 2021 v1.0 Page 10 of 16

CS 486/686 Lecture 9

through the most difficult part —- deriving the most general and abstract expression for this
derivative. It only gets easier from here. If you still have questions, no worries. I will show
you some more concrete examples right now and they should help clear up some confusion.

Let’s make some of the terms more concrete. What is the middle term? z2 is g(a2), so the
middle term is g′(a2). How about the last term? a2 is the sum of W2 multiplied by z1. So
the last term should be z1j, the input corresponding to the weight W2jk. This expression is
equivalent to the previous one, but it’s easier on the eyes.

Example:

∂E

w2jk

=
∂E

z2k

∂z2k

a2k

(7)

∂a2k

w2jk

=
∂E

z2k

g′(a2k)z1j (8)

z2k = g(a2k)⇒ ∂z2k

a2k

= g′(a2k) (9)

a2k =
∑
j

w2jkz1j ⇒
∂a2k

w2jk

= z1j (10)

Let’s do an example for a particular weight. Consider the weight going from z11 to a22 —
the highlighted one in the picture. All we need to do is take the general expression and plug
in j = 1 and k = 2. Here is the result.

Example: An example with j = 1 and k = 2

∂E

w212

=
∂E

z22

∂z22

a22

∂a22

w212

=
∂E

z22

g′(a22)z11 (11)

If you want to make this expression more concrete, you’d have to pick the error function E
and the activation function g. Here are two examples. If the error function is the sum of
the squared difference, then the partial derivative looks like this. If the activation function
is the sigmoid function, then the partial derivative looks like this. Interestingly, the partial
derivative of the sigmoid function can be written as a expression involving two copies of the
sigmoid function. If you don’t believe it, please verify it yourself.

Example:

E =
1

2

∑
k

(z2k − yk)2 ⇒ ∂E

∂z2k

= (z2k − yk) (12)

g(x) =
1

1 + e−x
⇒ g′(x) = g(x)(1− g(x)) (13)

c©Alice Gao 2021 v1.0 Page 11 of 16

CS 486/686 Lecture 9

3.7 Deriving the gradients for W1

Next, let’s derive the expression for the partial derivative of E w.r.t to W1. These expressions
are more complex but also more interesting.

Let’s look at a specific example. Consider W112, the weight between x1 and z12. I’ve
highlighted the weight in the picture. How does this weight influence the error/loss? This
weight affects a12, which affects z12. From there, it affects the error/loss E through 2 paths,
one through each of the two output units. Because of this, we will have a summation with
2 terms in our expression.

Let’s derive our expression now. To apply the chain rule, we’ll look at the highlighted path
and go from right to the left. We’ll start with a summation over k since we need to consider
two paths, one for each output unit z2k.

E is a function of both z2 values. So the first term is ∂E
∂z2k

. Next, z2 is g(a2), so we have
∂z2k
∂a2k

. After that, a2 is a weighted sum of z2, so the next term is ∂a2k
∂z1j

. At this point, the two

paths merge into one, so we can end our summation.

Let’s keep following the single path from z1. z1 is g of a1, so the next term is partial z1 over
partial a1. a1 is a weighted sum of x using the weights W1, so the final term is partial a1
over partial W1ij. That’s the entire expression.

Example:

∂E

∂w1ij

=

(∑
k

∂E

∂z2k

∗ ∂z2k

∂a2k

∗ ∂a2k

∂z1j

)
∂z1j

∂a1j

∂a1j

∂w1ij

(14)

c©Alice Gao 2021 v1.0 Page 12 of 16

CS 486/686 Lecture 9

Similar to the previous derivation, you might find it helpful to make it more concrete. If we
simplify some terms, we’ll get the second expression.

Example:

∂E

∂w1ij

=

(∑
k

∂E

∂z2k

∗ ∂z2k

∂a2k

∗ ∂a2k

∂z1j

)
∂z1j

∂a1j

∂a1j

∂w1ij

(15)

=

(∑
k

∂E

∂z2k

g′(a2k) ∗ w2jk

)
g′(a1j)xi (16)

Whenever we have a derivative of z with respect to a, the result is the derivative of the
activation function g. We have two other similar terms: the derivative of a with respect to z
or W. a2 is a sum of z1 weighted by W2. So partial a2 partial z2 is equal to W2. Similarly,
a1 is a sum of x weighted by W1. So partial a1 partial W1 is equal to the input value x.

This is all the simplification we can do without knowing the expressions for the error function
E and the activation function g. You can also derive the specific expression for W112. Here
it is.

Example: An example with i = 1 and j = 2

∂E

∂w112

=

(∑
k

∂E

∂z2k

g′(a2k) ∗ w22k

)
g′(a12)x1 (17)

3.8 Defining the delta values

We have derived some complicated derivative expression so far. Finally, let’s connect these
to the delta values.

Here are the simplified gradient expressions again.

Example:

∂E

∂w2jk

=
∂E

∂z2k

g′(a2k)z1j (18)

∂E

∂w1ij

=

(∑
k

∂E

∂z2k

g′(a2k)w2jk

)
g′(a1j)xi (19)

Note that, the last term in each expression is the input value for that layer. Let’s disregard
the last term in both expressions. Take the rest of the expression and define it to be delta.
I’ve denoted them as δ2k and δ1j.

c©Alice Gao 2021 v1.0 Page 13 of 16

CS 486/686 Lecture 9

Example:

∂E

∂w2jk

=
∂E

∂z2k

g′(a2k)z1j = δ2kz1j (20)

where δ2k =
∂E

∂z2k

g′(a2k) (21)

∂E

∂w1ij

=

(∑
k

∂E

∂z2k

g′(a2k)w2jk

)
g′(a1j)xi = δ1jxi (22)

where δ1j =

(∑
k

∂E

∂z2k

g′(a2k)w2jk

)
g′(a1j) (23)

and δ2k =
∑
k

∂E

∂z2k

g′(a2k) (24)

or δ1j =

(∑
k

δ2kw2jk

)
g′(a1j) (25)

Note that, δ2k appears inside the expression for δ1j. If we re-write the delta expressions
separately, we get the delta expressions that I showed you in the previous section.

Example:

δ2k =
∂E

∂z2k

g′(a2k) (26)

δ1j =

(∑
k

δ2kw2jk

)
g′(a1j) (27)

Here is a final practice question for you. Construct a 3-layer network with 2 hidden layers.
Each hidden layer has 2 real nodes and 1 dummy node. The output layer has 2 nodes.
Calculate the gradients for all the weights in the 3 layers. Write down the general expressions
and then write down the expressions using the delta values. When using the delta values,
be sure to write down the expressions for the delta values for every layer. If you understood
everything in this video, you should be able to complete this question.

c©Alice Gao 2021 v1.0 Page 14 of 16

CS 486/686 Lecture 9

4 Neural Networks vs. Decision Trees

In our short machine learning unit, we discussed two models: decision trees and neural
networks. When should you use one versus the other?

4.1 When should we use a neural network?

• Neural networks are well-suited to high-dimensional or real-valued inputs, or noisy
(sensor) data. You are likely familiar with the most recent stories of neural networks
in applications with such data: images, videos, audio, and so on.

• A second situation is when the form of the target function is unknown (no model).
There is a theorem which says that with enough levels and nodes, a neural network
can approximate any arbitrary function. In the case that the function is unknown, you
may want a very flexible model which allows you to discover the true function.

• The third case for using a neural network is when it is not important for humans to
explain the learned function. Once we learn a neural network, it usually has high
prediction accuracy but tends not to be interpretable.

4.2 Disadvantages of neural networks

• It is difficult to determine the network structure. There are many layer and many
neurons.

• It is difficult to interpret weights, especially in multi-layer networks.

• Neural networks tend to over-fit in practice (predict poorly outside of the training
data) since they have very high variance.

4.3 Choosing a decision tree or a neural network

There are many factors to consider when choosing between a decision tree and a neural
network. Each model will work better under different circumstances. The following table
provides a summary of the differences.

c©Alice Gao 2021 v1.0 Page 15 of 16

CS 486/686 Lecture 9

Decision trees Neural networks

Data types Good for tabular data (rows and
columns).

Good for images, audio, text, etc.

Size of data set Work well with little data. Require lots of data, but overfit
easily.

Form of target
function

Model nested if-then-else
statements.

Model arbitrary functions.

Architecture Only a few parameters. Lots of parameters, all are
critical.

Interpreting the
learned function

Easy to understand. Essentially a black box: difficult
to interpret.

Time available
for training and
classification

Fast to train and classify. Slow to train and classify.

You may be tempted to opt for a neural network because of how powerful it is, but bear
in mind the drawbacks. It is often easier to begin with a simpler model, then increase the
complexity as needed. Sometimes, a simpler model might do just as well as a complicated
model, with less time required to implement and test.

c©Alice Gao 2021 v1.0 Page 16 of 16

	Learning Goals
	Gradient Descent
	A motivating example
	Introduction
	Steps of the algorithm
	Deriving some intuition for gradient descent
	Alternative ways to update the weights

	The Back-propagation Algorithm
	Introducing the Back-Propagation Algorithm
	An Intuitive Description of the Back-Propagation Algorithm
	The Forward Pass
	The Backward Pass
	The recursive relationship in the delta values
	Deriving the gradients for W2
	Deriving the gradients for W1
	Defining the delta values

	Neural Networks vs. Decision Trees
	When should we use a neural network?
	Disadvantages of neural networks
	Choosing a decision tree or a neural network

