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Propositional Logic:
Soundness and Completeness of Natural

Deduction

Alice Gao
Lecture 7
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Learning goals

Soundness and completeness of natural deduction

• Define soundness and completeness.
• Prove that a semantic entailment holds using natural deduction and

the soundness of natural deduction.
• Show that no natural deduction proof exists using the contrapositive

of the soundness of natural deduction.
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Soundness and Completeness of Natural Deduction

We want to prove that Natural Deduction is both sound and complete.

Soundness of Natural Deduction means that the conclusion of a
proof is always a logical consequence of the premises. That is,

If Σ ⊢ND 𝛼, then Σ ⊨ 𝛼 .

Completeness of Natural Deduction means that all logical
consequences in propositional logic are provable in Natural
Deduction. That is,

If Σ ⊨ 𝛼, then Σ ⊢ND 𝛼 .
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Proof of Soundness

To prove soundness, we use induction on the length of the proof:

For all deductions Σ ⊢ 𝛼 which have a proof of length 𝑛 or less,
it is the case that Σ ⊨ 𝛼.

That property, however, is not quite good enough to carry out the
induction. We actually use the following property of a natural number 𝑛.

Suppose that a formula 𝛼 appears at line 𝑛 of a partial
deduction, which may have one or more open sub-proofs. Let Σ
be the set of premises used and Γ be the set of assumptions of
open sub-proofs. Then Σ ∪ Γ ⊨ 𝛼.
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Basis of the Induction

Base case. The shortest deductions have length 1, and thus are either

1. 𝛼 Premise.

or

1. 𝛼 Assumption.

2.

We have either 𝛼 ∈ Σ (in the first case), or 𝛼 ∈ Γ (in the second case).

Thus Σ ∪ Γ ⊨ 𝛼, as required.
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Proof of Soundness: Inductive Step

Inductive step. Hypothesis: the property holds for each 𝑛 < 𝑘; that is,

If some formula 𝛼 appears at line 𝑘 or earlier of some partial
deduction, with premises Σ and un-closed assumptions Γ, then
Σ ∪ Γ ⊨ 𝛼.

To prove: if 𝛼′ appears at line 𝑘 + 1, then Σ ∪ Γ′ ⊨ 𝛼′

(where Γ′ = Γ ∪ 𝛼′ when 𝛼′ is an assumption, and Γ′ = Γ otherwise).

The case that 𝛼′ is an assumption is trivial.

Otherwise, formula 𝛼′ must have a justification by some rule. We shall
consider each possible rule.
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Inductive Step, Case I

Case I: 𝛼′ was justified by ∧i.

We must have 𝛼′ = 𝛼1 ∧ 𝛼2, where each of 𝛼1 and 𝛼2 appear
earlier in the proof, at steps 𝑚1 and 𝑚2, respectively. Also, any
sub-proof open at step 𝑚1 or 𝑚2 is still open at step 𝑘 + 1.

Thus the induction hypothesis applies to both; that is,
Σ ∪ Γ ⊨ 𝛼1 and Σ ∪ Γ ⊨ 𝛼2.

By the definition of ⊨, this yields Σ ∪ Γ ⊨ 𝛼′, as required.
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Inductive Step, Case II

Case II: 𝛼′ was justified by →i.

Rule →i requires that 𝛼′ = 𝛼1 → 𝛼2 and there is a closed
sub-proof with assumption 𝛼1 and conclusion 𝛼2, ending by
step 𝑘. Also, any sub-proof open before the assumption of 𝛼1 is
still open at step 𝑘 + 1.

The induction hypothesis thus implies Σ ∪ (Γ ∪ {𝛼1}) ⊨ 𝛼2.

Hence Σ ∪ Γ ⊨ 𝛼1 → 𝛼2, as required.
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Inductive Step, Cases III ff.

Case III: 𝛼′ was justified by ¬e.

This requires that 𝛼′ be the pseudo-formula ⟂, and that the
proof contain formulas 𝛼 and (¬𝛼) for some 𝛼, each using at
most 𝑘 steps.
By the induction hypothesis, both Σ ⊨ 𝛼 and Σ ⊨ (¬𝛼).
Thus Σ is contradictory, and Σ ⊨ 𝛼′ for any 𝛼′.

Cases IV–XIII:

The other cases follow by similar reasoning.

This completes the inductive step, and the proof of soundness.
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Completeness of Natural Deduction

We now turn to completeness.

Recall that completeness means the following.

Let Σ be a set of formulas and 𝜑 be a formula.

If Σ ⊨ 𝜑, then Σ ⊢ 𝜑 .

That is, every consequence has a proof.

How can we prove this?
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Proof of Completeness: Getting started

We shall assume that the set Σ of hypotheses is finite.
The theorem is also true for infinite sets of hypotheses, but that
requires a completely different proof.

Suppose that Σ ⊨ 𝜑, where Σ = {𝜎1, 𝜎2, … , 𝜎𝑚}.
Thus the formula (𝜎1 ∧ 𝜎2 ∧ … ∧ 𝜎𝑚) → 𝜑 is a tautology.

Lemma. Every tautology is provable in Natural Deduction.

Once we prove the Lemma, the result follows. Given a proof of
(𝜎1 ∧ 𝜎2 ∧ … ∧ 𝜎𝑚) → 𝜑, one can use ∧i and →e to complete a proof of
Σ ⊢ 𝜑.
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Tautologies Have Proofs
For a tautology, every line of its truth table ends with T.
We can mimic the construction of a truth table using inferences in Natural
Deduction.

Claim. Let 𝜑 have 𝑘 variables 𝑝1, … , 𝑝𝑘. Let 𝑣 be a valuation,
and define ℓ1, ℓ2, … , ℓ𝑘 as

ℓ𝑖 =
⎧{
⎨{⎩

𝑝𝑖 if 𝑣(𝑝𝑖) = T
¬𝑝𝑖 if 𝑣(𝑝𝑖) = F.

If 𝜑𝑣 = T, then {ℓ1, … ℓ𝑘} ⊢ 𝜑, and
if 𝜑𝑣 = F, then {ℓ1, … ℓ𝑘} ⊢ (¬𝜑).

To prove the claim, use structural induction on formulas
(which is induction on the column number of the truth table).

Once the claim is proven, we can prove a tautology as follows….
Proof of Completeness 12/14
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Outline of the Proof of a Tautology

1. 𝑝1 ∨ (¬𝑝1) L.E.M.
2. 𝑝2 ∨ (¬𝑝2) L.E.M.
⋮ ⋮

𝑘. 𝑝𝑘 ∨ (¬𝑝𝑘) L.E.M.
𝑘 + 1. 𝑝1 assumption

𝑝2 assumption
⋮

𝜑
(¬𝑝2) assumption
⋮

𝜑
𝑚. 𝜑 ∨e: 2, …

𝑚 + 1. (¬𝑝1) assumption
⋮
⋮

𝜑 ∨e: 𝑚 + 1, …
𝑛. 𝜑 ∨e: 1, 𝑚 − (𝑘 + 1),

𝑛 − (𝑚 + 1)

Once each variable is assumed true or
false, the previous claim provides a
proof.

Proof of Completeness 13/14



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proving the Claim
Hypothesis: the following hold for formulas 𝛼 and 𝛽:

If {ℓ1, … , ℓ𝑘} ⊨ 𝛼, then {ℓ1, … , ℓ𝑘} ⊢ 𝛼;
If {ℓ1, … , ℓ𝑘} ⊭ 𝛼, then {ℓ1, … , ℓ𝑘} ⊢ (¬𝛼);
If {ℓ1, … , ℓ𝑘} ⊨ 𝛽, then {ℓ1, … , ℓ𝑘} ⊢ 𝛽; and
If {ℓ1, … , ℓ𝑘} ⊭ 𝛽, then {ℓ1, … , ℓ𝑘} ⊢ (¬𝛽).

If {ℓ1, … , ℓ𝑘} ⊨ (𝛼 ∧ 𝛽), put the two proofs of 𝛼 and 𝛽 together, and
then infer (𝛼 ∧ 𝛽), by ∧i.

If {ℓ1, … , ℓ𝑘} ⊭ (𝛼 → 𝛽) (i.e., {ℓ1, … , ℓ𝑘} ⊨ 𝛼 and {ℓ1, … , ℓ𝑘} ⊭ 𝛽),

• Prove 𝛼 and (¬𝛽).
• Assume (𝛼 → 𝛽); from it, conclude 𝛽 (→e) and then ⟂ (¬e).
• From the sub-proof, conclude (¬(𝛼 → 𝛽)), by ¬i.

The other cases are similar.
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