CS 486/686 Lecture 18 Decision Trees 1

1 Chapter 18 Learning from Examples

1.1 Introduction

Why would we want an agent to learn? If we can improve the design of an agent, why don’t we
program in that improvement to begin with?

o The designer cannot anticipate all possible situations that the agent may be in.

To build an agent to navigate mazes, we cannot program in all possible mazes.

o The designer cannot anticipate all changes over time.
The stock market goes up and down. A static program will not do well when predicting the
stock market price tomorrow.

e Sometimes, we have no idea how to program a solution.

How do we recognize faces? Why are we good at solving certain problems? We don’t even
know why we have certain intuition into some problems.

We will focus on one class of learning problems which have vast applicability: from a collection of
input—output pairs, learn a function that predicts the output for new inputs.

Types of learning problems based on feedback available

o Unsupervised learning:
no explicit feedback is given. (There is no output or the output is the same for every input.)
want to learn pattern in the input.

The most common task is “clustering” — detecting clusters of input examples.
o Supervised learning:
given input output pairs

learn a function which maps from input to output

e A continuum between supervised and unsupervised learning because of noise and lack of
labels.

CS 486/686 Lecture 18 Decision Trees 2

1.2 Supervised Learning

The problem: Given a training set of N input-output pairs, (z1,41), (2, y2), ..., (Tn,yn), Where
each y; was generated by an unknown function y = f(x), discover a function h that approximates
the true function f.

x and y can be any values and need not be numbers. x can be a vector of values. y can be one
value in a discrete set of values or a value in a continuous interval of values.

h is a hypothesis.

We search through the hypothesis space for a function that performs well even on new examples
beyond the training set.

We measure the accuracy of the hypothesis by testing it on a test set that is distinct from the
training set.

A hypothesis generalizes well if it correctly predicts the values of y for novel examples.
Classification: if the output is one of a finite set of values
Regression: if the output is a continuous value.

Given a hypothesis space, there could be multiple hypotheses that agree with all of the data points.
How do we choose among these hypotheses?

We prefer the simplest hypothesis that agrees with all the data (or makes small errors.)

o Generalize better.

o Fasy to compute.

Ockham’s razor: - What does it mean for a hypothesis to be the simplest? We will discuss this
more later.

There is a trade-off between complex hypotheses that fit the data well and simpler hypotheses that
may generalize better.

Over-fitting and Under-fitting

Learning curve: plot the average error of the hypothesis with respect to the complexity of the
hypothesis

CS 486/686 Lecture 18 Decision Trees

Measure the complexity of the hypothesis by the number of parameters and the size of the hy-

pothesis.

---- Expected error on test set
— Expected error on training set

’
7
’
’
’

.. Under-fit Over-fit .~
\ Best fit

v
v

All the hypothesis is trying to do is to capture patterns in the data.

e A simple hypothesis does not have a lot of degrees of freedom. A complex hypothesis can
capture more pattern because it has a lot more degrees of freedom.

A line: slope and y-intercept. A 4th degree polynomial: 5 parameters.

e In the under-fit region:

The hypothesis has not captured all of the patterns that are common in both the training

and the test set.

e In the over-fit region:

The hypothesis has captured patterns that are only present in the training set and not present

in the test set.

Training set Test set

CS 486/686 Lecture 18 Decision Trees 4

1.3 Decision Trees

1.3.1 Introducing a decision tree

One of the simplest yet most successful forms of machine learning
Take as input a vector of feature values and return a single output value.

For now: inputs have discrete values and the output has two possible values — a Binary classifi-
cation

Each example input will be classified as true (positive example) or false (negative example).

We will use the following example to illustrate the decision tree learning algorithm.

Example: Jeeves the valet

Jeeves is a valet to Bertie Wooster. On some days, Bertie likes to play tennis and asks Jeeves
to lay out his tennis things and book the court. Jeeves would like to predict whether Bertie will

play tennis (and so be a better valet). Each morning over the last two weeks, Jeeves has recorded
whether Bertie played tennis on that day and various attributes of the weather.

Jeeves would like to evaluate the classifier he has come up with for predicting whether Bertie will
play tennis. Each morning over the next two weeks, Jeeves records the following data.

Jeeves the valet — the training set

Day | Outlook | Temp | Humidity | Wind | Tennis?
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 | Overcast | Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool | Normal | Weak Yes
6 Rain Cool | Normal | Strong No
7 | Overcast | Cool | Normal | Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool | Normal | Weak Yes
10 Rain Mild | Normal | Weak Yes
11 Sunny Mild | Normal | Strong Yes
12 | Overcast | Mild High Strong Yes
13 | Overcast | Hot Normal | Weak Yes
14 Rain Mild High Strong No

CS 486/686 Lecture 18 Decision Trees

Jeeves the valet — the test set

Day | Outlook | Temp | Humidity | Wind | Tennis?
1 Sunny Mild High Strong No
2 Rain Hot Normal | Strong No
3 Rain Cool High Strong No
4 | Overcast | Hot High Strong Yes
5 | Overcast | Cool | Normal | Weak Yes
6 Rain Hot High Weak Yes
7 | Overcast | Mild | Normal | Weak Yes
8 | Overcast | Cool High Weak Yes
9 Rain Cool High Weak Yes
10 Rain Mild | Normal | Strong No
11 | Overcast | Mild High Weak Yes
12 Sunny Mild | Normal | Weak Yes
13 Sunny Cool High Strong No
14 Sunny | Cool High Weak No

A decision tree performs a sequence of tests in the input features.

« Each node performs a test on one input feature.
o FEach arc is labeled with a value of the feature.

o Each leaf node specifies an output value.

Using the Jeeves training set, we will construct two decision trees using different orders of testing
the features.

CS 486/686 Lecture 18 Decision Trees 6

Example 1: Let’s construct a decision tree using the following order of testing features.
Test Outlook first.

For Outlook=Sunny, test Humidity. (After testing Outlook, we could test any of the three re-
maining features: Humidity, Wind, and Temp. We chose Humidity here.)

For Outlook=Rain, test Wind. (After testing Outlook, we could test any of the three remaining
features: Humidity, Wind, and Temp. We chose Wind here.)

Sunny Overcast Rain

Normal High Weak Strong

Example 2: Let’s construct another decision tree by choosing Temp as the root node. This choice
will result in a really complicated tree shown on the next page.

We have constructed two decision trees and both trees can classify the training examples perfectly.
Which tree would you prefer?

One way to choose between the two is to evaluate them on the test set.

The first (and simpler) tree classifies 14/14 test examples correctly. Here are the decisions given
by the first tree on the test examples. (1. No. 2. No. 3. No. 4. Yes. 5. Yes. 6. Yes. 7. Yes. 8.
Yes. 9. Yes. 10. No. 11. Yes. 12. Yes. 13. No. 14. No.)

The second tree classifies 7/14 test examples correctly. Here are the decisions given by the second
tree on the test examples. (1. Yes. 2. No. 3. No. 4. No. 5. Yes. 6. Yes/No. 7. Yes. 8. Yes. 0.
Yes. 10. Yes. 11. Yes. 12. No. 13. Yes. 14. Yes.)

The second and more complicated tree performs worse on the test examples than the first tree,
possibly because the second tree is overfitting to the training examples.

CS 486/686 Lecture 18 Decision Trees

e

e
st

"%

CS 486/686 Lecture 18 Decision Trees 8

Every decision tree corresponds to a propositional formula.

For example, our simpler decision tree corresponds to the propositional formula.

(Outlook = SunnyNHumidity = Normal)V(Outlook = Overcast)V(Outlook = Rain\Wind = Weak)

If we have n features, how many different functions can we encode with decisions trees? (Let’s
assume that every feature is binary.)

Each function corresponds to a truth table. Each truth table has 2" rows. There are 22" possible
truth tables.

With n = 10, 21024 ~ 10308

How do we find a good hypothesis in such a large space?

