Theorem: The halting-no-input problem is undecidable.

The halting-no-input problem: Given a program P that takes no input, does P terminate?

"Does P terminate with input I?"

Algorithm for the halting problem

1. P → Construct program P' which runs P with input I.
2. I → P' → Algorithm for halting-no-input problem.
3. "Does P' terminate?"
4. yes → yes
5. no → no
Theorem: The both-halt problem is undecidable.

The both-halt problem: Given two programs P_1 and P_2, do both programs terminate?

Reduction #1: "Does P terminate with input I?"
 - Algorithm for the halting problem
 - Let P_1 run P with I
 - Let P_2 run P with I

Reduction #2: Does reduction #2 lead to a valid proof?
 - "Does P terminate with input I?"
 - Algorithm for the halting problem
 - Let P_1 run P with I
 - P_2 does nothing and terminates

Reduction #3: Does reduction #3 lead to a valid proof?
 - "Does P terminate with input I?"
 - Algorithm for the halting problem
 - Let P_1 run P with I
 - Let P_2 run forever