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Propositional Logic: Semantics

Alice Gao
Lecture 5
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Announcements
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Clickers

• What are they for? Active learning, engagement
• Why do you ask us to answer twice? Peer instruction
• If you choose to be here, please participate!
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Learning goals

By the end of this lecture, you should be able to:

(Logical equivalence)

• Prove that two formulas are logically equivalent using truth tables.
• Prove that two formulas are logically equivalent using logical

identities.
• Translate a condition in a block of code into a propositional formula.

Simplify an if statement. Determine whether a piece of code is live or
dead.

(Adequate set of connectives)

• Prove that a set of connectives is adequate.
• Prove that a set of connectives is not adequate.
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Definition of logical equivalence

Two formulas 𝛼 and 𝛽 are logically equivalent, denoted 𝛼 ≡ 𝛽 if and only if

• 𝛼𝑡 = 𝛽𝑡, for every valuation 𝑡.
• 𝛼 and 𝛽 have the same final column in their truth tables.
• (𝛼 ↔ 𝛽) is a tautology.
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Why do we care about logical equivalence?

• Do these two formulas have the same meaning?
• Do these two circuits behave the same way?
• Do these two pieces of code fragments behave the same way?
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You already know one way of proving logical equivalent. What is it?

Theorem: (((¬𝑝) ∧ 𝑞) ∨ 𝑝) ≡ (𝑝 ∨ 𝑞).
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Logical Identities

Commutativity
(𝛼 ∧ 𝛽) ≡ (𝛽 ∧ 𝛼)
(𝛼 ∨ 𝛽) ≡ (𝛽 ∨ 𝛼)

Associativity
(𝛼 ∧ (𝛽 ∧ 𝛾)) ≡ ((𝛼 ∧ 𝛽) ∧ 𝛾)
(𝛼 ∨ (𝛽 ∨ 𝛾)) ≡ ((𝛼 ∨ 𝛽) ∨ 𝛾)

Distributivity
(𝛼 ∨ (𝛽 ∧ 𝛾)) ≡ ((𝛼 ∨ 𝛽) ∧ (𝛼 ∨ 𝛾))
(𝛼 ∧ (𝛽 ∨ 𝛾)) ≡ ((𝛼 ∧ 𝛽) ∨ (𝛼 ∧ 𝛾))

Idempotence
(𝛼 ∨ 𝛼) ≡ 𝛼
(𝛼 ∧ 𝛼) ≡ 𝛼

Double Negation
(¬(¬𝛼)) ≡ 𝛼

De Morgan’s Laws
(¬(𝛼 ∧ 𝛽)) ≡ ((¬𝛼) ∨ (¬𝛽))
(¬(𝛼 ∨ 𝛽)) ≡ ((¬𝛼) ∧ (¬𝛽))
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Logical Identities, cont’d

Simplification I (Absorbtion)
(𝛼 ∧ T) ≡ 𝛼
(𝛼 ∨ T) ≡ T
(𝛼 ∧ F) ≡ F
(𝛼 ∨ F) ≡ 𝛼

Simplification II
(𝛼 ∨ (𝛼 ∧ 𝛽)) ≡ 𝛼
(𝛼 ∧ (𝛼 ∨ 𝛽)) ≡ 𝛼

Implication
(𝛼 → 𝛽) ≡ ((¬𝛼) ∨ 𝛽)

Contrapositive
(𝛼 → 𝛽) ≡ ((¬𝛽) → (¬𝛼))

Equivalence
(𝛼 ↔ 𝛽) ≡ ((𝛼 → 𝛽) ∧ (𝛽 → 𝛼))

Excluded Middle
(𝛼 ∨ (¬𝛼)) ≡ T

Contradiction
(𝛼 ∧ (¬𝛼)) ≡ F
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Proving logical equivalence

”If it is sunny, I will play golf, provided that I am relaxed.”

𝑠: it is sunny. 𝑔: I will play golf. 𝑟: I am relaxed.

Three possible translations:

1. (𝑠 → (𝑟 → 𝑔))
2. (𝑟 → (𝑠 → 𝑔))
3. ((𝑠 ∧ 𝑟) → 𝑔)

Prove that all three translations are logically equivalent.

Proof.

... to be filled in ...
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Strategies for improving logical equivalence

• Try getting rid of → and ↔.
• Try moving negations inward using De Morgan’s law.

(¬(𝑝 ∨ 𝑞)) ≡ (¬𝑝) ∧ (¬𝑞).
• Work from the more complex side first.
• Switch to different strategies/sides when you get stuck.
• In the end, write the proof in clean “one-side-to-the-other” form and

double-check steps.
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Proving non-equivalence
”If it snows then I won’t go to class but I will do my assignment.”

𝑠: it snows. 𝑐: I will go to class. 𝑎: I will do my assignment.

2 possible translations:

1. ((𝑠 → (¬𝑐)) ∧ 𝑎)
2. (𝑠 → ((¬𝑐) ∧ 𝑎))

Theorem: The two translations are NOT logically equivalent.

Which valuation 𝑡 can we use to prove this theorem?

(a) 𝑡(𝑠) = F, 𝑡(𝑐) = T, 𝑡(𝑎) = F
(b) 𝑡(𝑠) = F, 𝑡(𝑐) = F, 𝑡(𝑎) = F
(c) 𝑡(𝑠) = T, 𝑡(𝑐) = F, 𝑡(𝑎) = T
(d) Two of (a), (b), and (c).
(e) All of (a), (b), and (c).
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A piece of pseudo code

if ( (input > 0) or (not output) ) {
if ( not (output and (queuelength < 100) ) ) {

𝑃1
} else if ( output and (not (queuelength < 100)) ) {

𝑃2
} else { 𝑃3 }

} else { 𝑃4 }

When does each piece of code get executed?

Let 𝑖: input > 0,
𝑢: output,
𝑞: queuelength < 100.
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Simplifying the piece of pseudo code

if ( i or (not u) ) {
if ( not (u and q) ) {

𝑃1
} else if ( u and (not q) ) {

𝑃2
} else {

𝑃3
}

} else {
𝑃4

}
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When does each piece of code get executed?

i u q Code block
T T T 𝑃3
T T F 𝑃1
T F T 𝑃1
T F F 𝑃1
F T T 𝑃4
F T F 𝑃4
F F T 𝑃1
F F F 𝑃1
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Finding Dead Code

Prove that 𝑃2 is dead code. That is, the conditions leading to 𝑃2 is
logically equivalent to F.

Proof.

... to be filled in ...
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What is 𝑃3 executed?

Prove that 𝑃3 is live code. Specifically, prove that 𝑃3 is executed if and
only if 𝑖, 𝑢 and 𝑞 are all true.

Proof.

... to be filled in ...
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When is 𝑃4 executed?

Prove that 𝑃4 is live code. Specifically, prove that 𝑃4 is executed if and
only if 𝑖 is false and 𝑢 is true.

Proof.

... to be filled in ...
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Two equivalent pieces of code

We have shown that the following two pieces of code are equivalent.

Fragment 1:

if ( i or (not u) ) {
if ( not (u and q) ) {

𝑃1
}
else if ( u and (not q) ) {

𝑃2
}
else {

𝑃3
}

}
else {

𝑃4
}

Fragment 2:

if ( (i and u) and q ) {
𝑃3

}
else if ( (not i) and u ) {

𝑃4
}
else {

𝑃1
}
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A logic puzzle

Each of the four cards has a letter on one side and a natural number on
the other side. Which cards do you have to turn over to determine
whether or not the following claim is true?

Claim: For each card, if the card has a vowel on one side, then it has an
even number on the other side.
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A logic puzzle: The solution
Each of the four cards has a letter on one side and a natural number on
the other side. Which cards do you have to turn over to determine
whether or not the following claim is true?

Claim: For each card, if the card has a vowel on one side, then it has an
even number on the other side.

Solution: You need to turn over the first and the fourth cards from the
left. If a card has a vowel on one side, you need to check that it has an
even number on the other side. If a card has an odd number on one side,
you need to check that it has a non-vowel on the other side (this is the
contrapositive of the given claim).
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Another logic puzzle

A very special island is inhabited only by knights and knaves. Knights
always tell the truth, and knaves always lie.

You meet three inhabitants: Alice, Rex and Bob.

Alice says, “Rex is a knave.”

Rex says, “it’s false that Bob is a knave.”

Bob claims, “I am a knight or Alice is a knight.”

Can you determine who is a knight and who is a knave?
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Adequate sets of connectives
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Learning goals

By the end of this lecture, you should be able to:

(Logical equivalence)

• Prove that two formulas are logically equivalent using truth tables.
• Prove that two formulas are logically equivalent using logical

identities.
• Translate a condition in a block of code into a propositional formula.

Simplify an if statement. Determine whether a piece of code is live or
dead.

(Adequate set of connectives)

• Prove that a set of connectives is adequate.
• Prove that a set of connectives is not adequate.
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Some questions first

• We started propositional logic by learning these connectives ¬, ∧, ∨,
→ and ↔.

• Why did we learn these connectives?
• Using these connectives, can we express every propositional logic

formula that we ever want to write?
• Are there any connectives in this set that are not necessary?
• Are there other connectives that we could define and use? Is there

another set of connectives that we should have studied instead?
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Some answers

Is every connective we learned necessary?

Nope!

Recall that (𝑥 → 𝑦) ≡ ((¬𝑥) ∨ 𝑦). We don’t need → at all. (We say that
→ is definable in terms of ¬ and ∨.)

Are there other connectives that we could define and use?

Yep! Let’s take a look.
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Adequate Sets of Connectives

Which set of connectives is sufficient to express every possible
propositional formula?

Definition

A set of connectives is adequate for propositional logic if and only if it can
express every possible propositional formula.

In other words, any other connective is definable in terms of the ones in an
adequate set.
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An adequate set to start with

Theorem 1: {∧, ∨, ¬} is an adequate set of connectives.

Proof Sketch.

For every propositional formula, we can write down a truth table for it.

We can convert every truth table to a proposition formula, which only
contains ∧, ∨, and ¬. (How?)
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A reduction problem

Theorem 2: Each of {∧, ¬}, {∨, ¬}, and {→, ¬} is adequate.

We will prove that {∧, ¬} is adequate. The proofs for the other two sets
are similar.

Proof Sketch.

By Theorem 1, the set {∧, ∨, ¬} is adequate.

To prove that {∧, ¬} is adequate, we need to show that ∨ is definable in
terms of ∧ and ¬. (How?)
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A non-adequate set

Theorem 3. The set {∧, ∨} is NOT an adequate set of connectives.

Consider a formula, which uses only ∧ and ∨ as connectives. Consider a
valuation in which every variable is true. What is the truth value of the
formula under this valuation?

(a) True.
(b) False.
(c) Depends on the formula.
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A non-adequate set

Theorem 3. The set {∧, ∨} is not an adequate set of connectives.

Proof Sketch.

First we prove the following lemma using structural induction.

Lemma: Consider a valuation in which every variable is true. A formula is
true if it only uses ∧ and ∨ as its connectives.

By using this lemma, we can prove that ¬ is NOT definable using only ∧
and ∨. Thus, {∧, ∨} is not an adequate set of connectives.
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