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Back to the knights and knaves island

During your Thanksgiving trip, you found another island with knights and
knaves (you have a feeling that you may encounter many such islands this
semester). Knights always tell the truth and knaves always lie.

You talk to every person on the island and each one says “All of us on the
island are of the same type”.

Are they really the same type? Can you determine which type?

a. They are all knights.
b. They are all knaves.
c. Some are knights and some are knaves.
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Predicate Logic:
Informal Introduction and Translation

Alice Gao
October 12, 2017

These slides are based on materials from CS245 at UWaterloo and
CPSC121 at UBC.
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What can’t we express using propositional logic?

Can we express the following ideas using propositional logic?

• Translate this sentence: Alice is married to Jay and Alice is not
married to Leon.

• Translate this sentence: Every bear likes honey.
• Define what it means for a natural number to be prime.
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What can’t we express using propositional logic?

A few things that are difficult to express using propositional logic:

• Relationships among individuals: Alice is married to Jay and Alice is
not married to Leon.

• Generalizing patterns: Every bear likes honey.
• Infinite domains: Define what it means for a natural number to be

prime.

We can use predicate logic (first-order logic) to express all of these.
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Would you really use predicate logic?

Examples of predicate logic in CS245 so far:

1. Every well-formed formula has an equal number of left and right
brackets.

2. For every truth valuation t, if all the premises are true under t, then
the conclusion is true under t.

3. If there does not exist a natural deduction proof from the premises to
the conclusion, then the premises do not semantically entail the
conclusion.
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Would you really use predicate logic?

Examples of predicate logic in Computer Science:

1. Data Structure: Every key stored in the left subtree of a node 𝑁 is
smaller than the key stored at 𝑁 .

2. Algorithms: in the worst case, every comparison sort requires at least
𝑐𝑛 log 𝑛 comparisons to sort 𝑛 values, for some constant 𝑐 > 0.

3. Java example: there is no path via references from any variable in
scope to any meomry location available for garbage collection...

4. Database query: select a person whose age is greater than or equal to
the age of every other person in the table.

Predicate Logic Introduction and Motivation 6/63



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Elements of predicate logic

Predicate logic generalizes propositional logic.

New things in predicate logic:

• Domains
• Predicates
• Quantifiers

Predicate Logic Elements of Predicate Logic 7/63
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Domains

A domain is a non-empty set of objects. It is a world that our statement is
situated within.

Examples of domains: natural numbers, people, animals, etc.

Why is it important to specify a domain? The same statement can have
different truth values in different domains.

Consider this statement: There exists a number whose square is 2.

• If our domain is the set of natural numbers, is this statement true or
false?

• If our domain is the set of real numbers, is this statement true or
false?
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Objects in a domain

Constants: concrete objects in the domain

• Natural numbers: 0, 6, 100, ...
• Alice, Bob, Eve, ...
• Animals: Winnie the Pooh, Micky Mouse, Simba, ...

Variables: placeholders for concrete objects, e.g. x, y, z.

A variable lets us refer to an object without specifying which particular
object it is.
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Predicates
A predicate represents

• a property of an individual, or
• a relationship among mulitple individuals.

Think of a predicate as a special type of function which takes constants
and/or variables as inputs and outputs T/F. It can have any number of
arguments.

Examples:
• Define 𝐿(𝑥) to mean “x is a lecturer”. (unary predicate)

• Alice is a lecturer: 𝐿(𝐴𝑙𝑖𝑐𝑒)
• Micky Mouse is not a lecturer: (¬𝐿(𝑀𝑖𝑐𝑘𝑦𝑀𝑜𝑢𝑠𝑒))
• 𝑦 is a lecturer: 𝐿(𝑦)

• Define 𝑌 (𝑥, 𝑦) to mean “x is younger than y”. (binary
predicate/relation)

• Alex is younger than Sam: 𝑌 (𝐴𝑙𝑒𝑥, 𝑆𝑎𝑚)
• 𝑎 is younger than 𝑏: 𝑌 (𝑎, 𝑏)
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Quantifiers

For how many objects in the domain is the statement true?

• The universal quantifier ∀: the statement is true for every object in
the domain.

• The existential quantifier ∃: the statement is true for one or more
objects in the domain.
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Translating English into Predicate Logic

Let the domain be the set of animals. Honey(𝑥) means that 𝑥 likes honey.
Bear(𝑥) means that 𝑥 is a bear.

Consider the following translations of English sentences into predicate logic
formulas. Are the translations correct?

1. At least one animal likes honey. (∃𝑥 Honey(𝑥)).
2. Not every animal likes honey. (¬(∀𝑥 Honey(𝑥))).

a. Both are correct.
b. 1 is correct and 2 is wrong.
c. 1 is wrong and 2 is correct.
d. Both are wrong.

Predicate Logic Translating between English and Predicate Logic 12/63
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Translating English into Predicate Logic

Translate the following sentences into predicate logic.

1. All animals like honey.
2. At least one animal likes honey.
3. Not every animal likes honey.
4. No animal likes honey.

Let the domain be the set of animals. Honey(𝑥) means that 𝑥 likes honey.
Bear(𝑥) means that 𝑥 is a bear.
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Translating English into Predicate Logic

Translate the following sentences into predicate logic.

5. No animal dislikes honey.
6. Not every animal dislikes honey.
7. Some animal dislikes honey.
8. Every animal dislikes honey.

Let the domain be the set of animals. Honey(𝑥) means that 𝑥 likes honey.
Bear(𝑥) means that 𝑥 is a bear.
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Translating English into Predicate Logic

Consider this sentence: every bear likes honey. Which one is the correct
translation into predicate logic?

a. (∀𝑥 (𝐵𝑒𝑎𝑟(𝑥) ∧ 𝐻𝑜𝑛𝑒𝑦(𝑥)))
b. (∀𝑥 (𝐵𝑒𝑎𝑟(𝑥) ∨ 𝐻𝑜𝑛𝑒𝑦(𝑥)))
c. (∀𝑥 (𝐵𝑒𝑎𝑟(𝑥) → 𝐻𝑜𝑛𝑒𝑦(𝑥)))
d. (∀𝑥 (𝐻𝑜𝑛𝑒𝑦(𝑥) → 𝐵𝑒𝑎𝑟(𝑥)))

Let the domain be the set of animals. Honey(𝑥) means that 𝑥 likes honey.
Bear(𝑥) means that 𝑥 is a bear.
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Translating English into Predicate Logic

Consider this sentence: some bear likes honey. Which one is the correct
translation into predicate logic?

a. (∃𝑥 (𝐵𝑒𝑎𝑟(𝑥) ∧ 𝐻𝑜𝑛𝑒𝑦(𝑥)))
b. (∃𝑥 (𝐵𝑒𝑎𝑟(𝑥) ∨ 𝐻𝑜𝑛𝑒𝑦(𝑥)))
c. (∃𝑥 (𝐵𝑒𝑎𝑟(𝑥) → 𝐻𝑜𝑛𝑒𝑦(𝑥)))
d. (∃𝑥 (𝐻𝑜𝑛𝑒𝑦(𝑥) → 𝐵𝑒𝑎𝑟(𝑥)))

Let the domain be the set of animals. Honey(𝑥) means that 𝑥 likes honey.
Bear(𝑥) means that 𝑥 is a bear.
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Multiple Quantifiers

Let the domain be the set of people. Let L(𝑥, 𝑦) mean that person 𝑥 likes
person 𝑦.

Translate the following formulas into English.

1. (∀𝑥 (∀𝑦 𝐿(𝑥, 𝑦)))
2. (∃𝑥 (∃𝑦 𝐿(𝑥, 𝑦)))
3. (∀𝑥 (∃𝑦 𝐿(𝑥, 𝑦)))
4. (∃𝑦 (∀𝑥 𝐿(𝑥, 𝑦)))
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Syntax of Predicate Logic
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The Language of Predicate Logic

The seven kinds of symbols:
1. Constant symbols. Usually 𝑐, 𝑑, 𝑐1, 𝑐2, … , 𝑑1, 𝑑2 …
2. Variables. Usually 𝑥, 𝑦, 𝑧, … 𝑥1, 𝑥2, … , 𝑦1, 𝑦2 …
3. Function symbols. Usually 𝑓, 𝑔, ℎ, … 𝑓1, 𝑓2, … , 𝑔1, 𝑔2, …
4. Predicate symbols. 𝑃 , 𝑄, …𝑃1, 𝑃2, …, 𝑄1, 𝑄2, …
5. Connectives: ¬, ∧, ∨, →, and ↔
6. Quantifiers: ∀ and ∃
7. Punctuation: ‘(’, ‘)’, and ‘,’

Function symbols and predicate symbols have an assigned arity—the
number of arguments required.

The last three kinds of symbols—connectives, quantifiers, and
punctuation—will have their meaning fixed by the syntax and semantics.

Constants, variables, functions and predicate symbols are not restricted.
They may be assigned any meaning, consistent with their kind and arity.
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Terms

In Predicate Logic, we need to consider two kinds of expressions:

• those that can have a truth value, called formulas, and
• those that refer to an object of the domain, called terms.

We start with terms.

Definition. The set of terms is defined inductively as follows.

1. Each constant symbol is a term, and each variable is a term.
Such terms are called atomic terms.

2. If 𝑡1, … , 𝑡𝑛 are terms and 𝑓 is an 𝑛-ary function symbol,
then 𝑓(𝑡1, … , 𝑡𝑛) is a term. If 𝑛 = 2 (a binary function symbol), we
may write (𝑡1 𝑓 𝑡2) instead of 𝑓(𝑡1, 𝑡2).

3. Nothing else is a term.
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Examples of Terms

Example 1. If 0 is a constant symbol, 𝑥 and 𝑦 are variables, and 𝑠(1) and
+(2) are function symbols, then 0, 𝑥, and 𝑦 are terms, as are 𝑠(0) and
+(𝑥, 𝑠(𝑦)).

The expressions 𝑠(𝑥, 𝑦) and 𝑠 + 𝑥 are not terms.

Example 2. Suppose 𝑓 is a unary function symbol, 𝑔 is a binary function
symbol, and 𝑎 is a constant symbol.

Then 𝑔(𝑓(𝑎), 𝑎) and 𝑓(𝑔(𝑎, 𝑓(𝑎))) are terms.

The expressions 𝑔(𝑎) and 𝑓(𝑓(𝑎), 𝑎) are not terms.
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Atomic Formulas

As in propositional logic, a formula represents a proposition (a true/false
statement). The relation symbols produce propositions.

Definition: An atomic formula (or atom) is an expression of the form

𝑃(𝑡1, … , 𝑡𝑛)

where 𝑃 is an 𝑛-ary relation symbol and each 𝑡𝑖 is a term (1 ≤ 𝑖 ≤ 𝑛).

If 𝑃 has arity 2, the atom 𝑃(𝑡1, 𝑡2) may alternatively be written (𝑡1 𝑃 𝑡2).
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General Formulas

We define the set of well-formed formulas of first-order logic inductively as
follows.

1. An atomic formula is a formula.
2. If 𝛼 is a formula, then (¬𝛼) is a formula.
3. If 𝛼 and 𝛽 are formulas, and ⋆ is a binary connective symbol,

then (𝛼 ⋆ 𝛽) is a formula.
4. If 𝛼 is a formula and 𝑥 is a variable,

then each of (∀𝑥 𝛼) and (∃𝑥 𝛼) is a formula.
5. Nothing else is a formula.

In case 4, the formula 𝛼 is called the scope of the quantifier. The
quantifier keeps the same scope if it is included in a larger formula.
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Parse Trees

Parse trees for Predicate Logic formulas are similar to parse trees for
propositional formulas.

• Quantifiers ∀𝑥 and ∃𝑦 form nodes is the same way as negation (i.e.,
only one sub-tree).

• A predicate 𝑃(𝑡1, 𝑡2, … , 𝑡𝑛) has a node labelled 𝑃 with a sub-tree for
each of the terms 𝑡1, 𝑡2, … , 𝑡𝑛.
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Examples: Parse trees

Example: (∀𝑥 ((𝑃 (𝑥) → 𝑄(𝑥)) ∧ 𝑆(𝑥, 𝑦))).

Example: (∀𝑥 (𝐹(𝑏) → (∃𝑦 (∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))))))

Ordinarily, one would omit many of the parentheses in the second formula,
and write simply

∀𝑥 (𝐹(𝑏) → ∃𝑦 ∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))) .
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Examples: Parse trees

Example: (∀𝑥 ((𝑃 (𝑥) → 𝑄(𝑥)) ∧ 𝑆(𝑥, 𝑦))).

Example: (∀𝑥 (𝐹(𝑏) → (∃𝑦 (∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))))))

Ordinarily, one would omit many of the parentheses in the second formula,
and write simply

∀𝑥 (𝐹(𝑏) → ∃𝑦 ∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))) .
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Examples: Parse trees

Example: (∀𝑥 ((𝑃 (𝑥) → 𝑄(𝑥)) ∧ 𝑆(𝑥, 𝑦))).

Example: (∀𝑥 (𝐹(𝑏) → (∃𝑦 (∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))))))

Ordinarily, one would omit many of the parentheses in the second formula,
and write simply

∀𝑥 (𝐹(𝑏) → ∃𝑦 ∀𝑧 (𝐺(𝑦, 𝑧) ∨ 𝐻(𝑢, 𝑥, 𝑦))) .
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Semantics: Interpretations

We cover more on syntax later, but we first start the discussion of
semantics.

Definition: Fix a set 𝐿 of constant symbols, function symbols, and
relation symbols. (The “language” of our formulas.)

An interpretation ℐ (for the set 𝐿) consists of

• A non-empty set 𝑑𝑜𝑚(ℐ), called the domain (or universe) of ℐ.
• For each constant symbol 𝑐, a member 𝑐ℐ of 𝑑𝑜𝑚(ℐ).
• For each function symbol 𝑓 (𝑖), an 𝑖-ary function 𝑓ℐ.
• For each relation symbol 𝑅(𝑖), an 𝑖-ary relation 𝑅ℐ.

Huth and Ryan use the term “model” instead of “interpretation.” (Not a
standard usage.)
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Values of Variable-Free Terms

For terms and formulas that contain no variables or quantifiers, an
interpretation suffices to specify their meaning. The meaning arises in the
obvious(?) fashion from the syntax of the term or formula.

Definition: Fix an interpretation ℐ. For each term 𝑡 containing no
variables, the value of 𝑡 under interpretation ℐ, denoted 𝑡ℐ, is as follows.

• If 𝑡 is a constant 𝑐, the value 𝑡ℐ is 𝑐ℐ.
• If 𝑡 is 𝑓(𝑡1, … , 𝑡𝑛), the value 𝑡ℐ is 𝑓ℐ(𝑡ℐ

1 , … , 𝑡ℐ
𝑛).

The value of a term is always a member of the domain of ℐ.
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Formulas with Variable-Free Terms

Formulas get values in much the same fashion as terms,
except that values of formulas lie in {F, T}.

Definition: Fix an interpretation ℐ. For each formula 𝛼 containing no
variables, the value of 𝛼 under interpretation ℐ, denoted 𝛼ℐ, is as follows.

• If 𝛼 is 𝑅(𝑡1, … , 𝑡𝑛), then

𝛼ℐ =
⎧{
⎨{⎩

T if ⟨𝑡ℐ
1 , … , 𝑡ℐ

𝑛⟩ ∈ 𝑅ℐ

F otherwise.

• If 𝛼 is (¬𝛽) or (𝛽 ⋆ 𝛾), then 𝛼ℐ is determined by 𝛽ℐ and 𝛾ℐ in the
same way as for propositional logic.
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Examples

Let 0 be a constant symbol, 𝑓 (1) a function symbol and 𝐸(1) a relation
symbol. Thus 𝐸(𝑓(0)) and 𝐸(𝑓(𝑓(0))) are both formulas.

Consider an interpretation ℐ with

Domain: ℕ, the natural numbers
0ℐ: zero
𝑓ℐ: successor; { ⟨𝑥, 𝑥 + 1⟩ ∣ 𝑥 ∈ ℕ }
𝐸ℐ: “is even”; { 2𝑦 ∣ 𝑦 ∈ ℕ }

Terms get numerical values: 𝑓(0)ℐ is 1 and 𝑓(𝑓(0))ℐ is 2.

Formula 𝐸(𝑓(0)) means “1 is even”, and 𝐸(𝑓(0))ℐ = F.
Formula 𝐸(𝑓(𝑓(0))) means “2 is even”, and 𝐸(𝑓(𝑓(0)))ℐ = T.

What about some other interpretation?
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Example, Continued

Let 𝒥 be the interpretation with

Domain: ℝ, the rational numbers
0𝒥: two
𝑓𝒥: halving; { ⟨𝑥, 𝑥/2⟩ ∣ 𝑥 ∈ ℝ }
𝐸𝒥: “is an integer”; { 𝑥 ∣ 𝑥 ∈ ℤ }

𝐸(𝑓(0)) means “1 is an integer”, and 𝐸(𝑓(0))𝒥 is T.
𝐸(𝑓(𝑓(0))) means “1/2 is an integer”, and 𝐸(𝑓(𝑓(0)))𝒥 is F.

Exercise: in both ℐ and 𝒥, the formula (𝐸(𝑓(𝑓(0))) ∧ 𝐸(𝑓(0))) receives
value F. Find another interpretation which gives it the value T.
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“Gotchas”

Two often-overlooked points about interpretations.

1. There is NO default meaning for relation, function or constant
symbols.

“1 + 2 = 3” might mean that one plus two equals three—but only if
we specify that interpretation. Any interpretation of constants 1, 2,
and 3, function symbol +(2) and relation symbol =(2) is possible.

2. Functions must be defined at every point in the domain.
(I.e., they must be total.)

If we have language with a binary function symbol “−”, we cannot
specify an interpretation with domain ℕ and subtraction for “−”.
Subtraction is not total on ℕ.
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Variables

To discuss the evaluation of formulas that contain variables, we need a few
more concepts from syntax.

We shall discuss

• “bound” and “free” variables,
• substitution of terms for variables.
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Free and Bound Variables

Recall: the scope of a quantifier in a sub-formula (∀𝑥 𝛼) or (∃𝑥 𝛼) is the
formula 𝛼.

An occurrence of a variable in a formula is bound if it lies in the scope of
some quantifier of the same variable; otherwise it is free. In other words, a
quantifier binds its variable within its scope.

Example. In formula (∀𝑥 (∃𝑦 (𝑥 + 𝑦 = 𝑧))), 𝑥 is bound (by ∀𝑥), 𝑦 is
bound (by ∃𝑦), and 𝑧 is free.

Example. In formula (𝑃(𝑥) ∧ (∀𝑥 (¬𝑄(𝑥)))), the first occurrence of 𝑥 is
free and the last occurrence of 𝑥 is bound.

(The variable symbol immediately after ∃ or ∀ is neither free nor bound.)
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Free and Bound Variables

Formally, a variable occurs free in a formula 𝛼 if and only if it is a member
of the set 𝖥𝖵(𝛼) defined as follows.

1. If 𝛼 is 𝑃(𝑡1, … , 𝑡𝑘), then 𝖥𝖵(𝛼) = { 𝑥 ∣ 𝑥 appears in some 𝑡𝑖 }.
2. If 𝛼 is (¬𝛽), then 𝖥𝖵(𝛼) = 𝖥𝖵(𝛽).
3. If 𝛼 is (𝛽 ⋆ 𝛾), then 𝖥𝖵(𝛼) = 𝖥𝖵(𝛽) ∪ 𝖥𝖵(𝛾).
4. If 𝛼 is (𝖰𝑥 𝛽) (for 𝖰 ∈ {∀, ∃}), then 𝖥𝖵(𝛼) = 𝖥𝖵(𝛽) − {𝑥}.

A formula has the same free variables as its parts, except that a quantified
variable becomes bound.

A formula with no free variables is called a closed formula, or a sentence.
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Substitution

The notation 𝛼[𝑡/𝑥], for a variable 𝑥, a term 𝑡, and a formula 𝛼, denotes
the formula obtained from 𝛼 by replacing each free occurrence of 𝑥 with 𝑡.
Intuitively, it is the formula that answers the question,

“What happens to 𝛼 if 𝑥 has the value specified by term 𝑡?”

Examples.

• If 𝛼 is the formula 𝐸(𝑓(𝑥)), then 𝛼[(𝑦 + 𝑦)/𝑥] is 𝐸(𝑓(𝑦 + 𝑦)).
• 𝛼[𝑓(𝑥)/𝑥] is 𝐸(𝑓(𝑓(𝑥))).
• 𝐸(𝑓(𝑥 + 𝑦))[𝑦/𝑥] is 𝐸(𝑓(𝑦 + 𝑦)).

Substitution does NOT affect bound occurrences of the variable.

• If 𝛽 is (∀𝑥 (𝐸(𝑓(𝑥)) ∧ 𝑆(𝑥, 𝑦))), then 𝛽[𝑔(𝑥, 𝑦)/𝑥] is 𝛽,
because 𝛽 has no free occurrence of 𝑥.

Syntax, Continued Substitution 35/63



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Examples: Substitution

Example. Let 𝛽 be (𝑃(𝑥) ∧ (∃𝑥 𝑄(𝑥))). What is 𝛽[𝑦/𝑥]?

𝛽[𝑦/𝑥] is (𝑃(𝑦) ∧ (∃𝑥 𝑄(𝑥))). Only the free 𝑥 gets substituted.

Example. What about 𝛽[(𝑦 − 1)/𝑧], where 𝛽 is
(∀𝑥 (∃𝑦 ((𝑥 + 𝑦) = 𝑧))))?

At first thought, we might say (∀𝑥 (∃𝑦 ((𝑥 + 𝑦) = (𝑦 − 1)))). But there’s
a problem—the free variable 𝑦 in the term (𝑦 − 1) got “captured” by the
quantifier ∃𝑦.

We want to avoid this capture.
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Avoiding Capture

Example. Formula 𝛼 = 𝑆(𝑥) ∧ ∀𝑦 (𝑃(𝑥) → 𝑄(𝑦)); term 𝑡 = 𝑓(𝑦, 𝑦).
The leftmost 𝑥 can be substituted by 𝑡 since it is not in the scope of any
quantifier, but substituting in 𝑃(𝑥) puts the variable 𝑦 into the scope
of ∀𝑦.

We can prevent capture of variables in two ways.

• Declare that a substitution is undefined in cases where capture would
occur.
One can often evade problems by a different choice of variable.
(Above, we might be able to substitute 𝑓(𝑧, 𝑧) instead of 𝑓(𝑦, 𝑦). Or
alter 𝛼 to quantify some other variable.)

• Write the definition of substitution carefully, to prevent capture.

Huth and Ryan opt for the first method. We shall use the second.
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Substitution—Formal Definition

Let 𝑥 be a variable and 𝑡 a term.

For a term 𝑢, the term 𝑢[𝑡/𝑥] is 𝑢 with each occurrence of the variable 𝑥
replaced by the term 𝑡.
For a formula 𝛼,

1. If 𝛼 is 𝑃(𝑡1, … , 𝑡𝑘), then 𝛼[𝑡/𝑥] is 𝑃(𝑡1[𝑡/𝑥], … , 𝑡𝑘[𝑡/𝑥]).
2. If 𝛼 is (¬𝛽), then 𝛼[𝑡/𝑥] is (¬𝛽[𝑡/𝑥]).
3. If 𝛼 is (𝛽 ⋆ 𝛾), then 𝛼[𝑡/𝑥] is (𝛽[𝑡/𝑥] ⋆ 𝛾[𝑡/𝑥]).
4. …

(Continued next page…)
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Substitution—Formal Definition (2)

For variable 𝑥, term 𝑡 and formula 𝛼:

⋮
4. If 𝛼 is (𝑄𝑥 𝛽), then 𝛼[𝑡/𝑥] is 𝛼.
5. If 𝛼 is (𝑄𝑦 𝛽) for some other variable 𝑦, then

(a) If 𝑦 does not occur in 𝑡, then 𝛼[𝑡/𝑥] is (𝑄𝑦 𝛽[𝑡/𝑥]).
(b) Otherwise, select a variable 𝑧 that occurs in neither 𝛼 nor 𝑡;

then 𝛼[𝑡/𝑥] is (𝑄𝑧 (𝛽[𝑧/𝑦])[𝑡/𝑥]).

The last case prevents capture by renaming the quantified variable to
something harmless.

(Huth and Ryan specify that the substitution is undefined if capture would
occur—case 5(b) above. With this more complex definition, one never has to add
a condition regarding undefined substitutions. Substitution always behaves “the
way it should”.)
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Example, Revisited

Example. If 𝛼 is (∀𝑥 (∃𝑦 (𝑥 + 𝑦 = 𝑧))), what is 𝛼[(𝑦 − 1)/𝑧]?
This falls under case 5(b): the term to be substituted, namely 𝑦 − 1,
contains a variable 𝑦 quantified in formula 𝛼.

Let 𝛽 be (𝑥 + 𝑦 = 𝑧); thus 𝛼 is (∀𝑥 (∃𝑦 𝛽)).

Select a new variable, say 𝑤. Then

𝛽[𝑤/𝑦] is 𝑥 + 𝑤 = 𝑧,

and
𝛽[𝑤/𝑦][(𝑦 − 1)/𝑧] is (𝑥 + 𝑤) = (𝑦 − 1) .

Thus the required formula 𝛼[(𝑦 − 1)/𝑧] is

(∀𝑥 ∃𝑤((𝑥 + 𝑤) = (𝑦 − 1))) .
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Semantics of Predicate Logic
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Predicate Logic Adds to Propositional Logic

In propositional logic, semantics was described in terms of valuations to
propositional atoms.

Predicate Logic includes more ingredients (i.e., predicates, functions,
variables, terms, constants, etc.) and, hence, the semantics for Predicate
Logic must account for all of the ingredients.

We already saw the concept of an interpretation, which specifies the
domain and the identities of the constants, relations and functions.

Formulas that include variables, and perhaps quantifiers, require additional
information, known as an environment (or assignment).
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Environments

A first-order environment is a function that assigns a value in the domain
to each variable.

Example. With the domain ℕ, we might have environment 𝐸1 given by
𝐸1(𝑥) = 9 and 𝐸1(𝑦) = 2.

If the interpretation specifies < is less-than, then 𝑥 < 𝑦 gets value false.

Example. With the domain of fictional animals, we might have
𝐸2(𝑥) = Tweety and 𝐸2(𝑦) = Nemo.

If the interpretation specifies < is “was created before”, then 𝑥 < 𝑦 gets
value true.
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Constants Vs. Variables

Example: Let 𝛼1 be 𝑃(𝑐) (where 𝑐 is a constant), and let 𝛼2 be 𝑃(𝑥)
(where 𝑥 a variable).

Let ℐ be the interpretation with domain ℕ, 𝑐ℐ = 2 and 𝑃 ℐ = “is even”.
Then 𝛼ℐ

1 = T, but 𝛼ℐ
2 is undefined.

To give 𝛼2 a value, we must also specify an environment. For example, if
𝐸(𝑥) = 2, then 𝛼(ℐ,𝐸)

2 = T.

If we wish, we can consider a formula such as 𝛼2 that contains a free
variable 𝑥 as expressing a function: the function that maps 𝐸(𝑥) to 𝛼(ℐ,𝐸)

2 .
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Meaning of Terms

The combination of an interpretation and an environment supplies a value
for every term.

Definition: Fix an interpretation ℐ and environment 𝐸. For each term 𝑡,
the value of 𝑡 under ℐ and 𝐸, denoted 𝑡(ℐ,𝐸), is as follows.

• If 𝑡 is a constant 𝑐, the value 𝑡(ℐ,𝐸) is 𝑐ℐ.
• If 𝑡 is a variable 𝑥, the value 𝑡(ℐ,𝐸) is 𝑥𝐸.
• If 𝑡 is 𝑓(𝑡1, … , 𝑡𝑛), the value 𝑡(ℐ,𝐸) is 𝑓ℐ(𝑡(ℐ,𝐸)

1 , … , 𝑡(ℐ,𝐸)
𝑛 ).

To extend this definition to formulas, we must consider quantifiers.

But first, a few examples.
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Meaning of Terms—Example

Example. Suppose a language has constant symbol 0, a unary function 𝑠,
and a binary function +. We shall write + in infix position: 𝑥 + 𝑦 instead
of +(𝑥, 𝑦).
The expressions 𝑠(𝑠(0) + 𝑠(𝑥)) and 𝑠(𝑥 + 𝑠(𝑥 + 𝑠(0))) are both terms.

The following are examples of interpretations and environments.

• 𝑑𝑜𝑚{ℐ} = {0, 1, 2, …}, 0ℐ = 0, 𝑠ℐ is the successor function and +ℐ is
the addition operation. Then, if 𝐸(𝑥) = 3, the terms get values
(𝑠(𝑠(0) + 𝑠(𝑥)))(ℐ,𝐸) = 6 and (𝑠(𝑥 + 𝑠(𝑥 + 𝑠(0))))(ℐ,𝐸) = 9.
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Meaning of Terms—Example 2

• 𝑑𝑜𝑚{𝒥} is the collection of all words over the alphabet {𝑎, 𝑏},
0𝒥 = 𝑎,
𝑠𝒥 appends 𝑎 to the end of a string, and
+𝒥 is concatenation.
Let 𝐸(𝑥) = 𝑎𝑏𝑎. Then

(𝑠(𝑠(0) + 𝑠(𝑥)))(𝒥,𝐸) = 𝑎𝑎𝑎𝑏𝑎𝑎𝑎

and
(𝑠(𝑥 + 𝑠(𝑥 + 𝑠(0))))(𝒥,𝐸) = 𝑎𝑏𝑎𝑎𝑏𝑎𝑎𝑎𝑎𝑎 .
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Quantified Formulas

To evaluate the truthfulness of a formula (∀𝑥 𝛼) (resp. (∃𝑥 𝛼)), we should
check whether 𝛼 holds for every (resp., for some) value 𝖺 in the domain.

How can we express this precisely?

Definition: For any environment 𝐸 and domain element 𝖽, the environment
“𝐸 with 𝑥 re-assigned to d”, denoted 𝐸[𝑥 ↦ 𝖽],
is given by

𝐸[𝑥 ↦ 𝖽](𝑦) =
⎧{
⎨{⎩

𝖽 if 𝑦 is 𝑥
𝐸(𝑦) if 𝑦 is not 𝑥.
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Values of Quantified Formulas

Definition: The values of (∀𝑥 𝛼) and (∃𝑥 𝛼) are given by

• (∀𝑥 𝛼)(ℐ,𝐸) =
⎧{
⎨{⎩

T if 𝛼(ℐ,𝐸[𝑥↦𝖽]) = T for every 𝖽 in 𝑑𝑜𝑚(ℐ)
F otherwise

• (∃𝑥 𝛼)(ℐ,𝐸) =
⎧{
⎨{⎩

T if 𝛼(ℐ,𝐸[𝑥↦𝖽]) = T for some 𝖽 in 𝑑𝑜𝑚(ℐ)
F otherwise

Note: The values of (∀𝑥 𝛼)(ℐ,𝐸) and (∃𝑥 𝛼)(ℐ,𝐸) do not depend on the
value of 𝐸(𝑥).
The value 𝐸(𝑥) only matters for free occurrences of 𝑥.
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Examples: Value of a Quantified Formula

Example. Let 𝑑𝑜𝑚(ℐ) = {𝖺, 𝖻} and 𝑅ℐ = {⟨𝖺, 𝖺⟩, ⟨𝖺, 𝖻⟩, ⟨𝖻, 𝖻⟩}.

Let 𝐸(𝑥) = 𝑎 and 𝐸(𝑦) = 𝑏. We have

• 𝑅(𝑥, 𝑥)(ℐ,𝐸) = T, since ⟨𝐸(𝑥), 𝐸(𝑥)⟩ = ⟨𝖺, 𝖺⟩ ∈ 𝑅ℐ.

• 𝑅(𝑦, 𝑥)(ℐ,𝐸) = F, since ⟨𝐸(𝑦), 𝐸(𝑥)⟩ = ⟨𝖻, 𝖺⟩ ∉ 𝑅ℐ.

• (∃𝑦 𝑅(𝑦, 𝑥))(ℐ,𝐸) = T, since 𝑅(𝑦, 𝑥)(ℐ,𝐸[𝑦↦𝖺]) = T.

(That is, ⟨𝐸[𝑦 ↦ 𝖺](𝑦), 𝐸[𝑦 ↦ 𝖺](𝑥)⟩ = ⟨𝖺, 𝖺⟩ ∈ 𝑅ℐ).

• What is (∀𝑥 (∀𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸)?
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Examples: Continued

Example. Let 𝑑𝑜𝑚(ℐ) = {𝖺, 𝖻} and 𝑅ℐ = {⟨𝖺, 𝖺⟩, ⟨𝖺, 𝖻⟩, ⟨𝖻, 𝖻⟩}.

Let 𝐸(𝑥) = 𝖺 and 𝐸(𝑦) = 𝖻.

• What is (∀𝑥 (∀𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸)?

Since ⟨𝖻, 𝖺⟩ ∉ 𝑅ℐ, we have

𝑅(𝑥, 𝑦)(ℐ,𝐸[𝑥↦𝖻][𝑦↦𝖺]) = F ,

and thus
(∀𝑥 (∀𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸) = F .

• What about (∀𝑥 (∃𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸)?
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Examples: Continued

Example. Let 𝑑𝑜𝑚(ℐ) = {𝖺, 𝖻} and 𝑅ℐ = {⟨𝖺, 𝖺⟩, ⟨𝖺, 𝖻⟩, ⟨𝖻, 𝖻⟩}.

Let 𝐸(𝑥) = 𝖺 and 𝐸(𝑦) = 𝖻.

• What is (∀𝑥 (∀𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸)?

Since ⟨𝖻, 𝖺⟩ ∉ 𝑅ℐ, we have

𝑅(𝑥, 𝑦)(ℐ,𝐸[𝑥↦𝖻][𝑦↦𝖺]) = F ,

and thus
(∀𝑥 (∀𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸) = F .

• What about (∀𝑥 (∃𝑦 𝑅(𝑥, 𝑦)))(ℐ,𝐸)?
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A Question of Syntax

In the previous example, we wrote

𝑅(𝑥, 𝑦)(ℐ,𝐸[𝑥↦𝖻][𝑦↦𝖺]) = F .

Why did we not write simply

𝑅(𝖻, 𝖺) = F

or perhaps
𝑅(𝖻, 𝖺)(ℐ,𝐸) = F ?

Because “𝑅(𝖻, 𝖺)” is not a formula. The elements 𝖺 and 𝖻 of 𝑑𝑜𝑚(ℐ) are
not symbols in the language; they cannot appear in a formula.
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A Question of Syntax

In the previous example, we wrote

𝑅(𝑥, 𝑦)(ℐ,𝐸[𝑥↦𝖻][𝑦↦𝖺]) = F .

Why did we not write simply

𝑅(𝖻, 𝖺) = F

or perhaps
𝑅(𝖻, 𝖺)(ℐ,𝐸) = F ?

Because “𝑅(𝖻, 𝖺)” is not a formula. The elements 𝖺 and 𝖻 of 𝑑𝑜𝑚(ℐ) are
not symbols in the language; they cannot appear in a formula.
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Satisfaction of Formulas

An interpretation ℐ and environment 𝐸 satisfy a formula 𝛼, denoted
ℐ ⊨𝐸 𝛼, if 𝛼(ℐ,𝐸) = T;
they do not satisfy 𝛼, denoted ℐ ⊭𝐸 𝛼, if 𝛼(ℐ,𝐸) = F.

Form of 𝛼 Condition for ℐ ⊨𝐸 𝛼

𝑅(𝑡1, … , 𝑡𝑘) ⟨𝑡(ℐ,𝐸)
1 , … , 𝑡(ℐ,𝐸)

𝑘 ⟩ ∈ 𝑅ℐ

(¬𝛽) ℐ ⊭𝐸 𝛽
(𝛽 ∧ 𝛾) both ℐ ⊨𝐸 𝛽 and ℐ ⊨𝐸 𝛾
(𝛽 ∨ 𝛾) either ℐ ⊨𝐸 𝛽 or ℐ ⊨𝐸 𝛾 (or both)
(𝛽 → 𝛾) either ℐ ⊭𝐸 𝛽 or ℐ ⊨𝐸 𝛾 (or both)
(∀𝑥 𝛽) for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊨𝐸[𝑥↦𝖺] 𝛽
(∃𝑥 𝛽) there is some 𝖺 ∈ 𝑑𝑜𝑚(ℐ) such that ℐ ⊨𝐸[𝑥↦𝖺] 𝛽

If ℐ ⊨𝐸 𝛼 for every 𝐸, then ℐ satisfies 𝛼, denoted ℐ ⊨ 𝛼.
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Example: Satisfaction

Example. Consider the formula (∃𝑦 𝑅(𝑥, 𝑦 ⊕ 𝑦)).

(For 𝑅 a binary relation and ⊕ a binary function.)

Suppose 𝑑𝑜𝑚(ℐ) = {1, 2, 3, …},
⊕ℐ is the addition operation, and
𝑅ℐ is the equality relation.

Then ℐ ⊨𝐸 (∃𝑦 𝑅(𝑥, 𝑦 ⊕ 𝑦)) iff 𝐸(𝑥) is an even number.
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Validity and Satisfiability

Validity and satisfiability of formulas have definitions analogous to the ones
for propositional logic.

Definition: A formula 𝛼 is

• valid if every interpretation and environment satisfy 𝛼; that is, if
ℐ ⊨𝐸 𝛼 for every ℐ and 𝐸,

• satisfiable if some interpretation and environment satisfy 𝛼; that is, if
ℐ ⊨𝐸 𝛼 for some ℐ and 𝐸, and

• unsatisfiable if no interpretation and environment satisfy 𝛼; that is, if
ℐ ⊭𝐸 𝛼 for every ℐ and 𝐸.

(The term “tautology” is not used in predicate logic.)
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Example: Satisfiability and Validity

Let 𝛼 be the formula 𝑃(𝑓(𝑔(𝑥), 𝑔(𝑦)), 𝑔(𝑧)). The formula is satisfiable:

• 𝑑𝑜𝑚(ℐ): ℕ
• 𝑓ℐ: summation
• 𝑔ℐ: squaring
• 𝑃 ℐ: equality
• 𝐸(𝑥) = 3, 𝐸(𝑦) = 4 and 𝐸(𝑧) = 5.

𝛼 is not valid. (Why?)
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Quantifiers Over Finite Domains

The universal and existential quantifiers may be understood respectively as
generalizations of conjunction and disjunction. If the domain
𝐷 = {𝑎1, … , 𝑎𝑘} is finite then:

For all 𝑥, 𝑅(𝑥) iff 𝑅(𝑎1) and ... and 𝑅(𝑎𝑘)
There exists 𝑥, 𝑅(𝑥) iff 𝑅(𝑎1) or ... or 𝑅(𝑎𝑘)

where 𝑅 is a property.
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Relevance Lemma

Lemma:

Let 𝛼 be a first-order formula, ℐ be an interpretation, and 𝐸1 and 𝐸2 be
two environments such that

𝐸1(𝑥) = 𝐸2(𝑥) for every 𝑥 that occurs free in 𝛼.

Then
ℐ ⊨𝐸1 𝛼 if and only if ℐ ⊨𝐸2 𝛼 .

Proof by induction on the structure of 𝛼.
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Logical Consequence

Suppose Σ is a set of formulas and 𝛼 is a formula. We say that 𝛼 is a
logical consequence of Σ, written as Σ ⊨ 𝛼, iff for any interpretation ℐ and
environment 𝐸, we have ℐ ⊨𝐸 Σ implies ℐ ⊨𝐸 𝛼.

⊨ 𝛼 means that 𝛼 is valid.
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Example: Entailment

Example: Show that ⊨ ((∀𝑥(𝛼 → 𝛽)) → ((∀𝑥 𝛼) → (∀𝑥 𝛽))).

Proof by contradiction. Suppose there are ℐ and 𝐸 such that

ℐ ⊭𝐸 ((∀𝑥(𝛼 → 𝛽)) → ((∀𝑥 𝛼) → (∀𝑥 𝛽))) .

Then we must have ℐ ⊨𝐸 (∀𝑥(𝛼 → 𝛽)) and ℐ ⊭𝐸 ((∀𝑥 𝛼) → (∀𝑥 𝛽));

the second gives ℐ ⊨𝐸 (∀𝑥 𝛼) and ℐ ⊭𝐸 (∀𝑥 𝛽).

Using the definition of ⊨ for formulas with ∀, we have
for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊨𝐸[𝑥↦𝖺] (𝛼 → 𝛽) and ℐ ⊨𝐸[𝑥↦𝖺] 𝛼.
Thus also ℐ ⊨𝐸[𝑥↦𝖺] 𝛽 for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ).
Thus ℐ ⊨𝐸 ∀𝑥 𝛽, a contradiction.
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Example II: Entailment

Example. Show that (∀𝑥(¬𝛾)) ⊨ (¬(∃𝑥 𝛾)).

Suppose that ℐ ⊨𝐸 (∀𝑥(¬𝛾)). By definition, this means

for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊨𝐸[𝑥↦𝖺] (¬𝛾).

Again by definition (for a formula with ¬), this is equivalent to

for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊭𝐸[𝑥↦𝖺] 𝛾

and also

there is no 𝖺 ∈ 𝑑𝑜𝑚(ℐ) such that ℐ ⊨𝐸[𝑥↦𝖺] 𝛾.

This last is the definition of ℐ ⊨𝐸 (¬(∃𝑥 𝛾)), as required.
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Example II: Entailment

Example. Show that (∀𝑥(¬𝛾)) ⊨ (¬(∃𝑥 𝛾)).

Suppose that ℐ ⊨𝐸 (∀𝑥(¬𝛾)). By definition, this means

for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊨𝐸[𝑥↦𝖺] (¬𝛾).

Again by definition (for a formula with ¬), this is equivalent to

for every 𝖺 ∈ 𝑑𝑜𝑚(ℐ), ℐ ⊭𝐸[𝑥↦𝖺] 𝛾

and also

there is no 𝖺 ∈ 𝑑𝑜𝑚(ℐ) such that ℐ ⊨𝐸[𝑥↦𝖺] 𝛾.

This last is the definition of ℐ ⊨𝐸 (¬(∃𝑥 𝛾)), as required.
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Example

Example: Show that, in general,

((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)) .

(That is, find 𝛼 and 𝛽 such that consequence does not hold.)

Key idea: 𝜑1 → 𝜑2 yields true whenever 𝜑1 is false.

Let 𝛼 be 𝑅(𝑥). Let ℐ have domain {𝖺, 𝖻} and 𝑅ℐ = {𝖺}. Then
ℐ ⊨ (∀𝑥 𝛼) → (∀𝑥 𝛽) for any 𝛽. (Why?)

To obtain ℐ ⊭ ∀𝑥(𝛼 → 𝛽), we can use ¬𝑅(𝑥) for 𝛽. (Why?)

Thus ((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)), as required. (Why?)
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Example

Example: Show that, in general,

((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)) .

(That is, find 𝛼 and 𝛽 such that consequence does not hold.)

Key idea: 𝜑1 → 𝜑2 yields true whenever 𝜑1 is false.

Let 𝛼 be 𝑅(𝑥). Let ℐ have domain {𝖺, 𝖻} and 𝑅ℐ = {𝖺}. Then
ℐ ⊨ (∀𝑥 𝛼) → (∀𝑥 𝛽) for any 𝛽. (Why?)

To obtain ℐ ⊭ ∀𝑥(𝛼 → 𝛽), we can use ¬𝑅(𝑥) for 𝛽. (Why?)

Thus ((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)), as required. (Why?)
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Example

Example: Show that, in general,

((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)) .

(That is, find 𝛼 and 𝛽 such that consequence does not hold.)

Key idea: 𝜑1 → 𝜑2 yields true whenever 𝜑1 is false.

Let 𝛼 be 𝑅(𝑥). Let ℐ have domain {𝖺, 𝖻} and 𝑅ℐ = {𝖺}. Then
ℐ ⊨ (∀𝑥 𝛼) → (∀𝑥 𝛽) for any 𝛽. (Why?)

To obtain ℐ ⊭ ∀𝑥(𝛼 → 𝛽), we can use ¬𝑅(𝑥) for 𝛽. (Why?)

Thus ((∀𝑥 𝛼) → (∀𝑥 𝛽)) ⊭ (∀𝑥(𝛼 → 𝛽)), as required. (Why?)
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Example

Example: for any formula 𝛼 and term 𝑡,

⊨ ((∀𝑥 𝛼) → 𝛼[𝑡/𝑥]) .

Recall that functions must be total!
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