
1/37

Program Verification
Alice Gao
Lecture 18

Based on work by J. Buss, L. Kari, A. Lubiw, B. Bonakdarpour, D.
Maftuleac, C. Roberts, R. Trefler, and P. Van Beek

2/37

Outline

Program Verification
The Learning Goals
Introduction to Program Verification
Partial Correctness
Total Correctness
Revisiting the Learning Goals

3/37

Learning goals

By the end of this lecture, you should be able to:
▶ Give reasons for performing formal verification rather than

testing.
▶ Define a Hoare triple.
▶ Define partial correctness.
▶ Define total correctness.

4/37

Program Correctness

Does a program satisfy its specification? (Does it do what it is
supposed to do?
How do we show that a program works correctly?

▶ Walk through the code
▶ Testing (black box and white box)
▶ Formal verification

5/37

Techniques for verifying program correctness

Testing
▶ Check a program for carefully chosen inputs.
▶ Cannot be exhaustive in general.

Formal Verification:
▶ State a specification formally.
▶ Prove that a program satisfies the specification for all inputs.

6/37

Why is testing not sufficient?

True/False
1. We can use testing to show that there exists a bug in a

program.
2. We can use testing to show that there does NOT exist a bug

in a program.

(A) True and True
(B) True and False
(C) False and True
(D) False and False
(E) I don’t know.

7/37

Why is testing not sufficient?

Testing can be a very effective way to show the presence
of bugs, but it is hopelessly inadequate for showing their
absence.

E. Dijkstra, 1972.

8/37

Why formally specify and verify programs

▶ Discover and reduce bugs especially for safety-critical software
and hardware.

▶ Documentation facilitates collaboration and code re-use.

9/37

What is being done in practice?

▶ Formally specifying software is widespread.
▶ Formally verifying software is less widespread.
▶ Hardware verification is common.

10/37

Without formal verification, what could go wrong?

▶ Therac-25, X-ray, 1985
▶ Overdosing patients during radiation treatment, 5 dead
▶ Reason: race condition between concurrent tasks

▶ AT&T, 1990
▶ Long distance service fails for 9 hours.
▶ Reason: wrong BREAK statement in C code

▶ Patriot-Scud, 1991
▶ 28 dead and 100 injured
▶ Reason: rounding error

▶ Pentium Processor, 1994
▶ The division algorithm is incorrect.
▶ Reason: incomplete entries in a look-up table

11/37

Without formal verification, what could go wrong?

▶ Ariane 5, 1996
▶ Exploded 37 seconds after takeoff
▶ Reason: data conversion of a too large number

▶ Mars Climate Orbiter, 1999
▶ Destroyed on entering atmosphere of Mars
▶ Reason: mixture of pounds and kilograms

▶ Power black-out, 2003
▶ 50 million people in Canada and US without power
▶ Reason: programming error

▶ Royal Bank, 2004
▶ Financial transactions disrupted for 5 days
▶ Reason: programming error

12/37

Without formal verification, what could go wrong?

▶ UK Child Support Agency, 2004
▶ Overpaid 1.9 million people, underpaid 700,000, cost to

taxpayers over $ 1 billion
▶ Reason: more than 500 bugs reported

▶ Science (a prestigious scientific journal), 2006
▶ Retraction of research papers due to erroneous research results
▶ Reason: program incorrectly flipped the sign (+ to -) on data

▶ Toyota Prius, 2007
▶ 160,000 hybrid vehicles recalled due to stalling unexpectedly
▶ Reason: programming error

▶ Knight Capital Group, 2012
▶ High-frequency trading system lost $440 million in 30 min
▶ Reason: programming error

13/37

The process of formal verification

1. Convert an informal description R of requirements for a
program into a logical formula φR.

2. Write a program P which is meant to satisfy the requirements
R above.

3. Prove that program P satisfies the formula φR.
We will consider only the third part in this course.

14/37

Our programming language

We will use a subset of C/C++ and Java.
Core features of our language:

▶ integer and Boolean expressions
▶ assignment statements
▶ conditional statements
▶ while-loops
▶ arrays

15/37

Imperative programs

▶ A program manipulates variables.
▶ The state of a program consists of the values of variables at a

particular time in the program execution.
▶ A sequence of commands modify the state of the program.
▶ Given inputs, the program produce outputs.

16/37

Imperative programs

y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}
State at the “while” test:

1. z = 0, y = 1
2. z = 1, y = 1
3. z = 2, y = 2
4. z = 3, y = 6
5. z = 4, y = 24

17/37

Formal specification

Consider the following specification:

Given an integer x as input, the program will compute an integer y
whose square is less than x.

Does this specification provide sufficient information for us to
verify the correctness of the program?

18/37

Formal specification

Two important components of a specification:
▶ The state before the program executes
▶ The state after the program executes

19/37

Tony Hoare

▶ Sir Charles Antony Richard Hoare. British computer scientist.
▶ Won Turing award in 1980.
▶ Developed the QuickSort algorithm and the Hoare logic for

verifying program correctness.

20/37

Hoare Triples

A Hoare Triple consists of
▶ L P M — precondition
▶ C — code or program
▶ L Q M — postcondition

The meaning of the Hoare triple L P M C L Q M :

If the state of program C before execution satisfies P,
then the ending state of C after execution will satisfy Q.

21/37

Specification of a Program

A specification of a program C is
a Hoare triple with C as the second component: L P M C L Q M .
Example: The requirement

If the input x is a positive integer,
compute a number whose square is less than x

might be expressed as

L x > 0 M C L y ∗ y < x M .

22/37

Specification is NOT behaviour

Consider two programs C1 and C2.

Listing 1: C1

y = 0 ;

Listing 2: C2

y = 0 ;
whi le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

Is the Hoare triple L (x > 0) M C1 L ((y ∗ y) < x) M satisfied?
(A) Yes
(B) No
(C) Not enough information to tell

23/37

Specification is NOT behaviour

Consider two programs C1 and C2.

Listing 3: C1

y = 0 ;

Listing 4: C2

y = 0 ;
whi le (y ∗ y < x) {

y = y + 1 ;
}
y = y − 1 ;

Is the Hoare triple L (x > 0) M C2 L ((y ∗ y) < x) M satisfied?
(A) Yes
(B) No
(C) Not enough information to tell

24/37

Partial Correctness

A triple L P M C L Q M is satisfied under partial correctness
if and only if

▶ for every state s1 that satisfies condition P,
▶ if execution of C starting from state s1 terminates in a state

s2,
▶ then state s2 satisfies condition Q.

25/37

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C1 L ((y ∗ y) < x) M .
If we run C1 starting with the state x = 5, y = 5,
C1 terminates in the state x = 5, y = 0.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

26/37

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C2 L ((y ∗ y) < x) M .
If we run C2 starting with the state x = 5, y = 5,
C2 terminates in the state x = 5, y = 3.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

27/37

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C3 L ((y ∗ y) < x) M .
If we run C3 starting with the state x = −3, y = 5,
C3 terminates in the state x = −3, y = 0.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

28/37

CQ Verifying Partial Correctness

Consider the Hoare triple L (x > 0) M C4 L ((y ∗ y) < x) M .
If we run C4 starting with the state x = 2, y = 5,
C4 does not terminate.
Is the Hoare triple satisfied under partial correctness?
(A) Yes
(B) No
(C) Not enough information to tell.

29/37

Summary of Verifying Partial Correctness

▶ For verifying partial correctness, we need to consider all
starting states that satisfy the precondition.

▶ If we can find one pair of starting and terminating states such
that the starting state satisfies the precondition and the
terminating state does not satisfy the precondition, then the
Hoare triple is not satisfied under partial correctness.

▶ For verifying partial correctness, we do not care about starting
states that do not satisfy the precondition.

30/37

Total Correctness

A triple L P M C L Q M is satisfied under total correctness
if and only if

▶ for every state s1 that satisfies condition P,
▶ execution of C starting from state s1 terminates in a state s2,
▶ and state s2 satisfies condition Q.

Total Correctness = Partial Correctness + Termination

31/37

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
y = x ;L (y = 1) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

32/37

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
y = x ;L (y = 2) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

33/37

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x = 1) M
whi le (1) {

x = 0
} ;L (x > 0) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

34/37

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L (x ≥ 0) M
y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}L (y = x!) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

35/37

CQ Verifying Partial and Total Correctness

Is the following Hoare triple satisfied under partial and/or total
correctness?L true M
y = 1 ;
z = 0 ;
whi le (z != x) {

z = z + 1 ;
y = y ∗ z ;

}L (y = x!) M
(A) Neither satisfied.
(B) Only partial correctness satisfied.
(C) Total correctness satisfied.

36/37

CQ Difference between Partial and Total Correctness

For the following Hoare triple, what is the
most important difference between partial and total correctness?

L P M C L Q M
(A) One requires the starting state to satisfy P

and the other one doesn’t.
(B) One requires the program C to terminate

and the other one doesn’t.
(C) One requires the terminating state to satisfy Q

and the other one doesn’t.
(D) There is no difference.

37/37

Revisiting the learning goals

By the end of this lecture, you should be able to:
▶ Give reasons for performing formal verification rather than

testing.
▶ Define a Hoare triple.
▶ Define partial correctness.
▶ Define total correctness.

	Program Verification
	The Learning Goals
	Introduction to Program Verification
	Partial Correctness
	Total Correctness
	Revisiting the Learning Goals

