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The Language of Predicate Logic

• Domain: a non-empty set of objects
• Constants: concrete objects in the domain
• Variables: placeholders for concrete objects in the domain
• Functions: takes objects in the domain as arguments and returns an

object of the domain.
• Predicates: takes objects in the domain as arguments and returns true

or false. They describe properties of objects or relationships between
objects.

• Quantifiers: for how many objects in the domain is the statement
true?
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A question on functions
Consider two translations of the sentence “every child is younger than its
mother.”

1. (∀𝑥 (∀𝑦 ((𝐶ℎ𝑖𝑙𝑑(𝑥) ∧ 𝑀𝑜𝑡ℎ𝑒𝑟(𝑦, 𝑥)) → 𝑌 𝑜𝑢𝑛𝑔𝑒𝑟(𝑥, 𝑦))))
2. (∀𝑥 (𝐶ℎ𝑖𝑙𝑑(𝑥) → 𝑌 𝑜𝑢𝑛𝑔𝑒𝑟(𝑥, 𝑚𝑜𝑡ℎ𝑒𝑟(𝑥))))

Which of the following is the best answer?

a. Both are wrong.
b. 1 is correct and 2 is wrong.
c. 2 is correct and 1 is wrong.
d. Both are correct. 1 is better.
e. Both are correct. 2 is better.

The domain is the set of people. 𝐶ℎ𝑖𝑙𝑑(𝑥) means 𝑥 is a child.
𝑀𝑜𝑡ℎ𝑒𝑟(𝑥, 𝑦) means 𝑥 is 𝑦’s mother. 𝑌 𝑜𝑢𝑛𝑔𝑒𝑟(𝑥, 𝑦) means 𝑥 is younger
than 𝑦. 𝑚𝑜𝑡ℎ𝑒𝑟(𝑥) returns 𝑥’s mother.
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Functions

Using functions allows us to avoid ugly/inelegant predicate logic formulas.

Try translating the following sentence with and without functions.

“Andy and Paul have the same maternal grandmother.”
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The Language of Predicate Logic

The seven kinds of symbols:
1. Constant symbols. Usually 𝑐, 𝑑, 𝑐1, 𝑐2, … , 𝑑1, 𝑑2 …
2. Variables. Usually 𝑥, 𝑦, 𝑧, … 𝑥1, 𝑥2, … , 𝑦1, 𝑦2 …
3. Function symbols. Usually 𝑓, 𝑔, ℎ, … 𝑓1, 𝑓2, … , 𝑔1, 𝑔2, …
4. Predicate symbols. 𝑃 , 𝑄, …𝑃1, 𝑃2, …, 𝑄1, 𝑄2, …
5. Connectives: ¬, ∧, ∨, →, and ↔
6. Quantifiers: ∀ and ∃
7. Punctuation: ‘(’, ‘)’, and ‘,’

Function symbols and predicate symbols have an assigned arity—the
number of arguments required. For example,

• 𝑓 (1): 𝑓 is a unary function.
• 𝑃 (2): 𝑃 is a binary predicate.
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Two kinds of expressions

In predicate logic, we need to consider two kinds of expressions:

• those that refer to an object of the domain, called terms, and
• those that can have a truth value, called formulas.
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Terms

Each term refers to an object of the domain.

We define the set of terms inductively as follows.

1. Each constant symbol is an atomic term.
2. Each variable is an atomic term.
3. 𝑓(𝑡1, … , 𝑡𝑛) is a term if 𝑡1, … , 𝑡𝑛 are terms and 𝑓 is an 𝑛-ary function

symbol. (If 𝑓 is a binary function symbol, then we may write (𝑡1 𝑓 𝑡2)
instead of 𝑓(𝑡1, 𝑡2).)

4. Nothing else is a term.
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Which expressions are terms?

A term refers to an object of the domain.

Which of the following expressions is a term?

a. 𝑔(𝑑, 𝑑)
b. 𝑃(𝑓(𝑥, 𝑦), 𝑑)
c. 𝑓(𝑥, 𝑔(𝑦, 𝑧), 𝑑)
d. 𝑔(𝑥, 𝑓(𝑦, 𝑧), 𝑑)

Let 𝑑 be a constant symbol. Let 𝑃 be a predicate symbol with 2
arguments. Let 𝑓 be a function symbol with 2 arguments and 𝑔 be a
function symbol with 3 arguments. Let 𝑥, 𝑦, and 𝑧 be variable symbols.
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Is this a term?

True or False: The expression (2 − 𝑓(𝑥)) + (𝑦 ∗ 𝑥) is a term.

a. True
b. False
c. Not enough information to tell

The domain is the set of integers. +, − and ∗ are binary functions. 𝑓 is a
unary function. 𝑥 and 𝑦 are variables and 2 is a constant.
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Well-Formed Predicate Logic Formulas

We define the set of well-formed formulas of predicate logic inductively as
follows.

1. 𝑃(𝑡1, … , 𝑡𝑛) is an atomic formula if 𝑃 is an 𝑛-ary predicate symbol
and each 𝑡𝑖 is a term (1 ≤ 𝑖 ≤ 𝑛).

2. (¬𝛼) is a formula if 𝛼 is a formula.
3. (𝛼 ⋆ 𝛽) is a formula if 𝛼 and 𝛽 are formulas and ⋆ is a binary

connective symbol.
4. Each of (∀𝑥 𝛼) and (∃𝑥 𝛼) is a formula if 𝛼 is a formula and 𝑥 is a

variable.
5. Nothing else is a formula.
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Determine whether a formula is well-formed

𝑚 is a constant and 𝑥 and 𝑦 are variables. 𝑃 (2) and 𝑄(2) are binary
predicates. 𝑓 (1) is a unary function.

Which of the following is a well-formed predicate logic formula?

a. (𝑓(𝑥) → 𝑃(𝑥, 𝑦))
b. ∀𝑦 𝑃(𝑚, 𝑓(𝑦))
c. 𝑃(𝑥, 𝑦) → 𝑄(𝑄(𝑥))
d. 𝑄(𝑚, 𝑓(𝑚))
e. 𝑃(𝑚, 𝑓(𝑄(𝑥, 𝑦)))

Syntax of Predicate Logic Terms and Formulas 11/25



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Determine whether a formula is well-formed

Things to consider:

• Are there enough brackets? Are the brackets in the right places?
• Is each unary/binary connective applied to the right number of

predicates?
• Does every function have the right number and type of arguments?
• Does every predicate have the right number and type of arguments?
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Comparing the Definitions of WFFs

Let’s compare and contrast the definitions of WFFs for propositional and
predicate logic.

• Which parts of the two definitions are the same?
• The definition of WFF for propositional logic says that a propositional

variable is an atomic WFF. Is this still the case for predicate logic?
• What is new in the definition of WFF for predicate logic compared to

the definition of WFF for propositional logic?
• If we were to prove that every WFF for predicate logic has a property

P by structural induction, what does the proof look like? What are
the base case(s) and what are the cases in the induction step?
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Parse Trees of Predicate Logic Formulas

New elements in the parse tree:

• Quantifiers ∀𝑥 and ∃𝑦 has one subtree, similar to the unary
connective negation.

• A predicate 𝑃(𝑡1, 𝑡2, … , 𝑡𝑛) has a node labelled 𝑃 with a sub-tree for
each of the terms 𝑡1, 𝑡2, … , 𝑡𝑛.

• A function 𝑓(𝑡1, 𝑡2, … , 𝑡𝑛) has a node labelled 𝑓 with a sub-tree for
each of the terms 𝑡1, 𝑡2, … , 𝑡𝑛.

Example 1: (∀𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))) → (¬(𝑃(𝑓(𝑥, 𝑦)) ∨ 𝑄(𝑦)))
Example 2: (∀𝑥 ((𝑃 (𝑥) ∧ 𝑄(𝑥)) → (¬(𝑃(𝑓(𝑥, 𝑦)) ∨ 𝑄(𝑦)))))
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Evaluating a Formula

To evaluate the truth value of a formula, we need to replace the variables
by concrete objects in the domain. However, we don’t necessarily have to
perform this substitution for every variable.

There are two types of variables in a formula:

• A variable may be free. To evaluate the formula, we need to replace a
free variable by an object in the domain.

• A variable may be bound by a quantifier. The quantifier tells us how
to evaluate the formula.

We need to understand how to determine whether a variable is free/bound
and how to replace a free variable with an object in the domain.
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Free and Bound Variables

In a formula (∀𝑥 𝛼) or (∃𝑥 𝛼), the scope of a quantifier is the formula 𝛼.
A quantifier binds its variable within its scope.

An occurrence of a variable in a formula is bound if it lies in the scope of
some quantifier of the same variable. Otherwise the occurrence of this
variable is free.

• If a variable occurs multiple times, we need to consider each
occurrence of the variable separately.

• The variable symbol immediately after ∃ or ∀ is neither free nor
bound.

A formula with no free variables is called a closed formula or sentence.
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Determine whether a variable is free or bound

Determine whether a variable is free or bound using a parse tree.

1. Draw the parse tree for the formula.
2. Choose the leaf node for an occurrence of a variable.
3. Walk up the tree. Stop as soon as we encounter a quantifier for this

variable or we reach the root of the tree.
4. If we encountered a quantifier for the variable, this occurrence of the

variable is bound.
5. If we reached the root of the tree which is not a quantifier for the

variable, this occurrence of the variable is free.

Example 1: (∀𝑥 (𝑃(𝑥) ∧ 𝑄(𝑥))) → (¬(𝑃(𝑓(𝑥, 𝑦)) ∨ 𝑄(𝑦)))
Example 2: (∀𝑥 ((𝑃 (𝑥) ∧ 𝑄(𝑥)) → (¬(𝑃(𝑓(𝑥, 𝑦)) ∨ 𝑄(𝑦)))))
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Substitution

When writing natural deduction proofs in predicate logic, it is often useful
to replace a variable in a formula with a term.

Suppose that the following sentences are true:

(∀𝑥 (Fish(𝑥) → Swim(𝑥))) (1)

Fish(Nemo) (2)
To conclude that Nemo can swim, we need to replace every occurence of
the variable x in the implication Fish(𝑥) → Swim(𝑥) by the term Nemo.
This gives us

(Fish(Nemo) → Swim(Nemo)) (3)
By modus ponens on (2) and (3), we conclude that Swim(Nemo).
Formally, we use substitution to refer to the process of replacing 𝑥 by
Nemo in the formula ∀𝑥 Fish(𝑥) → Swim(𝑥).
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Substitution

Intuitively, 𝛼[𝑡/𝑥] answers the question,

“What happens to 𝛼 if 𝑥 has the value specified by term 𝑡?”

For a variable 𝑥, a term 𝑡, and a formula 𝛼, 𝛼[𝑡/𝑥] denotes the resulting
formula by replacing each free occurrence of 𝑥 in 𝛼 with 𝑡. In other words,
substitution does NOT affect bound occurrences of the variable.
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Examles of Substitution

Examples.

• If 𝛼 is the formula 𝐸(𝑓(𝑥)), then 𝛼[(𝑦 + 𝑦)/𝑥] is 𝐸(𝑓(𝑦 + 𝑦)).
• 𝛼[𝑓(𝑥)/𝑥] is 𝐸(𝑓(𝑓(𝑥))).
• 𝐸(𝑓(𝑥 + 𝑦))[𝑦/𝑥] is 𝐸(𝑓(𝑦 + 𝑦)).

• If 𝛽 is (∀𝑥 (𝐸(𝑓(𝑥)) ∧ 𝑆(𝑥, 𝑦))), then 𝛽[𝑔(𝑥, 𝑦)/𝑥] is 𝛽,
because 𝛽 has no free occurrence of 𝑥.
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Examples: Substitution

Example. Let 𝛽 be (𝑃(𝑥) ∧ (∃𝑥 𝑄(𝑥))). What is 𝛽[𝑦/𝑥]?

𝛽[𝑦/𝑥] is (𝑃(𝑦) ∧ (∃𝑥 𝑄(𝑥))). Only the free 𝑥 gets substituted.

Example. What about 𝛽[(𝑦 − 1)/𝑧], where 𝛽 is
(∀𝑥 (∃𝑦 ((𝑥 + 𝑦) = 𝑧))))?

At first thought, we might say (∀𝑥 (∃𝑦 ((𝑥 + 𝑦) = (𝑦 − 1)))). But there’s
a problem—the free variable 𝑦 in the term (𝑦 − 1) got “captured” by the
quantifier ∃𝑦.

We want to avoid this capture.
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Preventing Capture

Example. Formula 𝛼 = 𝑆(𝑥) ∧ ∀𝑦 (𝑃(𝑥) → 𝑄(𝑦)); term 𝑡 = 𝑓(𝑦, 𝑦).
The leftmost 𝑥 can be substituted by 𝑡 since it is not in the scope of any
quantifier, but substituting in 𝑃(𝑥) puts the variable 𝑦 into the scope
of ∀𝑦.

We can prevent capture of variables by a different choice of variable.
(Above, we might be able to substitute 𝑓(𝑧, 𝑧) instead of 𝑓(𝑦, 𝑦). Or alter
𝛼 to quantify some other variable.)
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Substitution—Formal Definition

Let 𝑥 be a variable and 𝑡 a term.

For a term 𝑢, the term 𝑢[𝑡/𝑥] is 𝑢 with each occurrence of the variable 𝑥
replaced by the term 𝑡.
For a formula 𝛼,

1. If 𝛼 is 𝑃(𝑡1, … , 𝑡𝑘), then 𝛼[𝑡/𝑥] is 𝑃(𝑡1[𝑡/𝑥], … , 𝑡𝑘[𝑡/𝑥]).
2. If 𝛼 is (¬𝛽), then 𝛼[𝑡/𝑥] is (¬𝛽[𝑡/𝑥]).
3. If 𝛼 is (𝛽 ⋆ 𝛾), then 𝛼[𝑡/𝑥] is (𝛽[𝑡/𝑥] ⋆ 𝛾[𝑡/𝑥]).
4. …

(Continued next page…)
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Substitution—Formal Definition (2)

For variable 𝑥, term 𝑡 and formula 𝛼:

⋮
4. If 𝛼 is (𝑄𝑥 𝛽), then 𝛼[𝑡/𝑥] is 𝛼.
5. If 𝛼 is (𝑄𝑦 𝛽) for some other variable 𝑦, then

(a) If 𝑦 does not occur in 𝑡, then 𝛼[𝑡/𝑥] is (𝑄𝑦 𝛽[𝑡/𝑥]).
(b) Otherwise, select a variable 𝑧 that occurs in neither 𝛼 nor 𝑡;

then 𝛼[𝑡/𝑥] is (𝑄𝑧 (𝛽[𝑧/𝑦])[𝑡/𝑥]).

The last case prevents capture by renaming the quantified variable to
something harmless.
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Example, Revisited

Example. If 𝛼 is (∀𝑥 (∃𝑦 (𝑥 + 𝑦 = 𝑧))), what is 𝛼[(𝑦 − 1)/𝑧]?
This falls under case 5(b): the term to be substituted, namely 𝑦 − 1,
contains a variable 𝑦 quantified in formula 𝛼.

Let 𝛽 be (𝑥 + 𝑦 = 𝑧); thus 𝛼 is (∀𝑥 (∃𝑦 𝛽)).

Select a new variable, say 𝑤. Then

𝛽[𝑤/𝑦] is 𝑥 + 𝑤 = 𝑧,

and
𝛽[𝑤/𝑦][(𝑦 − 1)/𝑧] is (𝑥 + 𝑤) = (𝑦 − 1) .

Thus the required formula 𝛼[(𝑦 − 1)/𝑧] is

(∀𝑥 ∃𝑤((𝑥 + 𝑤) = (𝑦 − 1))) .
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