
Lecture 8
Neural Networks, Part 1

Alice Gao

November 2, 2021

Contents

1 Learning Goals 2

2 Introduction to Artificial Neural Networks 2
2.1 History and background . 2
2.2 Learning complex relationships . 3
2.3 Human brains . 3
2.4 A simple mathematical model of a neuron 4
2.5 Desirable properties of the activation function 5
2.6 Common activation functions . 5

3 Introduction to Perceptrons 6
3.1 Feed-forward v.s. recurrent neural networks 6
3.2 Perceptrons . 7

4 Limitations of Perceptrons 11
4.1 The First AI Winter . 11
4.2 XOR as a 2-layer neural network . 13

5 Practice Problems 15

1

CS 486/686 Lecture 8

1 Learning Goals

By the end of the lecture, you should be able to

• Describe motivations for using a neural network model.

• Describe the simple mathematical model of a neuron.

• Describe desirable properties of an activation function. Give examples of activation
functions and their properties.

• Distinguish feed-forward and recurrent neural networks.

• Learn a perceptron that represents a simple logical function.

• Determine the logical function represented by a perceptron.

• Explain why a perceptron cannot represent the XOR function.

• Construct a 3-layer neural network that represents the XOR function.

2 Introduction to Artificial Neural Networks

There is currently a lot of hype around neural networks. How did we get to this point?

2.1 History and background

First, a few terms. What are artificial intelligence, machine learning, and deep learning, and
what are the relationships between these?

• Artificial Intelligence: building machines that behave intelligently.

• Machine Learning: letting computers learn without being explicitly programmed. A
branch of AI. Primarily uses statistical methods to achieve learning.

• Deep Learning: developing hierarchical networks that mimic the human brain. A
branch of ML.

You might be surprised that deep learning has been around for decades, but only recently (in
the late 2000’s) become very successful. This was mainly due to more powerful computers
and the availability of lots of data.

There are two important events you should know about for deep learning.

In 2012, a deep learning algorithm called AlexNet won the ImageNet challenge. This was a
supervised learning application.

In the same year, Google Brain made a breakthrough by successfully using deep learning for
an unsupervised learning application. After processing over 10 million images from YouTube
videos, one node of the neural network developed a very strong affinity for cats and was able
to recognize when an image had a cat in it. This experiment has been called the infamous
Cat Experiment.

c©Alice Gao 2021 v1.0 Page 2 of 15

CS 486/686 Lecture 8

Hopefully, this gives you some insight as to why deep learning is so popular now.

2.2 Learning complex relationships

Consider some applications. Maybe we have an image and we want to recognize what’s in
the image: image interpretation. Or maybe we want speech recognition: we’re developing
something like Siri, which can help us perform tasks by talking to it. Or maybe we want a
machine to translate text for us.

These are all applications where the data is complex. In particular, the relationship between
inputs and outputs is complex.

How can we build a model to learn such complex relationships?

We already know that humans can learn these complex relationships very well. So if humans
can do it, is it possible to build a model that mimics the human brain?

This was the original motivation for artificial neural networks.

2.3 Human brains

Thanks to Neuroscience, now we have some understanding of the structure of the human
brain. The brain is a set of densely connected neurons.

Each neuron is a very simple unit, but it still has many components.

• Dendrites: receive inputs from other neurons (left)

• Soma: controls activity of the neuron (centre)

• Axon: sends outputs to other neurons (right)

• Synapse: links neurons

c©Alice Gao 2021 v1.0 Page 3 of 15

CS 486/686 Lecture 8

Don’t worry about these terms; this is just to motivate our mathematical computational
model for the neuron. Here, a neuron takes input, does some (usually very simple) compu-
tation, and decides on the strength of its output, if any.

As a computational model, this contrasts with the other models we’ve talked about, because
it is much simpler. For example, if we combine multiple decision trees into what’s called
a random forest, each model is very complex. But the model of the human brain is very
different: it has a large number of simple components, rather than a small number of complex
components. No one model is inherently better than another, though.

2.4 A simple mathematical model of a neuron

McCulloch and Pitts first proposed this model of a neuron in 1943. This is a very simple
model; actual neurons have much more complex behaviour.

This model says that a neuron is a linear classifier: it “fires” when a linear combination of
its inputs exceeds some threshold.

Neuron j computes a weighted sum of its input signals ai, where wij is a bias weight:

inj =
n∑

i=0

wijai.

Neuron j then applies an activation function g to the weighted sum to derive the output:

aj = g(inj) = g

(
n∑

i=0

wijai

)
.

Notice that the input a0 is always set to 1; this is called a bias or dummy input. Remember,
our model is a linear classifier: we want to represent a linear function, but our inputs are
all variables, so we need the possibility of having a constant term. This a0 = 1 lets us have
that constant term.

c©Alice Gao 2021 v1.0 Page 4 of 15

CS 486/686 Lecture 8

2.5 Desirable properties of the activation function

The activation function is very important in our model. Let’s look at three of the desirable
properties an activation function should have.

• It should be non-linear.

Combining linear functions will not produce a non-linear function, but complex rela-
tionships are often non-linear. Using a non-linear activation function allows us to model
non-linear relationships by interleaving linear functions (weighted sums of inputs) with
non-linear functions (activation functions).

• It should mimic the behaviour of real neurons.

If the weighted sum of input signals is large enough, the neuron fires. Otherwise, it
does not fire. (No need for a hard threshold, can fire an output signal of some amount)

• It should be differentiable almost everywhere.

We want to learn a neural network using gradient descent or other algorithms, which
require the activation function to be differentiable.

2.6 Common activation functions

• Step function: g(x) =

{
1 if x > 0

0 if x ≤ 0
.

Simple to use, but not differentiable and not used in practice. Useful for explaining
concepts.

• Sigmoid function: g(x) =
1

1 + e−kx
.

Can approximate the step function (red: smaller k, worse approximation; black: larger
k, better approximation). Gives clear, bounded prediction. Differentiable.

Preferred for a long time, but has “vanishing gradient” problem (gradient is very small
for extreme values of x) and is computationally expensive.

c©Alice Gao 2021 v1.0 Page 5 of 15

CS 486/686 Lecture 8

• Rectified linear unit (ReLU): g(x) = max(0, x).

Computationally efficient. Non-linear and differentiable.

“Dying ReLU” problem: gradient is 0 for negative x or x approaching 0.

• Leaky ReLU: g(x) = max(0.1x, x).

Like a ReLU, but enables learning for negative input values.

3 Introduction to Perceptrons

3.1 Feed-forward v.s. recurrent neural networks

Let me discuss two types of neural networks: feed-forward neural network and recurrent
neural network. See a 2-layer feed-forward network below. It is a directed acyclic graph.
The key property is that the network has no loops. Think about the numbers of flowing
through the network. They come in as input values, get transformed through the edges and

c©Alice Gao 2021 v1.0 Page 6 of 15

CS 486/686 Lecture 8

the nodes, and finally go out as output values. These values only flow in one direction. They
never go backwards.

In a feed-forward network, the outputs are a function of its inputs. If you know the inputs,
you can determine the outputs.

On the other hand, a recurrent network can have loops. See an example below. We have
taken an output from a node and feed the value back into the node as an input. What’s the
advantage of having a loop? You may have learned this in a circuit design course. Loops in
a circuit can give it memory. The circuit can remember some information while it’s doing
computations. Similarly, a recurrent network has memory.

The complication is that, the output value is no longer a function of its inputs. The output
may also depend on what the network remembers about the historical inputs. Historical
inputs determine the current state, which influences the output.

Arguably, a recurrent network is a better model of the human brain, because we have memory.
Unfortunately, because of the loops, it’s also more difficult to train a recurrent network and
to interpret their meanings.

In this course, we will focus on feed-forward networks. If you are interested in learning more
about other types of neural networks, I’d recommend taking CS 480 on Intro to Machine
Learning and CS 479 on Neural Networks.

3.2 Perceptrons

Let’s look at a perceptron. A perceptron is a single-layer feed-forward neural network. In
the picture below, it looks like there are two layers, the input layer and the output layer.
However, the input layer does not have neurons. It simply contains the input values. The

c©Alice Gao 2021 v1.0 Page 7 of 15

CS 486/686 Lecture 8

output layer has two neurons. Each neuron takes the input values, calculates the weighted
sum, and feeds the result through some activation function to produce the output values.

A perceptron can represent simple logical functions, such as AND, OR, and NOT. This was
a big deal when it was discovered. At the time, much of AI was focusing on developing
systems to perform formal logical reasoning. Representing logical functions is the first step
towards this goal. Many people thought perceptrons would eventually allow us to develop a
powerful logical deduction system, which is capable of solving any problem.

I told you that a perceptron can represent simple logical functions. How does it work?

Before we look at the mathematics, let’s take another look at the perceptron on the previous
slide. This network appears to have two outputs, but two outputs are independent. We can
split up the network into two independent networks, each containing one perceptron. And,
we can learn the weights in each network separately. Because of this, I am going to focus on
discussing a single perceptron at a time.

Back to our question. How can we use a perceptron to represent a logical function? Let’s
look at our first question below.

Problem: Consider the following perceptron where the activation function is the
step function (g(x) = 1 if x > 0, g(x) = 0 if x ≤ 0.) Which of the following logical
functions does the perceptron compute?

(A) x1 ∧ x2

(B) ¬(x1 ∧ x2)
(C) x1 ∨ x2

(D) ¬(x1 ∨ x2)

c©Alice Gao 2021 v1.0 Page 8 of 15

CS 486/686 Lecture 8

Solution: The correct answer is (D). This perceptron is computing a negation of the
OR function. The easiest way to derive this answer is to draw a truth table. With
two inputs, there should be four rows in the table.

x1 x2 o1
0 0 1
0 1 0
1 0 0
1 1 0

See above for the complete truth table. Next, we need to stare at this truth table and
figure out the function that o1 is representing. It looks like a negated version of the
OR function. The OR function would be true if at least one of x1 and x2 is 1, and
this looks like the opposite of OR.

I found this example interesting. Although we have real numbers on the edges, we
can use them to compute binary outputs. Looking at this example, you might be
wondering, how did I come up with these weights in the first place? Let’s explore this
in the next question.

Problem: Consider the following perceptron where the activation function is the
step function (g(x) = 1 if x > 0, g(x) = 0 if x ≤ 0). What should the weights w01,
w11, and w21 be such that the perceptron represents an AND function?

x1 x2 o1
0 0 0
0 1 0
1 0 0
1 1 1

c©Alice Gao 2021 v1.0 Page 9 of 15

CS 486/686 Lecture 8

Solution: There are many correct answers. Here is one of them. The key insight is
that a perceptron is a linear classifier. Given the data points, we need to find a line
that separates the positive examples from the negative examples. Then, we can derive
an inequality that selects the side with the positive examples. This inequality will tell
us the weights in the perceptron.

Let’s draw the inputs in the x1x2-plane here, shade in the inputs that correspond to
an output of 1, and leave the others empty. You’ll notice that there is a rather large
gap between our shaded and unshaded inputs. Any line going through this gap would
work, but we’ll pick one of the nicest ones: this line with x1 and x2 intercepts of 1.5
and a slope of −1.

Our line is x2 = −x1 + 1.5, which we can rewrite as x1 + x2 − 1.5 = 0.

However, we want to classify all inputs on one side as “firing” our neuron, so we need
this to be an inequality that is positive for inputs on one side. Here, that means the
top-right side of the line. That is, our (1, 1) input should be positive when we substitute
it into the left-hand side of the inequality. We see that 1 + 1 − 1.5 = 0.5 > 0, so the
inequality we need is x1 + x2 − 1.5 > 0.

If instead we got a negative value for our (1, 1) input, the inequality would flip and we
would negate the coefficients.

Finally, we read the weights off of the coefficients: w01 = −1.5, w11 = 1, w21 = 1.

For a general logical function, you can draw the inputs and attempt to place a line
which classifies the inputs correctly. The coefficients of the line tell the weights, but
you may have to adjust the signs.

c©Alice Gao 2021 v1.0 Page 10 of 15

CS 486/686 Lecture 8

4 Limitations of Perceptrons

4.1 The First AI Winter

From the 1950s to the 1960s, research into perceptrons seemed very promising. At the time,
people believed AI could be solved if computers could be made to perform formal logical
reasoning. Recall that we can use perceptrons to represent simple logical functions, like
AND, OR, or NOT, and that these logical functions are the building blocks of a logical
deduction system.

Unfortunately, in the late 1960s, some limitations of perceptrons were discovered. Marvin
Minsky, the founder of the MIT AI lab, and Seymour Papert, the director of the lab at the
time, were skeptical about perceptrons. They studied perceptrons and found a significant
limitation. They recorded their findings in a book called ”Perceptrons: An Introduction to
Computational Geometry”.

In the book, Minsky and Papert showed that it is not possible to represent an XOR function
using perceptrons only - a deeper network with at least two layers is needed. Recall that the
XOR of two inputs is true whenever the two inputs are different. They are either 1 and 0 or
0 and 1.

This fact by itself is not a problem. If a deeper network is needed, then we can construct one
and train it to learn our target function. Unfortunately, at the time, nobody knew how to
train a neural network with at least two layers. People only knew how to train a perceptron
- a single-layer network.

These two results combined together suggested that pursuing perceptrons may be a dead
end. This discovery had a huge impact on the research towards artificial neural networks,
and it is believed that the book led to the first AI winter. There was a freeze to funding on
neural networks. It also became challenging to publish any paper on perceptrons, since it
was not thought to be a promising research direction.

Problem: Why can’t a perceptron represent XOR?

Solution: Intuitively, a perceptron is a linear classifier (given that we use the step
function as the activation function), but XOR is not linearly separable. In the drawing
below, you can see that AND and OR are linearly separable, but there is no way to
linearly separate the shaded outputs of XOR.

c©Alice Gao 2021 v1.0 Page 11 of 15

CS 486/686 Lecture 8

Let’s prove this rigorously.

Proof. Assume towards a contradiction that we can represent the XOR function using
a perceptron. The activation function is the step function

g(x) =

{
1 if x > 0

0 if x ≤ 0
.

Below is the graph of our data points again and a drawing of the perceptron for
reference.

Since we know how our perceptron classifies the four input points, we can use the
activation function to derive four inequalities:

w21 · 1 + w11 · 0 + w01 > 0

w21 · 0 + w11 · 1 + w01 > 0

w21 · 1 + w11 · 1 + w01 ≤ 0

w21 · 0 + w11 · 0 + w01 ≤ 0

c©Alice Gao 2021 v1.0 Page 12 of 15

CS 486/686 Lecture 8

Simplifying and rewriting these, we have

w21 + w01 > 0 =⇒ w21 > −w01 (1)

w11 + w01 > 0 =⇒ w11 > −w01 (2)

w21 + w11 + w01 ≤ 0 =⇒ w21 + w11 ≤ −w01 (3)

w01 ≤ 0 (4)

Adding (1) and (2) gives
w21 + w11 > −2w01 (5)

From (4), we know that −2w01 ≥ −w01. Then we can put (3) and (5) together to get

w21 + w11 > −2w01 ≥ −w01 ≥ w21 + w11

which is a contradiction.

4.2 XOR as a 2-layer neural network

Now that we know we cannot represent XOR with a single-layer neural network, how can we
represent XOR? After all, XOR is a simple function, and we should be able to represent it.

It turns out the simplest network we need looks like the following. It may appear that we
have three layers: the input layer, the hidden layer, and the output layer. However, the
input layer is not a real layer, since it is not performing any computation. It simply contains
the input values. The middle layer is called a hidden layer since it is not visible, whereas
the input and output are the two visible layers. In a larger network, any layer in the middle
is a hidden layer.

Problem: Give weights such that the network represents the XOR function, using
the step function as the activation function.

c©Alice Gao 2021 v1.0 Page 13 of 15

CS 486/686 Lecture 8

You may not know where to start, but try to reason about this mathematically. You may
also have to recall some knowledge from a previous logic class: try to break down the XOR
function into functions we do know how to represent, then put them together.

Solution: Let us channel our inner logician—perhaps recalling CS 245. The XOR
of two inputs x1 and x2 can be expressed as

o1 = ((x1 ∨ x2) ∧ (¬(x1 ∧ x2))) .

We can represent all of these simpler AND, OR, and NOT components with percep-
trons. This should be sufficient for you to figure out the weights, but I will provide
one solution anyway by way of the diagram below.

To verify these weights are correct, here are the formulas and truth tables for h1, h2,
and o1.

h1 = g(x1 + x2 − 0.5)

x1 x2 h1

0 0 0
0 1 1
1 0 1
1 1 1

h1 = (x1 ∨ x2)

h2 = g(−x1 − x2 + 1.5)

x1 x2 h2

0 0 1
0 1 1
1 0 1
1 1 0

h2 = ¬(x1 ∧ x2)

o1 = g(h1 + h2 − 1.5)

h1 h2 o1
0 0 0
0 1 0
1 0 0
1 1 1

o1 = (h1 ∧ h2)

Indeed, o1 = (h1 ∧ h2) = ((x1 ∨ x2) ∧ (¬(x1 ∧ x2))) = (x1 XOR x2).

c©Alice Gao 2021 v1.0 Page 14 of 15

CS 486/686 Lecture 8

5 Practice Problems

1. What are some desirable properties of an activation function?

2. What is the difference between a feed-forward and a recurrent neural network? What
is the advantage and the disadvantage of using each type of network?

3. Why is it not possible to represent the XOR function using a perceptron (with the step
function as the activation function)?

c©Alice Gao 2021 v1.0 Page 15 of 15

	Learning Goals
	Introduction to Artificial Neural Networks
	History and background
	Learning complex relationships
	Human brains
	A simple mathematical model of a neuron
	Desirable properties of the activation function
	Common activation functions

	Introduction to Perceptrons
	Feed-forward v.s. recurrent neural networks
	Perceptrons

	Limitations of Perceptrons
	The First AI Winter
	XOR as a 2-layer neural network

	Practice Problems

